References
- A. Kushwaha, N. Hans, S. Kumar, R. Rani, A critical review on
speciation, mobilization and toxicity of lead in soil-microbeplant
system and bioremediation strategies, Ecotoxicol.
Environ. Saf., 147 (2018) 1035–1045.
- H. Cheng, Y. Hu, Lead (Pb) isotopic fingerprinting and its
applications in lead pollution studies in China: a review,
Environ. Pollut., 157 (2010) 1134–1146.
- A. Kumar, A. Kumar, M.M.S. Cabral-Pinto, A.K. Chaturvedi,
A.A. Shabnam, G. Subrahmanyam, R. Mondal, D.K. Gupta,
S.K. Malyan, S.S. Kumar, S.A. Khan, K.K. Yadav, Lead toxicity:
health hazards, influence on food chain, and sustainable
remediation approaches, Int. J. Environ. Res. Public Health,
17 (2020) 2179, doi: 10.3390/ijerph17072179.
- R. Pervin, M.A. Hossain, D. Debnath, M.A. Bhuiyan, in:
D. Bagchi, M. Bagchi, Metal Toxicology Handbook, CRC Press,
Boca Raton, 2020.
- World Health Organization, Guidelines for Drinking-Water
Quality: Fourth Edition Incorporating the First Addendum,
Licence: CC BY-NC-SA 3.0 IGO, Geneva, 2017.
- F.M. Pang, P. Kumar, T.T. Teng, A.K.M. Omar, K.L. Wasewar,
Removal of lead, zinc and iron by coagulation–flocculation,
J. Taiwan Inst. Chem. Eng., 42 (2011) 809–815.
- C. Suo, D. Xu, R. Yuan, B. Zhou, Synchronous removal of
Cd(II), Pb(II), and Cu(II) by coagulation in the presence of
polymeric ferric sulfate, Desal. Water Treat., 195 (2020) 421–434.
- M.K. Khosa, M.A. Jamal, A. Hussain, M. Muneer, K.M. Zia,
S. Hafeez, Efficiency of aluminum and iron electrodes for
the removal of heavy metals [(Ni(II), Pb(II), Cd(II)] by
electrocoagulation method, J. Korean Chem. Soc., 57 (2013)
316–321.
- N. Abdullah, N. Yusof, W.J. Lau, A.F. Ismail, Recent trends of
heavy metal removal from water/wastewater by membrane
technologies, Ind. Eng. Chem. Res., 76 (2019) 17–38.
- S.N. Katariya, S. Kumar, R.B. Yadav, Kinetics and
thermodynamics of removal of metal ions using EDTAmodified
cation ion exchange resin, Desal. Water Treat.,
233 (2021) 133–149.
- D. Egirani, M.T. Late, N. Wessey, N.R. Poyi, S. Acharjee,
Synthesis and characterization of kaolinite coated with copper
oxide and its effect on the removal of aqueous lead(II) ions,
Appl. Water Sci., 9 (2019) 109, doi: 10.1007/s13201-019-0989-6.
- H. Khurshid, M.R.U. Mustafa, M.H. Isa, Adsorption of
chromium, copper, lead and mercury ions from aqueous
solution using bio and nano adsorbents: a review of recent
trends in the application of AC, BC, nZVI and MXene, Environ.
Res., 212 (2022) 113138, doi: 10.1016/j.envres.2022.113138.
- T. Liu, Y. Lawluvy, Y. Shi, J.O. Ighalo, Y. He, Y. Zhang, Y. Pow-
Seng, Adsorption of cadmium and lead from aqueous solution
using modified biochar: a review, J. Environ. Chem. Eng.,
10 (2022) 106502, doi: 10.1016/j.jece.2021.106502.
- M.N. Sahmoune, Evaluation of thermodynamic parameters
for adsorption of heavy metals by green adsorbents, Environ.
Chem. Lett., 17 (2019) 697–704.
- X. Wang, J. Feng, Z. Ma, J. Li, D. Xu, X. Wang, Y. Sun,
X. Gao, J. Gao, Application of response surface methodology
for modeling and optimization of lead (Pb(II)) removal from
seaweed extracts via electrodialysis, Desal. Water Treat.,
179 (2020) 280–287.
- W. Pan, C. Pan, Y. Bae, D. Giammar, Role of manganese in
accelerating the oxidation of pb(ii) carbonate solids to Pb(IV)
oxide at drinking water conditions, Environ. Sci. Technol.,
53 (2019) 6699–6707.
- J. Zhang, Y. Li, X. Xie, W. Zhu, X. Meng, Fate of adsorbed Pb(II)
on graphene oxide under variable redox potential controlled
by electrochemical method, J. Hazard. Mater., 367 (2019)
152–159.
- M. Rosique, J.M. Angosto, E. Guibal, M.J. Roca, J.A. Fernández-
López, Factorial design methodological approach for
enhanced cadmium ions bioremoval by Opuntia biomass,
CLEAN – Soil Air Water, 44 (2016) 959–966.
- A.H. Sulaymon, S.E. Ebrahim, S.M. Abdullah, T.J. Al-Musawi,
Removal of lead, cadmium, and mercury ions using
biosorption, Desal. Water Treat., 24 (2010) 344–352.
- A. Almasi, F. Navazeshkha,, S.A. Mousavi, Biosorption of lead
from aqueous solution onto Nasturtium officinale: performance
and modeling, Desal. Water Treat., 65 (2017) 443–450.
- R. Flouty, J. El-Khoury, E. Maatouk, A. El-Samrani, Optimization
of Cu and Pb biosorption by Aphanizomenon ovalisporum
using Taguchi approach: kinetics and equilibrium modeling,
Desal. Water Treat., 155 (2019) 259–271.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- S. Razavi, H.V. Gupta, What do we mean by sensitivity analysis?
the need for comprehensive characterization of “global”
sensitivity in earth and environmental systems models,
Water Resour. Res., 51 (2015) 3070–3092.
- A. Saltelli, P. Annoni, How to avoid a perfunctory sensitivity
analysis, Environ. Modell. Software, 25 (2010) 1508–1517.
- G. Taguchi, Introduction to Quality Engineering: Designing
Quality into Products and Processes, Asian Productivity
Organization, Tokyo, 1986.
- N. Berkane, S. Meziane, S. Aziri, Optimization of Congo red
removal from aqueous solution using Taguchi experimental
design, Sep. Sci. Technol., 55 (2020) 278–288.
- A.S. Yusuff, O.A. Ajayi, L.T. Popoola, Application of Taguchi
design approach to parametric optimization of adsorption of
crystal violet dye by activated carbon from poultry litter, Sci.
Afr., 13 (2021) e00850, doi: 10.1016/j.sciaf.2021.e00850.
- P.C. Bhomick, A. Supong, M. Baruah, C. Pongener, C. Gogoi,
D. Sinha, Alizarin Red S adsorption onto biomass-based
activated carbon: optimization of adsorption process
parameters using Taguchi experimental design, Int. J. Environ.
Sci. Technol., 17 (2020) 1137–1148.
- V.C. Srivastava, I.D. Mall, I.M. Mishra, Optimization of
parameters for adsorption of metal ions onto rice husk ash
using Taguchi’s experimental design methodology, Chem. Eng.
J., 140 (2008) 136–144.
- S.R. Korake, P.D. Jadhao, Investigation of Taguchi optimization,
equilibrium isotherms, and kinetic modeling for cadmium
adsorption onto deposited silt, Heliyon, 7 (2021) e05755,
doi: 10.1016/j.heliyon.2020.e05755.
- F. Googerdchian, A. Moheb, R. Emadi, M. Asgari, Optimization
of Pb(II) ions adsorption on nanohydroxyapatite adsorbents by
applying Taguchi method, J. Hazard. Mater., 349 (2018) 186–194.
- H.Y. Yen, J.Y. Li, Process optimization for Ni(II) removal from
wastewater by calcined oyster shell powders using Taguchi
method, J. Environ. Manage., 161 (2015) 344–349.
- J.A. Fernández-López, J.M. Angosto, M.J. Roca, M.D. Miñarro,
Taguchi design-based enhancement of heavy metals bioremoval
by agroindustrial waste biomass from artichoke,
Sci. Total Environ., 653 (2019) 55–63.
- H.I. Syeda, I. Sultan, K.S. Razavi, P.S. Yap, Biosorption of heavy
metals from aqueous solution by various chemically modified
agricultural wastes: a review, J. Water Process Eng., 46 (2022)
102446, doi: 10.1016/j.jwpe.2021.102446.
- S. Pap, V. Bezanovic, J. Radonic, A. Babic, S. Saric, D. Adamovic,
M.T. Sekulic, Synthesis of highly-efficient functionalized
biochars from fruit industry waste biomass for the removal of
chromium and lead, J. Mol. Liq., 268 (2018) 315–325.
- A. Threepanich, P. Praipipat, Powdered and beaded lemon
peels-doped iron(III) oxide-hydroxide materials for lead
removal applications: synthesis, characterizations, and lead
adsorption studies, J. Environ. Chem. Eng., 9 (2021) 106007,
doi: 10.1016/j.jece.2021.106007.
- J.A. Fernández-López, M.D. Miñarro, J.M. Angosto,
J. Fernández-Lledó, J.M. Obón, Adsorptive and surface
characterization of mediterranean agrifood processing wastes:
prospection for pesticide removal, Agronomy, 561 (2021) 2–17.
- M. Mariana, F. Mulana, L. Juniar, D. Fathira, R. Safitri,
S. Muchtar, M.R. Bilad, A.H.M. Shariff, N. Huda, Development
of biosorbent derived from the endocarp waste of gayo coffee
for lead removal in liquid wastewater—effects of chemical
activators, Sustainability, 13 (2021) 3050, doi: 10.3390/su13063050.
- J.J. Alvear-Daza, A. Cánneva, J.A. Donadelli, M. Manrique-
Holguín, J.A. Rengifo‑Herrera, L.R. Pizzio, Removal of
diclofenac and ibuprofen on mesoporous activated carbon
from agro-industrial wastes prepared by optimized synthesis
employing a central composite design, Biomass Convers.
Biorefin., (2022), doi: 10.1007/s13399-021-02227-w.
- D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction
to Spectroscopy, Cengage Learning, USA, 2013.
- R.N. Oliveira, M.C. Mancini, F.C. Salles de Oliveira,
T.M. Passos, B.Q.R.M. de S. Moreira Thiré, G.B. McGuinness,
FTIR analysis and quantification of phenols and flavonoids
of five commercially available plants extracts used in wound
healing, Rev. Matéria, 21 (2016) 767–779.
- M. Calero, A. Pérez, G. Blázquez, A. Ronda, M.A. Martín-
Lara, Characterization of chemically modified biosorbents
from olive tree pruning for the biosorption of lead, Ecol. Eng.,
58 (2013) 344–354.
- B. Hayoun, M. Bourouina, M. Pazos, A.M. Sanromán,
S. Bourouina-Bacha, Equilibrium study, modeling and
optimization of model drug adsorption process by sunflower
seed shells, Appl. Sci., 10 (2020) 3271, doi: 10.3390/app10093271.
- B. Southichak, K. Nakano, M. Nomura, N. Chiba, O. Nishimura,
Phragmites australis: a novel biosorbent for the removal of
heavy metals from aqueous solution, Water Res., 40 (2006)
2295–2302.
- A.E. Ofomaja, E.B. Naidoo, Biosorption of copper from aqueous
solution by chemically activated pine cone: a kinetic study,
Chem. Eng. J., 175 (2011) 260–270.
- P.J. Ross, Taguchi Techniques for Quality Engineering, McGraw-
Hill, New York, 1996.
- C. Xinyu, M.F. Hossain, C. Duan, J. Lu, Y.F. Tsang, M.S. Islam,
Y. Zhou, Isotherm models for adsorption of heavy metals
from water – a review, Chemosphere, 307 (2022) 135545,
doi: 10.1016/j.chemosphere.2022.135545.
- A.A. Sherlala, A.A. Raman, M.M. Bello, A. Asghar, A review
of the applications of organo-functionalized magnetic
graphene oxide nanocomposites for heavy metal adsorption,
Chemosphere, 193 (2019) 1004–1017.
- M. Bilal, I. Ihsanullah, M. Younas, M.U.H. Shah, Recent
advances in applications of low-cost adsorbents for the removal
of heavy metals from water: a critical review, Sep. Purif.
Technol., 278 (2021) 119510, doi: 10.1016/j.seppur.2021.119510.
- J.N. Edokpayi, J.O. Odiyo, T.A.M. Msagati, E.O. Popoola,
A novel approach for the removal of lead(II) ion from
wastewater using mucilaginous leaves of Diceriocaryum
eriocarpum plant, Sustainability, 7 (2015) 14026–14041.
- A.K. Priya, V. Yogeshwaran, S. Rajendran, T.K. Hoang,
M.S.-M. Soto-Moscosoe, A.A. Ghfar, C. Bathula, Investigation
of mechanism of heavy metals (Cr6+, Pb2+ and Zn2+) adsorption
from aqueous medium using rice husk ash: kinetic and
thermodynamic approach, Chemosphere, 286 (2022) 131796,
doi: 10.1016/j.chemosphere.2021.131796.
- Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. ReynelÁvila,
Eds., Adsorption Processes for Water Treatment and
Purification, Springer International Publishing, Switzerland,
2017.
- J. Wang, X. Guo, Adsorption isotherm models:
classification, physical meaning, application and solving
method, Chemosphere, 258 (2020) 127279, doi: 10.1016/j.chemosphere.2020.127279.
- K.G. Bhattacharyya, A. Sharma, Adsorption of Pb(II) from
aqueous solution by Azadirachta indica (neem) leaf powder,
J. Hazard. Mater., 113 (2004) 97–109.
- A.A. Sherlala, A.A. Raman, M.M. Bello, A. Buthiyappan,
Adsorption of arsenic using chitosan magnetic graphene oxide
nanocomposite, J. Environ. Manage., 246 (2019) 547–556.
- C.W. Oo, M.J.N. Kassim, A.L. Pizzi, Characterization and
performance of Rhizophora apiculata mangrove polyflavonoid
tannins in the adsorption of copper(II) and lead(II), Ind. Crops
Prod., 30 (2009) 152–161.
- A. Khokhar, Z. Siddique, Misbah, Removal of heavy metal
ions by chemically treated Melia azedarach L. leaves, J. Environ.
Chem. Eng., 3 (2015) 944–952.
- X. Tao, L. Xiaoqin, Peanut shell activated carbon:
characterization, surface modification and adsorption of Pb2+
from aqueous solution, Chin. J. Chem. Eng., 16 (2008) 401–406.
- Y. Nuhoğlu, Z. Ekmekyapar Kul, S. Kul, Ç. Nuhoğlu,
F. Ekmekyapar Torun, Pb(II) biosorption from the aqueous
solutions by raw and modified tea factory waste (TFW),
Int. J. Environ. Sci. Technol., 18 (2021) 2975–2986.
- M. Sener, D.H.K. Reddy, B. Kayan, Biosorption properties of
pretreated sporopollenin biomass for lead(II) and copper(II):
application of response surface methodology, Ecol. Eng.,
68 (2014) 200–208.
- J. Anwar, U. Shafique, Waheed-uz-Zaman, M. Salman, A.
Dar, S. Anwa, Removal of Pb(II) and Cd(II) from water by
adsorption on peels of banana, Bioresour. Technol., 101 (2010)
752–1755.
- H. Çelebi, O. Gök, Evaluation of lead adsorption kinetics and
isotherms from aqueous solution using natural walnut shell,
Int. J. Environ. Res., 11 (2017) 83–90.
- T. Kanjilal, S. Babu, K. Biswas, C. Bhattacharjee, S. Datta,
Application of mango seed integuments as
bio-adsorbent in
lead removal from industrial effluent, Desal. Water Treat.,
56 (2015) 1–13.
- S. Ravulapalli, R. Kunta, Removal of lead(II) from wastewater
using active carbon of Caryota urens seeds and its embedded
calcium alginate beads as adsorbents, J. Environ. Chem. Eng.,
6 (2018) 4298–4309.