References

  1. M. Chai, M. Machida, K. Eguchi and H. Arai, Promotion of hydrogen permeation on metal-dispersed alumina membranes and its application to a membrane reactor for methane reforming, Appl. Catal. A: Gen., 110 (1994) 239–250.
  2. T.T. Tsotsis, A.M. Champagnie, S.P. Vasileiadis, Z.D. Ziaka and R.G. Minet, The enhancement of reaction yield through the use of high temperature membrane reactors, Sep. Sci. Technol., 28 (1993) 397–402.
  3. E. Kikuchi, Membrane reactor application to hydrogen production, Catal. Today, 56 (2000) 97–101.
  4. R.M. De Vos and H. Verweij, High-selectivity, high-flux silica membranes for gas separation, Science, 279 (1998) 1710–1711.
  5. J. Kašpar and P. Fornasiero, Nanostructured materials for advanced automotive de-pollution catalysts, J. Solid State Chem., 171 (2003) 19–29.
  6. E.L. Crepaldi, G.J. de A.A. Soler-Illia, A. Bouchara, D. Grosso, D. Durand and C. Sanchez, Controlled formation of highly ordered cubic and hexagonal mesoporous nanocrystalline yttriazirconia and ceria-zirconia thin films exhibiting high thermal stability, Angew. Chem. Int. Ed. Engl., 42 (2003) 347–351.
  7. B.C.H. Steele, Fuel-cell technology, running on natural gas, Nature, 400 (1999) 619–621.
  8. A.I. Kozlov, D.H. Kim, A. Yezerets, P. Andersen, H.H. Kung and M.C. Kung, Effect of preparation method and redox treatment on the reducibility and structure of supported ceria-zirconia mixed oxide, J. Catal., 209 (2002) 417–426.
  9. M.H. Yao, R.J. Baird, F.W. Kunz and T.E. Hoost, An XRD and TEM investigation of the structure of alumina-supported ceriazirconia, J. Catal., 166 (1997) 67–74.
  10. Md.H. Zahir, T. Nagano and Y. Iwamoto, Ceria-zirconia-(- alumina nanocomposite mesoporous membrane, Japanese Patent 171895, 2006.
  11. Md.H. Zahir, Y.H. Ikuhara, S. Fujisaki, K. Sato, T. Nagano and Y. Iwamoto, Preparation and characterization of mesoporous ceria-zirconia-alumina nanocomposite with high hydrothermal stability, J. Mater. Res., 22 (2007) 3201–3209.
  12. R.S.A. de Lange, J.H.A. Hekkink, K. Keizer and A.J. Burggraaf, Formation and characterization of supported microporous ceramic membranes prepared by sol-gel modification techniques, J. Membr. Sci., 99 (1995) 57–75.
  13. Md.H. Zahir, K. Sato, H. Mori, Y. Iwamoto, M. Nomura and S. Nakao, Preparation and properties of hydrothermally stable (- alumina-based composite mesoporous membranes, J. Am. Ceram. Soc., 89 (2006) 2874–2880.
  14. T. Tsuru, T. Hino, T. Yoshioka and M. Asaeda, Permporometry characterization of microporous ceramic membranes, J. Membr. Sci., 186 (2001) 257–265.
  15. Md.H. Zahir, K. Sato and Y. Iwamoto, Development of hydrothermally stable sol-gel derived La2O3-doped Ga2O3-Al2O3 composite mesoporous membrane, J. Membr. Sci., 247 (2005) 95–101.
  16. G.R. Gallaher and P.K.T. Liu, Characterization of ceramic membranes 1. Thermal and hydrothermal stabilities of commercial 40 Å membranes, J. Membr. Sci., 92 (1994) 29–44.
  17. R. Di Monte and J. Kašpar, Heterogeneous environmental catalysis—a gentle art: CeO2-ZrO2 mixed oxides as a case history, Catal. Today, 100 (2005) 27–35.
  18. J. Cuif, G. Blanchard, O. Touret, A. Seigneurin, M. Marczi and E. Quémeré: (Ce,Zr)O2 solid solutions for three-way catalysts, SAE Tech. Pap. Ser., 970463, 1997.
  19. J. Kašpar, P. Fornasiero and M. Graziani, Use of CeO2-based oxides in the three-way catalysis, Catal. Today, 50 (1999) 285–298.