References
- F. Ye, G.H. Fang, J.L. Jin, Evaluation model of water resources
carrying capacity based on grey cluster set pair analysis
method, J. Water Resour. Water Eng., 31 (2020) 30–36.
- D. Yang, Y. Yang, J. Xia, Hydrological cycle and water resources
in a changing world: a review, Geogr. Sustainability, 2 (2021)
115–122.
- O. Bozorg-Haddad, B. Zolghadr-Asli, P. Sarzaeim,
M. Aboutalebi, X. Chu, H.A. Loáiciga, Evaluation of water
shortage crisis in the Middle East and possible remedies,
J. Water Supply Res. Technol. AQUA, 69 (2020) 85–98.
- L. Yin, H. Zhang, Z. Tang, J. Xu, D. Yin, Z. Zhang, X. Yuan,
M. Zhu, S. Zhao, X. Li, X. Liu, rMVP: a memory-efficient,
visualization-enhanced, and parallel-accelerated tool for
genome-wide association study, Genomics Proteomics Bioinf.,
19 (2021) 619–628.
- A.P. Boughton, R.P. Welch, M. Flickinger, P. VandeHaar,
D. Taliun, G.R. Abecasis, M. Boehnke, LocusZoom.js: interactive
and embeddable visualization of genetic association study
results, Bioinformatics, 37 (2021) 3017–3018.
- H. Zhang, Z. Wang, J. Liu, J. Chai, C. Wei, Selection of targeted
poverty alleviation policies from the perspective of land
resources-environmental carrying capacity, J. Rural Stud.,
93 (2022) 318–325.
- M. Świąder, D. Lin, S. Szewrański, J.K. Kazak, K. Iha, J. van
Hoof, I. Belčáková, S. Altiok, The application of ecological
footprint and biocapacity for environmental carrying capacity
assessment: a new approach for European cities, Environ. Sci.
Policy, 105 (2020) 56–74.
- S. Zhao, E.R. Zettler, L.A. Amaral-Zettler, T.J. Mincer, Microbial
carrying capacity and carbon biomass of plastic marine
debris, The ISME J., 15 (2021) 67–77.
- I.A. Guiamel, H.S. Lee, Watershed modelling of the Mindanao
River Basin in the Philippines using the SWAT for water
resource management, Civ. Eng. J., 6 (2020) 626–648.
- M. Janga Reddy, D. Nagesh Kumar, Evolutionary algorithms,
swarm intelligence methods, and their applications in water
resources engineering: a state-of-the-art review, H2Open J.,
3 (2020) 135–188.
- H. Eer, L. Ma, X. Xie, J. Ma, X. Ma, C. Yue, Q. Ma, X. Liang,
W. Ding, Y. Li, Genetic polymorphism association analysis
of SNPs on the species conservation genes of Tan sheep and
Hu sheep, Trop. Anim. Health Prod., 52 (2020) 915–926.
- L. Jiang, Z. Zheng, H. Fang, J. Yang, A generalized linear mixed
model association tool for biobank-scale data, Nat. Genet.,
53 (2021) 1616–1621.
- F. Bhuiyan, K. Baird, R. Munir, The association between
organisational culture, CSR practices and organisational
performance in an emerging economy, Meditari Accountancy
Res., 28 (2020) 977–1011.
- H.W. Kamran, A.A. Pantamee, A.K. Patwary, T.A. Ghauri,
P.D. Long, D.Q. Nga, Measuring the association of
environmental, corporate, financial, and social CSR: evidence
from fuzzy TOPSIS nexus in emerging economies, Environ. Sci.
Pollut. Res., 28 (2021) 10749–10762.
- X. Peng, X. Li, X. Yang, Analysis of circular economy
of E-commerce market based on grey model under the
background of big data, J. Enterp. Inf. Manage., 35 (2022)
1148–1167.
- B.J. Moggridge, R.M. Thompson, Cultural value of water
and western water management: an Australian indigenous
perspective, Australas. J. Water Resour., 25 (2021) 4–14.
- T. Aawar, D. Khare, Assessment of climate change impacts on
streamflow through hydrological model using SWAT model:
a case study of Afghanistan, Model. Earth Syst. Environ.,
6 (2020) 1427–1437.
- J.B.S.O. de Andrade Guerra, I.I. Berchin, J. Garcia, S. da Silva
Neiva, A.V. Jonck, R.A. Faraco, W.S. de Amorim, J.M.P. Ribeiro,
A literature-based study on the water–energy–food nexus for
sustainable development, Stochastic Environ. Res. Risk Assess.,
35 (2021) 95–116.
- M.-C. Li, Z. Tang, C. Liu, R. Huang, M.S. Koo, G. Zhou,
Q. Wu, Water-redispersible cellulose nanofiber and polyanionic
cellulose hybrids for high-performance water-based
drilling fluids, Ind. Eng. Chem. Res., 59 (2020) 14352–14363.
- C. Giudicianni, M. Herrera, A. di Nardo, K. Adeyeye, Automatic
multiscale approach for water networks partitioning
into dynamic district metered areas, Water Resour. Manage.,
34 (2020) 835–848.
- Z. Wang, P. Wei., IMIX: a multivariate mixture model approach
to association analysis through multi-omics data integration,
Bioinformatics, 36 (2020) 5439–5447.
- K.R. Chng, T.S. Ghosh, Y.H. Tan, T. Nandi, I.R. Lee, A.H.Q. Ng,
C. Li, A. Ravikrishnan, K.M. Lim, D. Lye, T. Barkham, K. Raman,
S.L. Chen, L. Chai, B. Young, Y.-H. Gan, N. Nagarajan,
Metagenome-wide association analysis identifies microbial
determinants of post-antibiotic ecological recovery in the gut,
Nat. Ecol. Evol., 4 (2020) 1256–1267.
- C. Kulworatit, S. Tuntiwongwanich, The use of digital intelligence
and association analysis with data mining methods
to determine the factors affecting digital safety among Thai
adolescents, Int. J. Innovation Creativity Change, 14 (2020)
1120–1134.
- J. Wu, R. Yu, H. Wang, C. Zhou, S. Huang, H. Jiao, S. Yu, X. Nie,
Q. Wang, S. Liu, S. Weining, R.P. Singh, S. Bhavani, Z. Kang,
D. Han, Q. Zeng, A large-scale genomic association analysis
identifies the candidate causal genes conferring stripe rust
resistance under multiple field environments, Plant Biotechnol.
J., 19 (2021) 177–191.
- Y. Xia, Correlation and association analyses in microbiome
study integrating multiomics in health and disease, Prog.
Mol. Biol. Transl. Sci., 171 (2020) 309–491.