References

  1. M.A. Arshad, A. Mahmood, M.S. Shabbir, A.F. Siddiqi, M. Abbas, G. Sleimany, Modelling a multi-objective problem for emergency response in disaster management: emphasising on mitigating the impact of the delay in the crisis severity, Int. J. Serv. Oper. Manage., 41 (2022) 224–240.
  2. W. Zhai, J. Ding, Z. Wang, L. Ding, Performance and participants’ decisions analysis in major water resources allocation project based on network governance, Water Resour. Manage., 36 (2022) 2455–2470.
  3. H. Sun, Y. Dong, Y. Lai, X. Li, X. Ge, C. Lin, The multi-objective optimization of low-impact development facilities in shallow mountainous areas using genetic algorithms, Water, 14 (2022) 2986, doi: 10.3390/w14192986.
  4. T. Altinoz, Comparison of MOEA/D variants on benchmark problems, Int. J. Multidiscip. Stud. Innovative Technol., 6 (2022) 11–18.
  5. W. Wang, J. Dong, Z. Wang, Y. Zhao, R. Zhang, G. Li, M. Hu, Multi-objective culture whale optimization algorithm for reservoir flood control operation, Comput. Integr. Manuf. Syst., 28 (2022) 3494–3509.
  6. M. Ren, Q. Zhang, Y. Yang, G. Wang, W. Xu, L. Zhao, Research and application of reservoir flood control optimal operation based on improved genetic algorithm, Water, 14 (2022) 1272, doi: 10.3390/w14081272.
  7. R. Yang, Y. Qi, J. Lei, X. Ma, H. Zhang, A parallel multi-objective optimization algorithm based on coarse-to-fine decomposition for real-time large-scale reservoir flood control operation, Water Resour. Manage., 36 (2022) 3207–3219.
  8. Y. Wei, G. Qi, Y. Wang, N. Yan, Y. Zhang, L. Feng, Efficient microwave filter design by a surrogate-model-assisted decomposition-based multi-objective evolutionary algorithm, Electronics, 11 (2022) 3309, doi: 10.3390/electronics11203309.
  9. I. Yoosefdoost, M. Basirifard, J. Álvarez-García, Reservoir operation management with new multi-objective (MOEPO) and metaheuristic (EPO) algorithms, Water, 14 (2022) 2329, doi: 10.3390/w14152329.
  10. X. Wu, X. Shen, C. Wei, X. Xie, J. Li, Reservoir operation sequence- and equity principle-based multi-objective ecological operation of reservoir group: a case study in a basin of Northeast China, Sustainability, 14 (2022) 6150, doi: 10.3390/su14106150.
  11. V. Kumar, S.M. Yadav, Multi-objective reservoir operation of the Ukai reservoir system using an improved Jaya algorithm, Water Supply, 22 (2022) 2287–2310.
  12. M. Mansouri, H.R. Safavi, F. Rezaei, An improved MOPSO algorithm for multi-objective optimization of reservoir operation under climate change, Environ. Monit. Assess., 194 (2022) 261,
    doi: 10.1007/s10661-022-09909-6.
  13. A. Mohanavelu, B.-S. Soundharajan, O. Kisi, Modeling multiobjective Pareto-optimal reservoir operation policies using state-of-the-art modeling techniques, Water Resour. Manage., 36 (2022) 3107–3128.
  14. Z. Liu, J. Yan, Q. Cheng, H. Chu, J. Zheng, C. Zhang, Adaptive selection multi-objective optimization method for hybrid flow shop green scheduling under finite variable parameter constraints: case study, Int. J. Prod. Res., 60 (2022) 3844–3862.
  15. C. Jena, J.M. Guerrero, A. Abusorrah, Y. Al-Turki, B. Khan, Multi-objective generation scheduling of hydro-thermal system incorporating energy storage with demand side management considering renewable energy uncertainties, IEEE Access, 10 (2022) 52343–52357.
  16. Z.-y. Chai, C.-d. Yang, Y.-l. Li, Communication efficiency optimization in federated learning based on multi-objective evolutionary algorithm, Evol. Intell., 16 (2023) 1033–1044.