References
- M. Williams, R.S. Kookana, Chapter 3 – Fate and Behavior
of Environmental Contaminants Arising From Health-Care
Provision, A.B.A. Boxall, R.S. Kookana, Eds., Health Care and
Environmental Contamination: Environmental Contaminants,
Elsevier, 2018, pp. 21–40. doi: 10.1016/
B978-0-444-63857-1.00003-6
- J.M. Galindo-Miranda, C. Guízar-González, E.J. Becerril-Bravo,
G. Moeller-Chávez, E. León-Becerril,
R. Vallejo-Rodríguez,
Occurrence of emerging contaminants in environmental
surface waters and their analytical methodology – a review,
Water Supply, 19 (2019) 1871–1884.
- G. Bampos, A. Petala, Z. Frontistis, Recent trends in
pharmaceuticals removal from water using electrochemical
oxidation processes, Environments, 8 (2021) 85, doi: 10.3390/environments8080085.
- Q. Sun, M. Li, C. Ma, X. Chen, X. Xie, C.P. Yu, Seasonal and
spatial variations of PPCP occurrence, removal and mass
loading in three wastewater treatment plants located in
different urbanization areas in Xiamen, China, Environ. Pollut.,
208 (2016) 371–381.
- L.H.M.L.M. Santos, M. Gros, S. Rodriguez-Mozaz,
C. Delerue-Matos, A. Pena, D. Barceló, M.C.B.S.M. Montenegro,
Contribution of hospital effluents to the load of pharmaceuticals
in urban wastewaters: identification of ecologically relevant
pharmaceuticals, Sci. Total Environ., 461–462 (2013) 302–316.
- Y.C. Lin, W.W.P. Lai, H. Hsin Tung, A.Y.C. Lin, Occurrence of
pharmaceuticals, hormones, and perfluorinated compounds
in groundwater in Taiwan, Environ. Monit. Assess., 187 (2015)
1–19.
- C. Boillot, Y. Perrodin, Joint-action ecotoxicity of binary
mixtures of glutaraldehyde and surfactants used in hospitals:
use of the toxicity index model and isoblogram representation,
Ecotoxicol. Environ. Saf., 71 (2008) 252–259.
- P. Verlicchi, E. Zambello, Pharmaceuticals and personal care
products in untreated and treated sewage sludge: occurrence
and environmental risk in the case of application on soil — a
critical review, Sci. Total Environ., 538 (2015) 750–767.
- P. Verlicchi, M. Al Aukidy, A. Galletti, M. Petrovic, D. Barceló,
Hospital effluent: investigation of the concentrations and
distribution of pharmaceuticals and environmental risk
assessment, Sci. Total Environ., 430 (2012) 109–118.
- R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter,
C.A. Johnson, U. von Gunten, B. Wehrli, The challenge
of micropollutants in aquatic systems, Science, 313 (2006)
1072–1077.
- E. Korzeniewska, A. Korzeniewska, M. Harnisz, Antibiotic
resistant Escherichia coli in hospital and municipal sewage and
their emission to the environment, Ecotoxicol. Environ. Saf.,
91 (2013) 96–102.
- P. Verlicchi, M. Al Aukidy, E. Zambello, What have we learned
from worldwide experiences on the management and treatment
of hospital effluent? — an overview and a discussion on
perspectives, Sci. Total Environ., 514 (2015) 467–491.
- U. Nielsen, C. Hastrup, M.M. Klausen, B.M. Pedersen,
G.H. Kristensen, J.L.C. Jansen, S.N. Bak, J. Tuerk, Removal of
APIs and bacteria from hospital wastewater by MBR plus O3,
O3 + H2O2, PAC or ClO2, Water Sci. Technol., 67 (2013) 854–862.
- C. Köhler, S. Venditti, E. Igos, K. Klepiszewski, E. Benetto,
A. Cornelissen, Elimination of pharmaceutical residues in
biologically pre-treated hospital wastewater using advanced
UV irradiation technology: a comparative assessment,
J. Hazard. Mater., 239–240 (2012) 70–77.
- C.I. Kosma, D.A. Lambropoulou, T.A. Albanis, Occurrence
and removal of PPCPs in municipal and hospital wastewaters
in Greece, J. Hazard. Mater., 179 (2010) 804–817.
- F. Sopaj, M.A. Rodrigo, N. Oturan, F.I. Podvorica, J. Pinson,
M.A. Oturan, Influence of the anode materials on the
electrochemical oxidation efficiency. Application to oxidative
degradation of the pharmaceutical amoxicillin, Chem. Eng. J.,
262 (2015) 286–294.
- J. Liu, N. Ren, C. Qu, S. Lu, Y. Xiang, D. Liang, Recent advances
in the reactor design for industrial wastewater treatment by
electro-oxidation process, Water, 14 (2022) 3711, doi: 10.3390/W14223711.
- Ü. Tezcan Ün, S. Uǧur, A.S. Koparal, Ü. Bakir Öǧütveren,
Electrocoagulation of olive mill wastewaters, Sep. Purif.
Technol., 52 (2006) 136–141.
- J. Ma, X. Wang, H. Sun, W. Tang, Q. Wang, A review on threedimensional
electrochemical technology for the antibiotic
wastewater treatment, Environ. Sci. Pollut. Res., (2023) 1–24,
doi: 10.1007/s11356-023-27565-2/figures/11.
- N. Adhoum, L. Monser, Decolourization and removal
of phenolic compounds from olive mill wastewater by
electrocoagulation, Chem. Eng. Process. Process Intensif.,
43 (2004) 1281–1287.
- R. Montenegro-Ayo, T. Pérez, M.R.V. Lanza, E. Brillas,
S. Garcia-Segura, A.J. dos Santos, New electrochemical
reactor design for emergent pollutants removal by
electrochemical oxidation, Electrochim. Acta, 458 (2023) 142551,
doi: 10.1016/j.electacta.2023.142551.
- C. Feng, N. Sugiura, S. Shimada, T. Maekawa, Development
of a high performance electrochemical wastewater treatment
system, J. Hazard. Mater., 103 (2003) 65–78.
- M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke,
Electrocoagulation (EC) — science and applications, J. Hazard.
Mater., 84 (2001) 29–41.
- M. Williams, R.S. Kookana, Chapter 3 – Fate and Behavior
of Environmental Contaminants Arising From Health-Care
Provision, A.B.A. Boxall, R.S. Kookana, Eds., Health Care and
Environmental Contamination: Environmental Contaminants,
Elsevier, 2018, pp. 21–40. doi: 10.1016/
B978-0-444-63857-1.00003-6
- K.M. Kanama, A.P. Daso, L. Mpenyana-Monyatsi,
M.A.A. Coetzee, Assessment of pharmaceuticals, personal
care products, and hormones in wastewater treatment
plants receiving inflows from health facilities in North West
Province, South Africa, J. Toxicol., 2018 (2018), doi: 10.1155/
2018/3751930.
- I.B. Gomes, L.C. Simões, M. Simões, The effects of emerging
environmental contaminants on Stenotrophomonas maltophilia
isolated from drinking water in planktonic and sessile states,
Sci. Total Environ., 643 (2018) 1348–1356.
- T.S. Oliveira, Chapter 2 – Environmental Contamination From
Health-Care Facilities, A.B.A. Boxall, R.S. Kookana, Eds., Health
Care and Environmental Contamination: Environmental
Contaminants, Elsevier, 2018, pp. 7–19. Available at:
https://doi.org/10.1016/B978-0-444-63857-1.00002-4
- X. Zhang, J. Li, S. Yan, R.D. Tyagi, J. Chen, Physical, Chemical,
and Biological Impact (Hazard) of Hospital Wastewater
on Environment: Presence of Pharmaceuticals, Pathogens,
and Antibiotic-Resistance Genes, Current Developments in
Biotechnology and Bioengineering: Environmental and Health
Impact of Hospital Wastewater, Elsevier, 2020, pp. 79–102.
doi: 10.1016/B978-0-12-819722-6.00003-1
- T.S. Oliveira, Chapter 2 – Environmental Contamination From
Health-Care Facilities, A.B.A. Boxall, R.S. Kookana, Eds., Health
Care and Environmental Contamination: Environmental
Contaminants, Elsevier, 2018, pp. 7–19. doi: 10.1016/B978-0-444-63857-1.00002-4
- A. Macías-García, J. García-Sanz-Calcedo, J.P. Carrasco-Amador, R. Segura-Cruz, Adsorption of paracetamol
in hospital wastewater through activated carbon filters,
Sustainability, 11 (2019) 2672, doi: 10.3390/su11092672.
- M. Čelić, M. Gros, M. Farré, D. Barceló, M. Petrović,
Pharmaceuticals as chemical markers of wastewater contamination
in the vulnerable area of the Ebro Delta (Spain),
Sci. Total Environ., 652 (2019) 952–963.
- B.S. Akin, B.S. Akin, Contaminant properties of hospital clinical
laboratory wastewater: a physiochemical and microbiological
assessment, J. Environ. Prot. (Irvine, Calif), 7 (2016)
635–642.
- S. Rodriguez-Mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros,
A. Sànchez-Melsió, C.M. Borrego, D. Barceló, J.L. Balcázar,
Occurrence of antibiotics and antibiotic resistance genes
in hospital and urban wastewaters and their impact on the
receiving river, Water Res., 69 (2015) 234–242.
- T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M.N. Iqbal,
Environmentally-related contaminants of high concern:
potential sources and analytical modalities for detection,
quantification, and treatment, Environ. Int., 122 (2019) 52–66.
- J. Zhang, Y. Zhou, B. Yao, J. Yang, D. Zhi, Current progress
in electrochemical anodic-oxidation of pharmaceuticals:
mechanisms, influencing factors, and new technique, J. Hazard.
Mater., 418 (2021) 126313, doi: 10.1016/j.jhazmat.2021.126313.
- W. Nabgan, M. Saeed, A.A. Jalil, B. Nabgan, Y. Gambo,
M.W. Ali, M. Ikram, A.A. Fauzi, A.H.K. Owgi, I. Hussain,
A.A. Thahe, X. Hu, N.S. Hassan, A. Sherryna, A. Kadier,
M.Y. Mohamud, A state of the art review on electrochemical
technique for the remediation of pharmaceuticals containing
wastewater, Environ. Res., 210 (2022) 112975, doi: 10.1016/j.envres.2022.112975.
- S.W. da Silva, J.B. Welter, L.L. Albornoz, A.N.A. Heberle,
J.Z. Ferreira, A.M. Bernardes, Advanced electrochemical
oxidation processes in the treatment of pharmaceutical
containing water and wastewater: a review, Curr. Pollut. Rep.,
7 (2021) 146–159.
- C. Comninellis, Electrocatalysis in the electrochemical
conversion/combustion of organic pollutants for wastewater
treatment, Electrochim. Acta, 39 (1994) 1857–1862.
- M. Panizza, G. Cerisola, Direct and mediated anodic oxidation
of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
- M.A. Sandoval, W. Calzadilla, R. Salazar, Influence of reactor
design on the electrochemical oxidation and disinfection
of wastewaters using boron-doped diamond electrodes,
Curr. Opin. Electrochem., 33 (2022) 100939, doi: 10.1016/j.coelec.2022.100939.
- C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone,
Single and coupled electrochemical processes and reactors for
the abatement of organic water pollutants: a critical review,
Chem. Rev., 115 (2015) 13362–13407.
- L.C. Espinoza, A. Henríquez, D. Contreras, R. Salazar,
Evidence for the production of hydroxyl radicals at borondoped
diamond electrodes with different sp3/sp2 ratios
and its relationship with the anodic oxidation of aniline,
Electrochem. Commun., 90 (2018) 30–33.
- N. Vatistas, Adsorption layer and its characteristic to modulate
the electro-oxidation runway of organic species, J. Appl.
Electrochem., 40 (2010) 1743–1750.
- E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters
containing synthetic organic dyes by electrochemical
methods. An updated review, Appl. Catal., B, 166–167 (2015)
603–643.
- P. Attri, Y.H. Kim, D.H. Park, J.H. Park, Y.J. Hong, H.S. Uhm,
K.N. Kim, A. Fridman, E.H. Choi, Generation mechanism of
hydroxyl radical species and its lifetime prediction during
the plasma-initiated ultraviolet (UV) photolysis, Sci. Rep.,
5 (2015) 1–8.
- O. Simond, V. Schaller, C. Comninellis, Theoretical model for
the anodic oxidation of organics on metal oxide electrodes,
Electrochim. Acta, 42 (1997) 2009–2012.
- B. Marselli, J. Garcia-Gomez, P.-A. Michaud, M.A. Rodrigo,
Ch. Comninellis, Electrogeneration of hydroxyl radicals
on boron-doped diamond electrodes, J. Electrochem. Soc.,
150 (2003) D79, doi: 10.1149/1.1553790/XML.
- Y. Lan, C. Coetsier, C. Causserand, K. Groenen Serrano, On
the role of salts for the treatment of wastewaters containing
pharmaceuticals by electrochemical oxidation using a boron
doped diamond anode, Electrochim. Acta, 231 (2017) 309–318.
- C.D.N. Brito, D.M. de Araújo, C.A. Martínez-Huitle,
M.A. Rodrigo, Understanding active chlorine species
production using boron doped diamond films with lower and
higher sp3/sp2 ratio, Electrochem. Commun., 55 (2015) 34–38.
- S.W. da Silva, E.M.O. Navarro, M.A.S. Rodrigues,
A.M. Bernardes, V. Pérez-Herranz, Using p-Si/BDD anode for
the electrochemical oxidation of norfloxacin, J. Electroanal.
Chem., 832 (2019) 112–120.
- F.L. Souza, C. Saéz, M.R.V. Lanza, P. Cañizares, M.A. Rodrigo,
The effect of the sp3/sp2 carbon ratio on the electrochemical
oxidation of 2,4-D with p-Si BDD anodes, Electrochim. Acta,
187 (2016) 119–124.
- S.O. Ganiyu, T.X. Huong Le, M. Bechelany, G. Esposito,
E.D. van Hullebusch, M.A. Oturan, M. Cretin, A hierarchical
CoFe-layered double hydroxide modified carbon felt cathode
for heterogeneous electro-Fenton process, J. Mater. Chem. A,
5 (2017) 3655–3666.
- S.O. Ganiyu, M. Zhou, C.A. Martínez-Huitle, Heterogeneous
electro-Fenton and photoelectro-Fenton processes: a critical
review of fundamental principles and application for water/wastewater treatment, Appl. Catal., B, 235 (2018) 103–129.
- K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a
historical overview and future prospects, Jpn. J. Appl. Phys.,
Part 1, 44 (2005) 8269–8285.
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras,
A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne,
K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on
the visible light active titanium dioxide photocatalysts for
environmental applications, Appl. Catal., B, 125 (2012) 331–349.
- N.T. Nolan, M.K. Seery, S.C. Pillai, Spectroscopic investigation
of the anatase-to-rutile transformation of sol-gel-synthesized
TiO2 photocatalysts, J. Phys. Chem. C, 113 (2009) 16151–16157.
- M. Koelsch, S. Cassaignon, C. Ta Thanh Minh, J.F. Guillemoles,
J.P. Jolivet, Electrochemical comparative study of titania
(anatase, brookite and rutile) nanoparticles synthesized in
aqueous medium, Thin Solid Films, 451–452 (2004) 86–92.
- W. Choi, A. Termin, M.R. Hoffmann, The role of metal
ion dopants in quantum-sized TiO2: correlation between
photoreactivity and charge carrier recombination dynamics,
J. Phys. Chem., 98 (1994) 13669–13679.
- S. Trasatti, Electrocatalysis: understanding the success of
DSA®, Electrochim. Acta, 45 (2000) 2377–2385.
- R.T. Pelegrini, R.S. Freire, N. Duran, R. Bertazzoli, Photoassisted
electrochemical degradation of organic pollutants on a DSA
type oxide electrode: process test for a phenol synthetic
solution and its application for the E1 bleach Kraft mill
effluent, Environ. Sci. Technol., 35 (2001) 2849–2853.
- S.W. da Silva, C.R. Klauck, M.A. Siqueira, A.M. Bernardes,
Degradation of the commercial surfactant nonylphenol
ethoxylate by advanced oxidation processes, J. Hazard. Mater.,
282 (2015) 241–248.
- H.G. Oliveira, L.H. Ferreira, R. Bertazzoli, C. Longo,
Remediation of 17-α-ethinylestradiol aqueous solution by
photocatalysis and electrochemically-assisted photocatalysis
using TiO2 and TiO2/WO3 electrodes irradiated by a solar
simulator, Water Res., 72 (2015) 305–314.
- L.L. Albornoz, S.W. da Silva, J.P. Bortolozzi, E.D. Banús,
P. Brussino, M.A. Ulla, A.M. Bernardes, Degradation
and mineralization of erythromycin by heterogeneous
photocatalysis using SnO2-doped TiO2 structured catalysts:
activity and stability, Chemosphere, 268 (2021) 128858,
doi: 10.1016/j.chemosphere.2020.128858.
- S. Krishnan, A. Shriwastav, Application of TiO2 nanoparticles
sensitized with natural chlorophyll pigments as catalyst
for visible light photocatalytic degradation of methylene
blue, J. Environ. Chem. Eng., 9 (2021) 104699, doi: 10.1016/j.jece.2020.104699.
- J. Gong, W. Pu, C. Yang, J. Zhang, Tungsten and nitrogen
co-doped TiO2 electrode sensitized with Fe–chlorophyllin for
visible light photoelectrocatalysis, Chem. Eng. J., 209 (2012)
94–101.
- L. Gomathi Devi, P.M. Nithya, Photocatalytic activity of Hemin
(Fe(III) porphyrin) anchored BaTiO3 under the illumination of
visible light: synergetic effects of photosensitization, photo-Fenton and photocatalysis processes, Inorg. Chem. Front.,
5 (2018) 127–138.
- Z. Ye, G.E.M. Schukraft, A. L’Hermitte, Y. Xiong, E. Brillas,
C. Petit, I. Sirés, Mechanism and stability of a Fe-based 2D
MOF during the photoelectro-Fenton treatment of organic
micropollutants under UVA and visible light irradiation,
Water Res., 184 (2020) 115986, doi: 10.1016/j.watres.2020.115986.
- F. Kastanek, M. Spacilova, P. Krystynik, M. Dlaskova,
O. Solcova, Fenton reaction–unique but still mysterious,
Processes, 11 (2023) 432, doi: 10.3390/pr11020432.
- Z. Ye, E. Brillas, F. Centellas, P.L. Cabot, I. Sirés, Electro-Fenton
process at mild pH using Fe(III)-EDDS as soluble catalyst
and carbon felt as cathode, Appl. Catal., B, 257 (2019) 117907,
doi: 10.1016/j.apcatb.2019.117907.
- U.J. Ahile, R.A. Wuana, A.U. Itodo, R. Sha’Ato, R.F. Dantas,
A review on the use of chelating agents as an alternative
to promote photo-Fenton at neutral pH: current trends,
knowledge gap and future studies, Sci. Total Environ.,
710 (2020) 134872, doi: 10.1016/j.scitotenv.2019.134872.
- R. Ameta, A.K. Chohadia, A. Jain, P.B. Punjabi, Chapter 3 –
Fenton and Photo-Fenton Processes, S.C. Ameta, R. Ameta,
Eds., Advanced Oxidation Processes for Wastewater Treatment:
Emerging Green Chemical Technology, Academic Press,
2018, pp. 49–87. doi: 10.1016/
B978-0-12-810499-6.00003-6
- E. Brillas, J.C. Calpe, J. Casado, Mineralization of 2,4-D by
advanced electrochemical oxidation processes, Water Res.,
34 (2000) 2253–2262.
- M.A. Oturan, Ecologically effective water treatment technique
using electrochemically generated hydroxyl radicals
for in situ destruction of organic pollutants: application to
herbicide 2,4-D, J. Appl. Electrochem., 30 (2000) 475–482.
- F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar,
Electrochemical advanced oxidation processes: a review
on their application to synthetic and real wastewaters,
Appl. Catal., B, 202 (2017) 217–261.
- J. Abidi, D. Clematis, Y. Samet, M. Delucchi, D. Cademartori,
M. Panizza, Influence of anode material and chlorides in the
new-gen solid polymer electrolyte cell for electrochemical
oxidation – optimization of chloroxylenol degradation
with response surface methodology, J. Electroanal. Chem.,
920 (2022) 116584, doi: 10.1016/j.jelechem.2022.116584.
- E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and
related electrochemical technologies based on Fenton’s
reaction chemistry, Chem. Rev., 109 (2009) 6570–6631.
- H. Monteil, Y. Péchaud, N. Oturan, M.A. Oturan, A review
on efficiency and cost effectiveness of electro- and bioelectro-Fenton processes: application to the treatment of
pharmaceutical pollutants in water, Chem. Eng. J., 376 (2019)
119577, doi: 10.1016/J.CEJ.2018.07.179.
- E. Brillas, R.M. Bastida, E. Llosa, J. Casado, Electrochemical
destruction of aniline and 4‐chloroaniline for wastewater
treatment using a carbon‐PTFE O2 ‐ fed cathode,
J. Electrochem. Soc., 142 (1995) 1733–1741.
- E. Bocos, O. Iglesias, M. Pazos, M. Ángeles Sanromán, Nickel
foam a suitable alternative to increase the generation of
Fenton’s reagents, Process Saf. Environ. Prot., 101 (2016) 34–44.
- M. Umar, H.A. Aziz, M.S. Yusoff, Trends in the use of
Fenton, electro-Fenton and photo-Fenton for the treatment
of landfill leachate, Waste Manage., 30 (2010) 2113–2121.
- B. Utset, J. Garcia, J. Casado, X. Domènech, J. Peral,
Replacement of H2O2 by O2 in Fenton and photo-Fenton
reactions, Chemosphere, 41 (2000) 1187–1192.
- J. Wu, W. Pu, C. Yang, M. Zhang, J. Zhang, Removal of
benzotriazole by heterogeneous photoelectro-Fenton like
process using ZnFe2O4 nanoparticles as catalyst, J. Environ.
Sci., 25 (2013) 801–807.
- O. García-Rodríguez, J.A. Bañuelos, A. El-Ghenymy,
L.A. Godínez, E. Brillas, F.J. Rodríguez-Valadez, Use of a carbon
felt–iron oxide air-diffusion cathode for the mineralization of
Malachite Green dye by heterogeneous electro-Fenton and
UVA photoelectro-Fenton processes, J. Electroanal. Chem.,
767 (2016) 40–48.
- J. Scaria, A. Gopinath, P.V. Nidheesh, A versatile strategy
to eliminate emerging contaminants from the aqueous
environment: heterogeneous Fenton process, J. Cleaner Prod.,
278 (2021) 124014, doi: 10.1016/j.jclepro.2020.124014.
- J. Casado, Towards industrial implementation of electro-
Fenton and derived technologies for wastewater treatment: a
review, J. Environ. Chem. Eng., 7 (2019) 102823, doi: 10.1016/j.jece.2018.102823.
- S. Song, Y. Wang, H. Shen, J. Zhang, H. Mo, J. Xie, N. Zhou,
J. Shen, Ultrasmall graphene oxide modified with Fe3O4
nanoparticles as a Fenton-like agent for methylene blue
degradation, ACS Appl. Nano Mater., 2 (2019) 7074–7084.
- E. Brillas, S. Garcia-Segura, Benchmarking recent advances
and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: a review on the
relevance of phenol as model molecule, Sep. Purif. Technol.,
237 (2020) 116337, doi: 10.1016/j.seppur.2019.116337.
- Z. Ye, I. Sirés, H. Zhang, Y.H. Huang, Mineralization of
pentachlorophenol by ferrioxalate-assisted solar
photo-
Fenton process at mild pH, Chemosphere, 217 (2019) 475–482.
- S. Ambika, M. Devasena, I. Manivannan Nambi, Assessment
of meso scale zero valent iron catalyzed Fenton reaction in
continuous-flow porous media for sustainable groundwater
remediation, Chem. Eng. J., 334 (2018) 264–272.
- S.A. Messele, O.S.G.P. Soares, J.J.M. Órfão, C. Bengoa,
J. Font, Zero-valent iron supported on nitrogen-doped
carbon xerogel as catalysts for the oxidation of phenol by
fenton-like system, Environ. Technol., 39 (2018) 2951–2958.
- A.N.A. Heberle, M.E.P. Alves, S.W. da Silva, C.R. Klauck,
M.A.S. Rodrigues, A.M. Bernardes, Phytotoxicity and
genotoxicity evaluation of 2,4,6-tribromophenol solution
treated by UV-based oxidation processes, Environ. Pollut.,
249 (2019) 354–361.
- I.M.D. Gonzaga, A. Moratalla, K.I.B. Eguiluz, G.R. Salazar-Banda, P. Cañizares, M.A. Rodrigo, C. Saez, Influence of the
doping level of boron-doped diamond anodes on the removal
of penicillin G from urine matrixes, Sci. Total Environ.,
736 (2020) 139536, doi: 10.1016/j.scitotenv.2020.139536.
- L. Feng, W. Song, N. Oturan, M. Karbasi, E.D. van Hullebusch,
G. Esposito, S. Giannakis, M.A. Oturan, Electrochemical
oxidation of naproxen in aqueous matrices: elucidating the
intermediates’ eco-toxicity, by assessing its degradation
pathways via experimental and density functional theory
(DFT) approaches, Chem. Eng. J., 451 (2023) 138483,
doi: 10.1016/j.cej.2022.138483.
- I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza,
Electrochemical advanced oxidation processes: today and
tomorrow. A review, Environ. Sci. Pollut. Res., 21 (2014)
8336–8367.
- A.J. dos Santos, P.L. Cabot, E. Brillas, I. Sirés, A comprehensive
study on the electrochemical advanced oxidation of
antihypertensive captopril in different cells and aqueous
matrices, Appl. Catal., B, 277 (2020) 119240, doi: 10.1016/j.apcatb.2020.119240.
- S. Fierro, G. Foti, Ch. Comninellis, Electrochemical Oxidation
of Organic Compounds in Aqueous Acidic Media on “Active”
and “Non-Active” Type Electrodes, Electrolysis: Theory, Types
and Applications, Nova Science Publishers, Hauppauge, N.Y.,
2010. Available at https://infoscience.epfl.ch/record/149801
(Accessed December 31, 2022).
- E.A. Serna-Galvis, K.E. Berrio-Perlaza, R.A. Torres-Palma,
Electrochemical treatment of penicillin, cephalosporin, and
fluoroquinolone antibiotics via active chlorine: evaluation of
antimicrobial activity, toxicity, matrix, and their correlation
with the degradation pathways, Environ. Sci. Pollut. Res.,
24 (2017) 23771–23782.
- R.E. Palma, E. Serna-Galvis, J.E. Ramirez, R.A. Torres,
Electrochemical degradation of naproxen (NPX) and
diclofenac (DFC) through active chlorine species (Cl2-active):
considerations on structural aspects and degradation in urine,
ECS Trans., 100 (2021) 55–71.
- S.D. Jojoa-Sierra, J. Silva-Agredo, E. Herrera-Calderon,
R.A. Torres-Palma, Elimination of the antibiotic norfloxacin
in municipal wastewater, urine and seawater by electrochemical
oxidation on IrO2 anodes, Sci. Total Environ.,
575 (2017) 1228–1238.
- F. Sordello, D. Fabbri, L. Rapa, C. Minero, M. Minella,
D. Vione, Electrochemical abatement of cefazolin: towards
a viable treatment for antibiotic-containing urine, J. Cleaner
Prod., 289 (2021) 125722, doi: 10.1016/j.jclepro.2020.125722.
- C. Zwiener, T. Glauner, J. Sturm, M. Wörner, F.H. Frimmel,
Electrochemical reduction of the iodinated contrast medium
iomeprol: iodine mass balance and identification of
transformation products, Anal. Bioanal. Chem., 395 (2009)
1885–1892.
- M. Herraiz-Carboné, S. Cotillas, E. Lacasa, Á. Moratalla,
P. Cañizares, M.A. Rodrigo, C. Sáez, Improving the biodegradability
of hospital urines polluted with chloramphenicol
by the application of electrochemical oxidation, Sci. Total
Environ., 725 (2020) 138430, doi: 10.1016/j.scitotenv.2020.
138430.
- P.V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the
removal of synthetic dyes from water by electrochemical
advanced oxidation processes, Chemosphere, 197 (2018)
210–227.
- L. Feng, E.A. Serna-Galvis, N. Oturan, S. Giannakis,
R.A. Torres-Palma, M.A. Oturan, Evaluation of process
influencing factors, degradation products, toxicity evolution
and matrix-related effects during electro-Fenton removal
of piroxicam from waters, J. Environ. Chem. Eng., 7 (2019)
103400, doi: 10.1016/j.jece.2019.103400.
- S. Ahmadzadeh, M. Dolatabadi, Removal of acetaminophen
from hospital wastewater using electro-Fenton process,
Environ. Earth Sci., 77 (2018) 1–11.
- Á. Moratalla, D.M. Araújo, G.O.M.A. Moura, E. Lacasa,
P. Cañizares, M.A. Rodrigo, C. Sáez, Pressurized
electro-
Fenton for the reduction of the environmental impact
of antibiotics, Sep. Purif. Technol., 276 (2021) 119398,
doi: 10.1016/j.seppur.2021.119398.
- S. Cotillas, D. Clematis, P. Cañizares, M.P. Carpanese,
M.A. Rodrigo, M. Panizza, Degradation of dye Procion Red
MX-5B by electrolytic and electro-irradiated technologies
using diamond electrodes, Chemosphere, 199 (2018) 445–452.
- D.M. de Araújo, S. Cotillas, C. Sáez, P. Cañizares, C.A. Martínez-Huitle, M.A. Rodrigo, Activation by light irradiation of
oxidants electrochemically generated during Rhodamine B
elimination, J. Electroanal. Chem., 757 (2015) 144–149.
- I.M.D. Gonzaga, A. Moratalla, K.I.B. Eguiluz, G.R. Salazar-Banda, P. Cañizares, M.A. Rodrigo, C. Saez, Outstanding
performance of the microwave-made MMO-Ti/RuO2IrO2
anode on the removal of antimicrobial activity of Penicillin
G by photoelectrolysis, Chem. Eng. J., 420 (2021) 129999,
doi: 10.1016/j.cej.2021.129999.
- I.M.D. Gonzaga, A. Moratalla, K.I.B. Eguiluz, G.R. Salazar-Banda, P. Cañizares, M.A. Rodrigo, C. Saez, Novel Ti/RuO2IrO2 anode to reduce the dangerousness of antibiotic
polluted urines by Fenton-based processes, Chemosphere,
270 (2021) 129344, doi: 10.1016/j.chemosphere.2020.129344.
- B.O. Orimolade, A.O. Oladipo, A.O. Idris, F. Usisipho, S. Azizi,
M. Maaza, S.L. Lebelo, B.B. Mamba, Advancements in electrochemical
technologies for the removal of fluoroquinolone
antibiotics in wastewater: a review, Sci. Total Environ.,
881 (2023) 163522, doi: 10.1016/j.scitotenv.2023.163522.
- A.J. dos Santos, P.L. Cabot, E. Brillas, I. Sirés, A comprehensive
study on the electrochemical advanced oxidation of
antihypertensive captopril in different cells and aqueous
matrices, Appl. Catal., B, 277 (2020) 119240, doi: 10.1016/j.apcatb.2020.119240.
- G.D. Noudeh, M. Asdaghi, N.D. Noudeh, M. Dolatabadi,
S. Ahmadzadeh, Response surface modeling of ceftriaxone
removal from hospital wastewater, Environ. Monit. Assess.,
195 (2022) 217, doi: 10.1007/s10661-022-10808-z/figures/2.
- M. Gholami Shirkoohi, R.D. Tyagi, P.A. Vanrolleghem,
P. Drogui, Modelling and optimization of psychoactive
pharmaceutical caffeine removal by electrochemical oxidation
process: a comparative study between response surface
methodology (RSM) and adaptive neuro fuzzy inference
system (ANFIS), Sep. Purif. Technol., 290 (2022) 120902,
doi: 10.1016/j.seppur.2022.120902.
- S. Giannakopoulos, P. Kokkinos, B. Hasa, Z. Frontistis,
A. Katsaounis, D. Mantzavinos, Electrochemical oxidation of
pharmaceuticals on a Pt-SnO2/Ti electrode, Electrocatalysis,
13 (2022) 363–377.
- K.C. Dao, Y.P. Tsai, C.C. Yang, K.F. Chen, Simultaneous
carbamazepine and phosphate removal from a moving-bed
membrane bioreactor effluent by the electrochemical process:
treatment optimization by factorial design, Membranes,
12 (2022) 1256, doi: 10.3390/membranes12121256.
- V.B. Lima, L.A. Goulart, R.S. Rocha, J.R. Steter, M.R.V. Lanza,
Degradation of antibiotic ciprofloxacin by different AOP
systems using electrochemically generated hydrogen
peroxide, Chemosphere, 247 (2020) 125807, doi: 10.1016/j.chemosphere.2019.125807.
- Y. Yang, Y. Xia, F. Wei, G. Teng, Y. Yao, Preparation and
characterization of hydrophobic stearic acid-Yb-PbO2 anode
and its application on the electrochemical degradation of
naproxen sodium, J. Electroanal. Chem., 868 (2020) 114191,
doi: 10.1016/j.jelechem.2020.114191.