References

  1. A. Kushwaha, N. Hans, S. Kumar, R. Rani, A critical review on speciation, mobilization and toxicity of lead in soil-microbeplant system and bioremediation strategies, Ecotoxicol. Environ. Saf., 147 (2018) 1035–1045.
  2. H. Cheng, Y. Hu, Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review, Environ. Pollut., 157 (2010) 1134–1146.
  3. A. Kumar, A. Kumar, M.M.S. Cabral-Pinto, A.K. Chaturvedi, A.A. Shabnam, G. Subrahmanyam, R. Mondal, D.K. Gupta, S.K. Malyan, S.S. Kumar, S.A. Khan, K.K. Yadav, Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches, Int. J. Environ. Res. Public Health, 17 (2020) 2179, doi: 10.3390/ijerph17072179.
  4. R. Pervin, M.A. Hossain, D. Debnath, M.A. Bhuiyan, in: D. Bagchi, M. Bagchi, Metal Toxicology Handbook, CRC Press, Boca Raton, 2020.
  5. World Health Organization, Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, Licence: CC BY-NC-SA 3.0 IGO, Geneva, 2017.
  6. F.M. Pang, P. Kumar, T.T. Teng, A.K.M. Omar, K.L. Wasewar, Removal of lead, zinc and iron by coagulation–flocculation, J. Taiwan Inst. Chem. Eng., 42 (2011) 809–815.
  7. C. Suo, D. Xu, R. Yuan, B. Zhou, Synchronous removal of Cd(II), Pb(II), and Cu(II) by coagulation in the presence of polymeric ferric sulfate, Desal. Water Treat., 195 (2020) 421–434.
  8. M.K. Khosa, M.A. Jamal, A. Hussain, M. Muneer, K.M. Zia, S. Hafeez, Efficiency of aluminum and iron electrodes for the removal of heavy metals [(Ni(II), Pb(II), Cd(II)] by electrocoagulation method, J. Korean Chem. Soc., 57 (2013) 316–321.
  9. N. Abdullah, N. Yusof, W.J. Lau, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, Ind. Eng. Chem. Res., 76 (2019) 17–38.
  10. S.N. Katariya, S. Kumar, R.B. Yadav, Kinetics and thermodynamics of removal of metal ions using EDTAmodified cation ion exchange resin, Desal. Water Treat., 233 (2021) 133–149.
  11. D. Egirani, M.T. Late, N. Wessey, N.R. Poyi, S. Acharjee, Synthesis and characterization of kaolinite coated with copper oxide and its effect on the removal of aqueous lead(II) ions, Appl. Water Sci., 9 (2019) 109, doi: 10.1007/s13201-019-0989-6.
  12. H. Khurshid, M.R.U. Mustafa, M.H. Isa, Adsorption of chromium, copper, lead and mercury ions from aqueous solution using bio and nano adsorbents: a review of recent trends in the application of AC, BC, nZVI and MXene, Environ. Res., 212 (2022) 113138, doi: 10.1016/j.envres.2022.113138.
  13. T. Liu, Y. Lawluvy, Y. Shi, J.O. Ighalo, Y. He, Y. Zhang, Y. Pow- Seng, Adsorption of cadmium and lead from aqueous solution using modified biochar: a review, J. Environ. Chem. Eng., 10 (2022) 106502, doi: 10.1016/j.jece.2021.106502.
  14. M.N. Sahmoune, Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents, Environ. Chem. Lett., 17 (2019) 697–704.
  15. X. Wang, J. Feng, Z. Ma, J. Li, D. Xu, X. Wang, Y. Sun, X. Gao, J. Gao, Application of response surface methodology for modeling and optimization of lead (Pb(II)) removal from seaweed extracts via electrodialysis, Desal. Water Treat., 179 (2020) 280–287.
  16. W. Pan, C. Pan, Y. Bae, D. Giammar, Role of manganese in accelerating the oxidation of pb(ii) carbonate solids to Pb(IV) oxide at drinking water conditions, Environ. Sci. Technol., 53 (2019) 6699–6707.
  17. J. Zhang, Y. Li, X. Xie, W. Zhu, X. Meng, Fate of adsorbed Pb(II) on graphene oxide under variable redox potential controlled by electrochemical method, J. Hazard. Mater., 367 (2019) 152–159.
  18. M. Rosique, J.M. Angosto, E. Guibal, M.J. Roca, J.A. Fernández- López, Factorial design methodological approach for enhanced cadmium ions bioremoval by Opuntia biomass, CLEAN – Soil Air Water, 44 (2016) 959–966.
  19. A.H. Sulaymon, S.E. Ebrahim, S.M. Abdullah, T.J. Al-Musawi, Removal of lead, cadmium, and mercury ions using biosorption, Desal. Water Treat., 24 (2010) 344–352.
  20. A. Almasi, F. Navazeshkha,, S.A. Mousavi, Biosorption of lead from aqueous solution onto Nasturtium officinale: performance and modeling, Desal. Water Treat., 65 (2017) 443–450.
  21. R. Flouty, J. El-Khoury, E. Maatouk, A. El-Samrani, Optimization of Cu and Pb biosorption by Aphanizomenon ovalisporum using Taguchi approach: kinetics and equilibrium modeling, Desal. Water Treat., 155 (2019) 259–271.
  22. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  23. S. Razavi, H.V. Gupta, What do we mean by sensitivity analysis? the need for comprehensive characterization of “global” sensitivity in earth and environmental systems models, Water Resour. Res., 51 (2015) 3070–3092.
  24. A. Saltelli, P. Annoni, How to avoid a perfunctory sensitivity analysis, Environ. Modell. Software, 25 (2010) 1508–1517.
  25. G. Taguchi, Introduction to Quality Engineering: Designing Quality into Products and Processes, Asian Productivity Organization, Tokyo, 1986.
  26. N. Berkane, S. Meziane, S. Aziri, Optimization of Congo red removal from aqueous solution using Taguchi experimental design, Sep. Sci. Technol., 55 (2020) 278–288.
  27. A.S. Yusuff, O.A. Ajayi, L.T. Popoola, Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter, Sci. Afr., 13 (2021) e00850, doi: 10.1016/j.sciaf.2021.e00850.
  28. P.C. Bhomick, A. Supong, M. Baruah, C. Pongener, C. Gogoi, D. Sinha, Alizarin Red S adsorption onto biomass-based activated carbon: optimization of adsorption process parameters using Taguchi experimental design, Int. J. Environ. Sci. Technol., 17 (2020) 1137–1148.
  29. V.C. Srivastava, I.D. Mall, I.M. Mishra, Optimization of parameters for adsorption of metal ions onto rice husk ash using Taguchi’s experimental design methodology, Chem. Eng. J., 140 (2008) 136–144.
  30. S.R. Korake, P.D. Jadhao, Investigation of Taguchi optimization, equilibrium isotherms, and kinetic modeling for cadmium adsorption onto deposited silt, Heliyon, 7 (2021) e05755, doi: 10.1016/j.heliyon.2020.e05755.
  31. F. Googerdchian, A. Moheb, R. Emadi, M. Asgari, Optimization of Pb(II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method, J. Hazard. Mater., 349 (2018) 186–194.
  32. H.Y. Yen, J.Y. Li, Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method, J. Environ. Manage., 161 (2015) 344–349.
  33. J.A. Fernández-López, J.M. Angosto, M.J. Roca, M.D. Miñarro, Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke, Sci. Total Environ., 653 (2019) 55–63.
  34. H.I. Syeda, I. Sultan, K.S. Razavi, P.S. Yap, Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: a review, J. Water Process Eng., 46 (2022) 102446, doi: 10.1016/j.jwpe.2021.102446.
  35. S. Pap, V. Bezanovic, J. Radonic, A. Babic, S. Saric, D. Adamovic, M.T. Sekulic, Synthesis of highly-efficient functionalized biochars from fruit industry waste biomass for the removal of chromium and lead, J. Mol. Liq., 268 (2018) 315–325.
  36. A. Threepanich, P. Praipipat, Powdered and beaded lemon peels-doped iron(III) oxide-hydroxide materials for lead removal applications: synthesis, characterizations, and lead adsorption studies, J. Environ. Chem. Eng., 9 (2021) 106007, doi: 10.1016/j.jece.2021.106007.
  37. J.A. Fernández-López, M.D. Miñarro, J.M. Angosto, J. Fernández-Lledó, J.M. Obón, Adsorptive and surface characterization of mediterranean agrifood processing wastes: prospection for pesticide removal, Agronomy, 561 (2021) 2–17.
  38. M. Mariana, F. Mulana, L. Juniar, D. Fathira, R. Safitri, S. Muchtar, M.R. Bilad, A.H.M. Shariff, N. Huda, Development of biosorbent derived from the endocarp waste of gayo coffee for lead removal in liquid wastewater—effects of chemical activators, Sustainability, 13 (2021) 3050, doi: 10.3390/su13063050.
  39. J.J. Alvear-Daza, A. Cánneva, J.A. Donadelli, M. Manrique- Holguín, J.A. Rengifo‑Herrera, L.R. Pizzio, Removal of diclofenac and ibuprofen on mesoporous activated carbon from agro-industrial wastes prepared by optimized synthesis employing a central composite design, Biomass Convers. Biorefin., (2022), doi: 10.1007/s13399-021-02227-w.
  40. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction to Spectroscopy, Cengage Learning, USA, 2013.
  41. R.N. Oliveira, M.C. Mancini, F.C. Salles de Oliveira, T.M. Passos, B.Q.R.M. de S. Moreira Thiré, G.B. McGuinness, FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing, Rev. Matéria, 21 (2016) 767–779.
  42. M. Calero, A. Pérez, G. Blázquez, A. Ronda, M.A. Martín- Lara, Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead, Ecol. Eng., 58 (2013) 344–354.
  43. B. Hayoun, M. Bourouina, M. Pazos, A.M. Sanromán, S. Bourouina-Bacha, Equilibrium study, modeling and optimization of model drug adsorption process by sunflower seed shells, Appl. Sci., 10 (2020) 3271, doi: 10.3390/app10093271.
  44. B. Southichak, K. Nakano, M. Nomura, N. Chiba, O. Nishimura, Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution, Water Res., 40 (2006) 2295–2302.
  45. A.E. Ofomaja, E.B. Naidoo, Biosorption of copper from aqueous solution by chemically activated pine cone: a kinetic study, Chem. Eng. J., 175 (2011) 260–270.
  46. P.J. Ross, Taguchi Techniques for Quality Engineering, McGraw- Hill, New York, 1996.
  47. C. Xinyu, M.F. Hossain, C. Duan, J. Lu, Y.F. Tsang, M.S. Islam, Y. Zhou, Isotherm models for adsorption of heavy metals from water – a review, Chemosphere, 307 (2022) 135545, doi: 10.1016/j.chemosphere.2022.135545.
  48. A.A. Sherlala, A.A. Raman, M.M. Bello, A. Asghar, A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption, Chemosphere, 193 (2019) 1004–1017.
  49. M. Bilal, I. Ihsanullah, M. Younas, M.U.H. Shah, Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: a critical review, Sep. Purif. Technol., 278 (2021) 119510, doi: 10.1016/j.seppur.2021.119510.
  50. J.N. Edokpayi, J.O. Odiyo, T.A.M. Msagati, E.O. Popoola, A novel approach for the removal of lead(II) ion from wastewater using mucilaginous leaves of Diceriocaryum eriocarpum plant, Sustainability, 7 (2015) 14026–14041.
  51. A.K. Priya, V. Yogeshwaran, S. Rajendran, T.K. Hoang, M.S.-M. Soto-Moscosoe, A.A. Ghfar, C. Bathula, Investigation of mechanism of heavy metals (Cr6+, Pb2+ and Zn2+) adsorption from aqueous medium using rice husk ash: kinetic and thermodynamic approach, Chemosphere, 286 (2022) 131796, doi: 10.1016/j.chemosphere.2021.131796.
  52. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. ReynelÁvila, Eds., Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Switzerland, 2017.
  53. J. Wang, X. Guo, Adsorption isotherm models: classification, physical meaning, application and solving method, Chemosphere, 258 (2020) 127279, doi: 10.1016/j.chemosphere.2020.127279.
  54. K.G. Bhattacharyya, A. Sharma, Adsorption of Pb(II) from aqueous solution by Azadirachta indica (neem) leaf powder, J. Hazard. Mater., 113 (2004) 97–109.
  55. A.A. Sherlala, A.A. Raman, M.M. Bello, A. Buthiyappan, Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite, J. Environ. Manage., 246 (2019) 547–556.
  56. C.W. Oo, M.J.N. Kassim, A.L. Pizzi, Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper(II) and lead(II), Ind. Crops Prod., 30 (2009) 152–161.
  57. A. Khokhar, Z. Siddique, Misbah, Removal of heavy metal ions by chemically treated Melia azedarach L. leaves, J. Environ. Chem. Eng., 3 (2015) 944–952.
  58. X. Tao, L. Xiaoqin, Peanut shell activated carbon: characterization, surface modification and adsorption of Pb2+ from aqueous solution, Chin. J. Chem. Eng., 16 (2008) 401–406.
  59. Y. Nuhoğlu, Z. Ekmekyapar Kul, S. Kul, Ç. Nuhoğlu, F. Ekmekyapar Torun, Pb(II) biosorption from the aqueous solutions by raw and modified tea factory waste (TFW), Int. J. Environ. Sci. Technol., 18 (2021) 2975–2986.
  60. M. Sener, D.H.K. Reddy, B. Kayan, Biosorption properties of pretreated sporopollenin biomass for lead(II) and copper(II): application of response surface methodology, Ecol. Eng., 68 (2014) 200–208.
  61. J. Anwar, U. Shafique, Waheed-uz-Zaman, M. Salman, A. Dar, S. Anwa, Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana, Bioresour. Technol., 101 (2010) 752–1755.
  62. H. Çelebi, O. Gök, Evaluation of lead adsorption kinetics and isotherms from aqueous solution using natural walnut shell, Int. J. Environ. Res., 11 (2017) 83–90.
  63. T. Kanjilal, S. Babu, K. Biswas, C. Bhattacharjee, S. Datta, Application of mango seed integuments as
    bio-adsorbent in lead removal from industrial effluent, Desal. Water Treat., 56 (2015) 1–13.
  64. S. Ravulapalli, R. Kunta, Removal of lead(II) from wastewater using active carbon of Caryota urens seeds and its embedded calcium alginate beads as adsorbents, J. Environ. Chem. Eng., 6 (2018) 4298–4309.