References

  1. M. Williams, R.S. Kookana, Chapter 3 – Fate and Behavior of Environmental Contaminants Arising From Health-Care Provision, A.B.A. Boxall, R.S. Kookana, Eds., Health Care and Environmental Contamination: Environmental Contaminants, Elsevier, 2018, pp. 21–40. doi: 10.1016/ B978-0-444-63857-1.00003-6
  2. J.M. Galindo-Miranda, C. Guízar-González, E.J. Becerril-Bravo, G. Moeller-Chávez, E. León-Becerril,
    R. Vallejo-Rodríguez, Occurrence of emerging contaminants in environmental surface waters and their analytical methodology – a review, Water Supply, 19 (2019) 1871–1884.
  3. G. Bampos, A. Petala, Z. Frontistis, Recent trends in pharmaceuticals removal from water using electrochemical oxidation processes, Environments, 8 (2021) 85, doi: 10.3390/environments8080085.
  4. Q. Sun, M. Li, C. Ma, X. Chen, X. Xie, C.P. Yu, Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China, Environ. Pollut., 208 (2016) 371–381.
  5. L.H.M.L.M. Santos, M. Gros, S. Rodriguez-Mozaz, C. Delerue-Matos, A. Pena, D. Barceló, M.C.B.S.M. Montenegro, Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals, Sci. Total Environ., 461–462 (2013) 302–316.
  6. Y.C. Lin, W.W.P. Lai, H. Hsin Tung, A.Y.C. Lin, Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan, Environ. Monit. Assess., 187 (2015) 1–19.
  7. C. Boillot, Y. Perrodin, Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: use of the toxicity index model and isoblogram representation, Ecotoxicol. Environ. Saf., 71 (2008) 252–259.
  8. P. Verlicchi, E. Zambello, Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil — a critical review, Sci. Total Environ., 538 (2015) 750–767.
  9. P. Verlicchi, M. Al Aukidy, A. Galletti, M. Petrovic, D. Barceló, Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment, Sci. Total Environ., 430 (2012) 109–118.
  10. R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, B. Wehrli, The challenge of micropollutants in aquatic systems, Science, 313 (2006) 1072–1077.
  11. E. Korzeniewska, A. Korzeniewska, M. Harnisz, Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment, Ecotoxicol. Environ. Saf., 91 (2013) 96–102.
  12. P. Verlicchi, M. Al Aukidy, E. Zambello, What have we learned from worldwide experiences on the management and treatment of hospital effluent? — an overview and a discussion on perspectives, Sci. Total Environ., 514 (2015) 467–491.
  13. U. Nielsen, C. Hastrup, M.M. Klausen, B.M. Pedersen, G.H. Kristensen, J.L.C. Jansen, S.N. Bak, J. Tuerk, Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2, Water Sci. Technol., 67 (2013) 854–862.
  14. C. Köhler, S. Venditti, E. Igos, K. Klepiszewski, E. Benetto, A. Cornelissen, Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: a comparative assessment, J. Hazard. Mater., 239–240 (2012) 70–77.
  15. C.I. Kosma, D.A. Lambropoulou, T.A. Albanis, Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece, J. Hazard. Mater., 179 (2010) 804–817.
  16. F. Sopaj, M.A. Rodrigo, N. Oturan, F.I. Podvorica, J. Pinson, M.A. Oturan, Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin, Chem. Eng. J., 262 (2015) 286–294.
  17. J. Liu, N. Ren, C. Qu, S. Lu, Y. Xiang, D. Liang, Recent advances in the reactor design for industrial wastewater treatment by electro-oxidation process, Water, 14 (2022) 3711, doi: 10.3390/W14223711.
  18. Ü. Tezcan Ün, S. Uǧur, A.S. Koparal, Ü. Bakir Öǧütveren, Electrocoagulation of olive mill wastewaters, Sep. Purif. Technol., 52 (2006) 136–141.
  19. J. Ma, X. Wang, H. Sun, W. Tang, Q. Wang, A review on threedimensional electrochemical technology for the antibiotic wastewater treatment, Environ. Sci. Pollut. Res., (2023) 1–24,
    doi: 10.1007/s11356-023-27565-2/figures/11.
  20. N. Adhoum, L. Monser, Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation, Chem. Eng. Process. Process Intensif., 43 (2004) 1281–1287.
  21. R. Montenegro-Ayo, T. Pérez, M.R.V. Lanza, E. Brillas, S. Garcia-Segura, A.J. dos Santos, New electrochemical reactor design for emergent pollutants removal by electrochemical oxidation, Electrochim. Acta, 458 (2023) 142551, doi: 10.1016/j.electacta.2023.142551.
  22. C. Feng, N. Sugiura, S. Shimada, T. Maekawa, Development of a high performance electrochemical wastewater treatment system, J. Hazard. Mater., 103 (2003) 65–78.
  23. M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC) — science and applications, J. Hazard. Mater., 84 (2001) 29–41.
  24. M. Williams, R.S. Kookana, Chapter 3 – Fate and Behavior of Environmental Contaminants Arising From Health-Care Provision, A.B.A. Boxall, R.S. Kookana, Eds., Health Care and Environmental Contamination: Environmental Contaminants, Elsevier, 2018, pp. 21–40. doi: 10.1016/ B978-0-444-63857-1.00003-6
  25. K.M. Kanama, A.P. Daso, L. Mpenyana-Monyatsi, M.A.A. Coetzee, Assessment of pharmaceuticals, personal care products, and hormones in wastewater treatment plants receiving inflows from health facilities in North West Province, South Africa, J. Toxicol., 2018 (2018), doi: 10.1155/ 2018/3751930.
  26. I.B. Gomes, L.C. Simões, M. Simões, The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states, Sci. Total Environ., 643 (2018) 1348–1356.
  27. T.S. Oliveira, Chapter 2 – Environmental Contamination From Health-Care Facilities, A.B.A. Boxall, R.S. Kookana, Eds., Health Care and Environmental Contamination: Environmental Contaminants, Elsevier, 2018, pp. 7–19. Available at: https://doi.org/10.1016/B978-0-444-63857-1.00002-4
  28. X. Zhang, J. Li, S. Yan, R.D. Tyagi, J. Chen, Physical, Chemical, and Biological Impact (Hazard) of Hospital Wastewater on Environment: Presence of Pharmaceuticals, Pathogens, and Antibiotic-Resistance Genes, Current Developments in Biotechnology and Bioengineering: Environmental and Health Impact of Hospital Wastewater, Elsevier, 2020, pp. 79–102. doi: 10.1016/B978-0-12-819722-6.00003-1
  29. T.S. Oliveira, Chapter 2 – Environmental Contamination From Health-Care Facilities, A.B.A. Boxall, R.S. Kookana, Eds., Health Care and Environmental Contamination: Environmental Contaminants, Elsevier, 2018, pp. 7–19. doi: 10.1016/B978-0-444-63857-1.00002-4
  30. A. Macías-García, J. García-Sanz-Calcedo, J.P. Carrasco-Amador, R. Segura-Cruz, Adsorption of paracetamol in hospital wastewater through activated carbon filters, Sustainability, 11 (2019) 2672, doi: 10.3390/su11092672.
  31. M. Čelić, M. Gros, M. Farré, D. Barceló, M. Petrović, Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain), Sci. Total Environ., 652 (2019) 952–963.
  32. B.S. Akin, B.S. Akin, Contaminant properties of hospital clinical laboratory wastewater: a physiochemical and microbiological assessment, J. Environ. Prot. (Irvine, Calif), 7 (2016) 635–642.
  33. S. Rodriguez-Mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros, A. Sànchez-Melsió, C.M. Borrego, D. Barceló, J.L. Balcázar, Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river, Water Res., 69 (2015) 234–242.
  34. T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M.N. Iqbal, Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment, Environ. Int., 122 (2019) 52–66.
  35. J. Zhang, Y. Zhou, B. Yao, J. Yang, D. Zhi, Current progress in electrochemical anodic-oxidation of pharmaceuticals: mechanisms, influencing factors, and new technique, J. Hazard. Mater., 418 (2021) 126313, doi: 10.1016/j.jhazmat.2021.126313.
  36. W. Nabgan, M. Saeed, A.A. Jalil, B. Nabgan, Y. Gambo, M.W. Ali, M. Ikram, A.A. Fauzi, A.H.K. Owgi, I. Hussain, A.A. Thahe, X. Hu, N.S. Hassan, A. Sherryna, A. Kadier, M.Y. Mohamud, A state of the art review on electrochemical technique for the remediation of pharmaceuticals containing wastewater, Environ. Res., 210 (2022) 112975, doi: 10.1016/j.envres.2022.112975.
  37. S.W. da Silva, J.B. Welter, L.L. Albornoz, A.N.A. Heberle, J.Z. Ferreira, A.M. Bernardes, Advanced electrochemical oxidation processes in the treatment of pharmaceutical containing water and wastewater: a review, Curr. Pollut. Rep., 7 (2021) 146–159.
  38. C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment, Electrochim. Acta, 39 (1994) 1857–1862.
  39. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
  40. M.A. Sandoval, W. Calzadilla, R. Salazar, Influence of reactor design on the electrochemical oxidation and disinfection of wastewaters using boron-doped diamond electrodes, Curr. Opin. Electrochem., 33 (2022) 100939, doi: 10.1016/j.coelec.2022.100939.
  41. C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review, Chem. Rev., 115 (2015) 13362–13407.
  42. L.C. Espinoza, A. Henríquez, D. Contreras, R. Salazar, Evidence for the production of hydroxyl radicals at borondoped diamond electrodes with different sp3/sp2 ratios and its relationship with the anodic oxidation of aniline, Electrochem. Commun., 90 (2018) 30–33.
  43. N. Vatistas, Adsorption layer and its characteristic to modulate the electro-oxidation runway of organic species, J. Appl. Electrochem., 40 (2010) 1743–1750.
  44. E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal., B, 166–167 (2015) 603–643.
  45. P. Attri, Y.H. Kim, D.H. Park, J.H. Park, Y.J. Hong, H.S. Uhm, K.N. Kim, A. Fridman, E.H. Choi, Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis, Sci. Rep., 5 (2015) 1–8.
  46. O. Simond, V. Schaller, C. Comninellis, Theoretical model for the anodic oxidation of organics on metal oxide electrodes, Electrochim. Acta, 42 (1997) 2009–2012.
  47. B. Marselli, J. Garcia-Gomez, P.-A. Michaud, M.A. Rodrigo, Ch. Comninellis, Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes, J. Electrochem. Soc., 150 (2003) D79, doi: 10.1149/1.1553790/XML.
  48. Y. Lan, C. Coetsier, C. Causserand, K. Groenen Serrano, On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode, Electrochim. Acta, 231 (2017) 309–318.
  49. C.D.N. Brito, D.M. de Araújo, C.A. Martínez-Huitle, M.A. Rodrigo, Understanding active chlorine species production using boron doped diamond films with lower and higher sp3/sp2 ratio, Electrochem. Commun., 55 (2015) 34–38.
  50. S.W. da Silva, E.M.O. Navarro, M.A.S. Rodrigues, A.M. Bernardes, V. Pérez-Herranz, Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin, J. Electroanal. Chem., 832 (2019) 112–120.
  51. F.L. Souza, C. Saéz, M.R.V. Lanza, P. Cañizares, M.A. Rodrigo, The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes, Electrochim. Acta, 187 (2016) 119–124.
  52. S.O. Ganiyu, T.X. Huong Le, M. Bechelany, G. Esposito, E.D. van Hullebusch, M.A. Oturan, M. Cretin, A hierarchical CoFe-layered double hydroxide modified carbon felt cathode for heterogeneous electro-Fenton process, J. Mater. Chem. A, 5 (2017) 3655–3666.
  53. S.O. Ganiyu, M. Zhou, C.A. Martínez-Huitle, Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment, Appl. Catal., B, 235 (2018) 103–129.
  54. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., Part 1, 44 (2005) 8269–8285.
  55. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  56. N.T. Nolan, M.K. Seery, S.C. Pillai, Spectroscopic investigation of the anatase-to-rutile transformation of sol-gel-synthesized TiO2 photocatalysts, J. Phys. Chem. C, 113 (2009) 16151–16157.
  57. M. Koelsch, S. Cassaignon, C. Ta Thanh Minh, J.F. Guillemoles, J.P. Jolivet, Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium, Thin Solid Films, 451–452 (2004) 86–92.
  58. W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98 (1994) 13669–13679.
  59. S. Trasatti, Electrocatalysis: understanding the success of DSA®, Electrochim. Acta, 45 (2000) 2377–2385.
  60. R.T. Pelegrini, R.S. Freire, N. Duran, R. Bertazzoli, Photoassisted electrochemical degradation of organic pollutants on a DSA type oxide electrode: process test for a phenol synthetic solution and its application for the E1 bleach Kraft mill effluent, Environ. Sci. Technol., 35 (2001) 2849–2853.
  61. S.W. da Silva, C.R. Klauck, M.A. Siqueira, A.M. Bernardes, Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes, J. Hazard. Mater., 282 (2015) 241–248.
  62. H.G. Oliveira, L.H. Ferreira, R. Bertazzoli, C. Longo, Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator, Water Res., 72 (2015) 305–314.
  63. L.L. Albornoz, S.W. da Silva, J.P. Bortolozzi, E.D. Banús, P. Brussino, M.A. Ulla, A.M. Bernardes, Degradation and mineralization of erythromycin by heterogeneous photocatalysis using SnO2-doped TiO2 structured catalysts: activity and stability, Chemosphere, 268 (2021) 128858, doi: 10.1016/j.chemosphere.2020.128858.
  64. S. Krishnan, A. Shriwastav, Application of TiO2 nanoparticles sensitized with natural chlorophyll pigments as catalyst for visible light photocatalytic degradation of methylene blue, J. Environ. Chem. Eng., 9 (2021) 104699, doi: 10.1016/j.jece.2020.104699.
  65. J. Gong, W. Pu, C. Yang, J. Zhang, Tungsten and nitrogen co-doped TiO2 electrode sensitized with Fe–chlorophyllin for visible light photoelectrocatalysis, Chem. Eng. J., 209 (2012) 94–101.
  66. L. Gomathi Devi, P.M. Nithya, Photocatalytic activity of Hemin (Fe(III) porphyrin) anchored BaTiO3 under the illumination of visible light: synergetic effects of photosensitization, photo-Fenton and photocatalysis processes, Inorg. Chem. Front., 5 (2018) 127–138.
  67. Z. Ye, G.E.M. Schukraft, A. L’Hermitte, Y. Xiong, E. Brillas, C. Petit, I. Sirés, Mechanism and stability of a Fe-based 2D MOF during the photoelectro-Fenton treatment of organic micropollutants under UVA and visible light irradiation, Water Res., 184 (2020) 115986, doi: 10.1016/j.watres.2020.115986.
  68. F. Kastanek, M. Spacilova, P. Krystynik, M. Dlaskova, O. Solcova, Fenton reaction–unique but still mysterious, Processes, 11 (2023) 432, doi: 10.3390/pr11020432.
  69. Z. Ye, E. Brillas, F. Centellas, P.L. Cabot, I. Sirés, Electro-Fenton process at mild pH using Fe(III)-EDDS as soluble catalyst and carbon felt as cathode, Appl. Catal., B, 257 (2019) 117907, doi: 10.1016/j.apcatb.2019.117907.
  70. U.J. Ahile, R.A. Wuana, A.U. Itodo, R. Sha’Ato, R.F. Dantas, A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: current trends, knowledge gap and future studies, Sci. Total Environ., 710 (2020) 134872, doi: 10.1016/j.scitotenv.2019.134872.
  71. R. Ameta, A.K. Chohadia, A. Jain, P.B. Punjabi, Chapter 3 – Fenton and Photo-Fenton Processes, S.C. Ameta, R. Ameta, Eds., Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, 2018, pp. 49–87. doi: 10.1016/ B978-0-12-810499-6.00003-6
  72. E. Brillas, J.C. Calpe, J. Casado, Mineralization of 2,4-D by advanced electrochemical oxidation processes, Water Res., 34 (2000) 2253–2262.
  73. M.A. Oturan, Ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D, J. Appl. Electrochem., 30 (2000) 475–482.
  74. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  75. J. Abidi, D. Clematis, Y. Samet, M. Delucchi, D. Cademartori, M. Panizza, Influence of anode material and chlorides in the new-gen solid polymer electrolyte cell for electrochemical oxidation – optimization of chloroxylenol degradation with response surface methodology, J. Electroanal. Chem., 920 (2022) 116584, doi: 10.1016/j.jelechem.2022.116584.
  76. E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 109 (2009) 6570–6631.
  77. H. Monteil, Y. Péchaud, N. Oturan, M.A. Oturan, A review on efficiency and cost effectiveness of electro- and bioelectro-Fenton processes: application to the treatment of pharmaceutical pollutants in water, Chem. Eng. J., 376 (2019) 119577, doi: 10.1016/J.CEJ.2018.07.179.
  78. E. Brillas, R.M. Bastida, E. Llosa, J. Casado, Electrochemical destruction of aniline and 4‐chloroaniline for wastewater treatment using a carbon‐PTFE O2 ‐ fed cathode, J. Electrochem. Soc., 142 (1995) 1733–1741.
  79. E. Bocos, O. Iglesias, M. Pazos, M. Ángeles Sanromán, Nickel foam a suitable alternative to increase the generation of Fenton’s reagents, Process Saf. Environ. Prot., 101 (2016) 34–44.
  80. M. Umar, H.A. Aziz, M.S. Yusoff, Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate, Waste Manage., 30 (2010) 2113–2121.
  81. B. Utset, J. Garcia, J. Casado, X. Domènech, J. Peral, Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions, Chemosphere, 41 (2000) 1187–1192.
  82. J. Wu, W. Pu, C. Yang, M. Zhang, J. Zhang, Removal of benzotriazole by heterogeneous photoelectro-Fenton like process using ZnFe2O4 nanoparticles as catalyst, J. Environ. Sci., 25 (2013) 801–807.
  83. O. García-Rodríguez, J.A. Bañuelos, A. El-Ghenymy, L.A. Godínez, E. Brillas, F.J. Rodríguez-Valadez, Use of a carbon felt–iron oxide air-diffusion cathode for the mineralization of Malachite Green dye by heterogeneous electro-Fenton and UVA photoelectro-Fenton processes, J. Electroanal. Chem., 767 (2016) 40–48.
  84. J. Scaria, A. Gopinath, P.V. Nidheesh, A versatile strategy to eliminate emerging contaminants from the aqueous environment: heterogeneous Fenton process, J. Cleaner Prod., 278 (2021) 124014, doi: 10.1016/j.jclepro.2020.124014.
  85. J. Casado, Towards industrial implementation of electro- Fenton and derived technologies for wastewater treatment: a review, J. Environ. Chem. Eng., 7 (2019) 102823, doi: 10.1016/j.jece.2018.102823.
  86. S. Song, Y. Wang, H. Shen, J. Zhang, H. Mo, J. Xie, N. Zhou, J. Shen, Ultrasmall graphene oxide modified with Fe3O4 nanoparticles as a Fenton-like agent for methylene blue degradation, ACS Appl. Nano Mater., 2 (2019) 7074–7084.
  87. E. Brillas, S. Garcia-Segura, Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: a review on the relevance of phenol as model molecule, Sep. Purif. Technol., 237 (2020) 116337, doi: 10.1016/j.seppur.2019.116337.
  88. Z. Ye, I. Sirés, H. Zhang, Y.H. Huang, Mineralization of pentachlorophenol by ferrioxalate-assisted solar
    photo- Fenton process at mild pH, Chemosphere, 217 (2019) 475–482.
  89. S. Ambika, M. Devasena, I. Manivannan Nambi, Assessment of meso scale zero valent iron catalyzed Fenton reaction in continuous-flow porous media for sustainable groundwater remediation, Chem. Eng. J., 334 (2018) 264–272.
  90. S.A. Messele, O.S.G.P. Soares, J.J.M. Órfão, C. Bengoa, J. Font, Zero-valent iron supported on nitrogen-doped carbon xerogel as catalysts for the oxidation of phenol by fenton-like system, Environ. Technol., 39 (2018) 2951–2958.
  91. A.N.A. Heberle, M.E.P. Alves, S.W. da Silva, C.R. Klauck, M.A.S. Rodrigues, A.M. Bernardes, Phytotoxicity and genotoxicity evaluation of 2,4,6-tribromophenol solution treated by UV-based oxidation processes, Environ. Pollut., 249 (2019) 354–361.
  92. I.M.D. Gonzaga, A. Moratalla, K.I.B. Eguiluz, G.R. Salazar-Banda, P. Cañizares, M.A. Rodrigo, C. Saez, Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes, Sci. Total Environ., 736 (2020) 139536, doi: 10.1016/j.scitotenv.2020.139536.
  93. L. Feng, W. Song, N. Oturan, M. Karbasi, E.D. van Hullebusch, G. Esposito, S. Giannakis, M.A. Oturan, Electrochemical oxidation of naproxen in aqueous matrices: elucidating the intermediates’ eco-toxicity, by assessing its degradation pathways via experimental and density functional theory (DFT) approaches, Chem. Eng. J., 451 (2023) 138483, doi: 10.1016/j.cej.2022.138483.
  94. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 21 (2014) 8336–8367.
  95. A.J. dos Santos, P.L. Cabot, E. Brillas, I. Sirés, A comprehensive study on the electrochemical advanced oxidation of antihypertensive captopril in different cells and aqueous matrices, Appl. Catal., B, 277 (2020) 119240, doi: 10.1016/j.apcatb.2020.119240.
  96. S. Fierro, G. Foti, Ch. Comninellis, Electrochemical Oxidation of Organic Compounds in Aqueous Acidic Media on “Active” and “Non-Active” Type Electrodes, Electrolysis: Theory, Types and Applications, Nova Science Publishers, Hauppauge, N.Y., 2010. Available at https://infoscience.epfl.ch/record/149801 (Accessed December 31, 2022).
  97. E.A. Serna-Galvis, K.E. Berrio-Perlaza, R.A. Torres-Palma, Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways, Environ. Sci. Pollut. Res., 24 (2017) 23771–23782.
  98. R.E. Palma, E. Serna-Galvis, J.E. Ramirez, R.A. Torres, Electrochemical degradation of naproxen (NPX) and diclofenac (DFC) through active chlorine species (Cl2-active): considerations on structural aspects and degradation in urine, ECS Trans., 100 (2021) 55–71.
  99. S.D. Jojoa-Sierra, J. Silva-Agredo, E. Herrera-Calderon, R.A. Torres-Palma, Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes, Sci. Total Environ., 575 (2017) 1228–1238.
  100. F. Sordello, D. Fabbri, L. Rapa, C. Minero, M. Minella, D. Vione, Electrochemical abatement of cefazolin: towards a viable treatment for antibiotic-containing urine, J. Cleaner Prod., 289 (2021) 125722, doi: 10.1016/j.jclepro.2020.125722.
  101. C. Zwiener, T. Glauner, J. Sturm, M. Wörner, F.H. Frimmel, Electrochemical reduction of the iodinated contrast medium iomeprol: iodine mass balance and identification of transformation products, Anal. Bioanal. Chem., 395 (2009) 1885–1892.
  102. M. Herraiz-Carboné, S. Cotillas, E. Lacasa, Á. Moratalla, P. Cañizares, M.A. Rodrigo, C. Sáez, Improving the biodegradability of hospital urines polluted with chloramphenicol by the application of electrochemical oxidation, Sci. Total Environ., 725 (2020) 138430, doi: 10.1016/j.scitotenv.2020. 138430.
  103. P.V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes, Chemosphere, 197 (2018) 210–227.
  104. L. Feng, E.A. Serna-Galvis, N. Oturan, S. Giannakis, R.A. Torres-Palma, M.A. Oturan, Evaluation of process influencing factors, degradation products, toxicity evolution and matrix-related effects during electro-Fenton removal of piroxicam from waters, J. Environ. Chem. Eng., 7 (2019) 103400, doi: 10.1016/j.jece.2019.103400.
  105. S. Ahmadzadeh, M. Dolatabadi, Removal of acetaminophen from hospital wastewater using electro-Fenton process, Environ. Earth Sci., 77 (2018) 1–11.
  106. Á. Moratalla, D.M. Araújo, G.O.M.A. Moura, E. Lacasa, P. Cañizares, M.A. Rodrigo, C. Sáez, Pressurized
    electro- Fenton for the reduction of the environmental impact of antibiotics, Sep. Purif. Technol., 276 (2021) 119398, doi: 10.1016/j.seppur.2021.119398.
  107. S. Cotillas, D. Clematis, P. Cañizares, M.P. Carpanese, M.A. Rodrigo, M. Panizza, Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes, Chemosphere, 199 (2018) 445–452.
  108. D.M. de Araújo, S. Cotillas, C. Sáez, P. Cañizares, C.A. Martínez-Huitle, M.A. Rodrigo, Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination, J. Electroanal. Chem., 757 (2015) 144–149.
  109. I.M.D. Gonzaga, A. Moratalla, K.I.B. Eguiluz, G.R. Salazar-Banda, P. Cañizares, M.A. Rodrigo, C. Saez, Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis, Chem. Eng. J., 420 (2021) 129999, doi: 10.1016/j.cej.2021.129999.
  110. I.M.D. Gonzaga, A. Moratalla, K.I.B. Eguiluz, G.R. Salazar-Banda, P. Cañizares, M.A. Rodrigo, C. Saez, Novel Ti/RuO2IrO2 anode to reduce the dangerousness of antibiotic polluted urines by Fenton-based processes, Chemosphere, 270 (2021) 129344, doi: 10.1016/j.chemosphere.2020.129344.
  111. B.O. Orimolade, A.O. Oladipo, A.O. Idris, F. Usisipho, S. Azizi, M. Maaza, S.L. Lebelo, B.B. Mamba, Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: a review, Sci. Total Environ., 881 (2023) 163522, doi: 10.1016/j.scitotenv.2023.163522.
  112. A.J. dos Santos, P.L. Cabot, E. Brillas, I. Sirés, A comprehensive study on the electrochemical advanced oxidation of antihypertensive captopril in different cells and aqueous matrices, Appl. Catal., B, 277 (2020) 119240, doi: 10.1016/j.apcatb.2020.119240.
  113. G.D. Noudeh, M. Asdaghi, N.D. Noudeh, M. Dolatabadi, S. Ahmadzadeh, Response surface modeling of ceftriaxone removal from hospital wastewater, Environ. Monit. Assess., 195 (2022) 217, doi: 10.1007/s10661-022-10808-z/figures/2.
  114. M. Gholami Shirkoohi, R.D. Tyagi, P.A. Vanrolleghem, P. Drogui, Modelling and optimization of psychoactive pharmaceutical caffeine removal by electrochemical oxidation process: a comparative study between response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS), Sep. Purif. Technol., 290 (2022) 120902, doi: 10.1016/j.seppur.2022.120902.
  115. S. Giannakopoulos, P. Kokkinos, B. Hasa, Z. Frontistis, A. Katsaounis, D. Mantzavinos, Electrochemical oxidation of pharmaceuticals on a Pt-SnO2/Ti electrode, Electrocatalysis, 13 (2022) 363–377.
  116. K.C. Dao, Y.P. Tsai, C.C. Yang, K.F. Chen, Simultaneous carbamazepine and phosphate removal from a moving-bed membrane bioreactor effluent by the electrochemical process: treatment optimization by factorial design, Membranes, 12 (2022) 1256, doi: 10.3390/membranes12121256.
  117. V.B. Lima, L.A. Goulart, R.S. Rocha, J.R. Steter, M.R.V. Lanza, Degradation of antibiotic ciprofloxacin by different AOP systems using electrochemically generated hydrogen peroxide, Chemosphere, 247 (2020) 125807, doi: 10.1016/j.chemosphere.2019.125807.
  118. Y. Yang, Y. Xia, F. Wei, G. Teng, Y. Yao, Preparation and characterization of hydrophobic stearic acid-Yb-PbO2 anode and its application on the electrochemical degradation of naproxen sodium, J. Electroanal. Chem., 868 (2020) 114191, doi: 10.1016/j.jelechem.2020.114191.