References

  1. W.S. Ho and K.K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, 1992.
  2. B.E. Reed, W.L.R. Viadero and J. Young, Treatment of oily wastes using high-shear rotary ultrafiltration, J. Env. Eng., 123 (1997) 1234–1242.
  3. S. Bhattacharjee, S. Datta and C. Bhattacharjee, Studies on the fractionation of b-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography, J. Membr. Sci., 275 (2006) 141–150.
  4. M.D. Petala and A.I. Zouboulis, Vibratory shear enhanced processing membrane filtration applied for the removal of natural organic matter from surface waters, J. Membr. Sci., 269 (2006) 1–14.
  5. J.G. Pharoah, N. Djilali and G.W. Vickers, Fluid mechanics and mass transfer in centrifugal membrane separation, J. Membr. Sci., 176 (2000) 277–289.
  6. B. Culkin, A. Plotkin and M. Monroe, Solve membrane fouling problems with high shear filtration, Chem. Eng. Prog., 94 (1998) 29–33.
  7. L. Ding, O. Al-Akoum, A. Abraham and M. Y. Jaffrin, Milk protein concentration by ultrafiltration with rotating disk modules, Desalination, 144 (2002) 307–311.
  8. W.F. Blatt, A. Dravid, A.S. Michael and L. Nelsen, Solute polarization and cake formation in membrane ultrafiltration: causes, consequences and control techniques, Membrane Science and Technology, Plenum Press, New York, 1970, pp. 47–97.
  9. J.G. Wijmans, S. Nakao and C.A. Smolders, Flux limitation in ultrafiltration: osmotic pressure model and gel layer model, J. Membr. Sci., 20 (1984) 115–124.
  10. F.E. Danes, B. Boriou and S. Poyen, Effects of diffusion and osmosis on flux decline during ultrafiltration with total rejection on an unstirred batch cell, J. Membr. Sci., 50 (1990) 177–187.
  11. J Henriques, P. Gil, A. Dourado and H. Duarte-Ramos, Application of a recurrent neural network in online modelling of real-time systems, Orthodox Academy of Crete, Greece, 1999, pp. 1–6.
  12. C.C. Jeng and I.C. Yang, Practical implementation of backpropagation networks in a low-cost pc cluster, Neural Inform. Process., 4 (2004) 33–37.
  13. S. Chen, C.F.N. Cowan and P.M. Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neural Networks, 2 (1991) 302–309.
  14. J.J. Hopfield and D.W. Tank, Computing with neural circuits, Science, 233 (1986) 625–633.
  15. D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by error propagation, MIT Press, Cambridge, MA, 1986.
  16. T. Samad, Back-propagation improvements based on heuristic arguments, Proc. International Joint Conference on Neural Networks, Washington, 1990, pp. 565–568.
  17. A.A. Miniani and R.D. Williams, Acceleration of backpropagation through learning rate and momentum adaptation, Proc. International Joint Conference on Neural Networks, San Diego, CA, 1990, pp. 676–679.
  18. R.A. Jacobs, Increased rates of convergence through learning rate adaptation, Neural Networks, 1 (1988) 295–308.
  19. A. Salvetti and B.M. Wilamowski, Introducing Stochastic Process within the Backpropagation Algorithm for Improved Convergence, Artificial Neural Networks in Engineering, St. Louis, Missouri, 1994, pp. 13–16.
  20. A.A. Al-Falou and D. Trummer, Identifiability of recurrent neural networks, Vienna University of Technology, Econometric Theory, 19 (2003) 812–828.
  21. J.L. Elman, Finding structure in time, Cog. Sci., 14 (1990) 179–211.
  22. G. Galan-Marin, E. Merida-Casermeiro and J. Munoz-Pere, Modelling the competitive Hopfield Networks for the maximum clique problem, Comp. Ops. Res., 30 (2003) 603–624.
  23. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA, 1982, pp. 2554–2558.
  24. J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nat. Acad. Sci. USA, 1984, pp. 3088–3092.
  25. D.W. Tank and J.J. Hopfield, Collective computation in neuron like circuits, Sci. Am., 257 (1987) 104–114.
  26. K.A. Smith, D. Abramson and D. Duke, Hopfield neural networks for timetabling: formulations, methods, and comparative results, Comp. Ind. Eng., 44 (2003) 283–305.
  27. S. Chen, S.A. Billings and W. Luo, Orthogonal least squares methods and their application to non-linear system identification, Int. J. Control, 50 (1989) 1873–1896.
  28. M. Cheryan, Ultrafiltration and Microfiltration Handbook, Technomic Publications, Lancaster, PA, 1998.
  29. P. Gao, L. Zhang, K. Cheng and H. Zhang, A new approach to performance analysis of a seawater desalination system by an artificial neural network, Desalination, 205 (2007) 147–155.