References
- Ministry of Maritime Economy and Inland Navigation,
Regulation of the Minister of Maritime Economy and Inland
Navigation from July 2019 on Substances Particularly Harmful
to the Aquatic Environment and the Conditions to be Met
When Discharging Sewage Into Waters or Ground, as Well
as When Discharging Rainwater or Meltwater Into Waters or
Into Devices Water, Official Gazette of the Republic of Poland,
Poland, 2019.
- F. Hernández-del-Olmo, E. Gaudioso, R. Dormido, N. Duro,
Energy and environmental efficiency for the
N-ammonia
removal process in wastewater treatment plants by means
of reinforcement learning, Energies (Basel), 9 (2016) 755,
doi: 10.3390/en9090755.
- J.-J. Zhu, L. Kang, P.R. Anderson, Predicting influent
biochemical oxygen demand: balancing energy demand and
risk management, Water Res., 128 (2018) 304–313.
- M.-J. Mehrani, J. Drewnowski, M. Majewska, G. Lagód,
S. Kumari, F. Bux, B. Szęląg, Assessment of wastewater
quality indicators for wastewater treatment influent using
an advanced logistic regression model, Desal. Water Treat.,
232 (2021) 421–432.
- B. Szeląg, L. Bartkiewicz, J. Studziński, K. Barbusiński,
Evaluation of the impact of explanatory variables on the
accuracy of prediction of daily inflow to the sewage treatment
plant by selected models nonlinear, Arch. Environ. Prot.,
43 (2017) 74–81.
- M. Henze, W. Gujer, T. Mino, M. van Loosedrecht, Activated
Sludge Models ASM1, ASM2, ASM2D and ASM3, Water
Intelligence Online, IAWPRC Scientific and Technical
Reports No. 9, IAWPRC Publisher: IWA Publishing, ISBN:
9781780402369, 2000, doi: 10.2166/9781780402369.
- J. Drewnowski, J. Mąkinia, A. Szaja, G. Łagód, Ł. Kopeć,
J.A. Aguilar, Comparative study of balancing SRT by using
modified ASM2d in control and operation strategy at full-scale
WWTP, Water (Basel), 11 (2019) 485, doi: 10.3390/w11030485.
- H. Hauduc, I. Takács, S. Smith, A. Szabo, S. Murthy, G.T. Daigger,
M. Spérandio, A dynamic physicochemical model for
chemical phosphorus removal, Water Res., 73 (2015) 157–170.
- B. Petersen, P.A. Vanrolleghem, K. Gernaey, M. Henze,
Evaluation of an ASM1 model calibration procedure on a
municipal–industrial wastewater treatment plant, J. Hydroinf.,
4 (2002) 15–38.
- G. Mannina, A. Cosenza, P.A. Vanrolleghem, G. Viviani,
A practical protocol for calibration of nutrient removal
wastewater treatment models, J. Hydroinf., 13 (2011) 575–595.
- R. Vitanza, I. Colussi, A. Cortesi, V. Gallo, Implementing a
respirometry-based model into BioWin software to simulate
wastewater treatment plant operations, J. Water Process Eng.,
9 (2015) 267–275.
- H. Haimi, M. Mulas, F. Corona, R. Vahala, Data-derived
soft-sensors for biological wastewater treatment plants: an
overview, Environ. Modell. Software, 47 (2013) 88–107.
- J. Fernandez de Canete, P. Del Saz-Orozco, R. Baratti, M. Mulas,
A. Ruano, A. Garcia-Cerezo, Soft-sensing estimation of plant
effluent concentrations in a biological wastewater treatment
plant using an optimal neural network, Expert Syst. Appl.,
63 (2016) 8–19.
- B. Szeląg, J. Drewnowski, G. Łagód, D. Majerek, E. Dacewicz,
F. Fatone, Soft sensor application in identification of the
activated sludge bulking considering the technological and
economical aspects of smart systems functioning, Sensors,
20 (2020) 1941, doi: 10.3390/s20071941.
- J. Fernandez de Canete, P. del Saz-Orozco, J. Gómez-de-Gabriel,
R. Baratti, A. Ruano, I. Rivas-Blanco, Control and soft sensing
strategies for a wastewater treatment plant using a neurogenetic
approach, Comput. Chem. Eng., 144 (2021) 107146,
doi: 10.1016/j.compchemeng.2020.107146.
- T.Y. Pai, P.Y. Yang, S.C. Wang, M.H. Lo, C.F. Chiang, J.L. Kuo,
H.H. Chu, H.C. Su, L.F. Yu, H.C. Hu, Y.H. Chang, Predicting
effluent from the wastewater treatment plant of industrial
park based on fuzzy network and influent quality, Appl. Math.
Modell., 35 (2011) 3674–3684.
- H. Guo, K. Jeong, J. Lim, J. Jo, Y.M. Kim, J. Park,
J.H. Kim, K.H. Cho, Prediction of effluent concentration in a
wastewater treatment plant using machine learning models,
J. Environ. Sci., 32 (2015) 90–101.
- B. Szeląg, K. Barbusiński, J. Studziński, Application of the
model of sludge volume index forecasting to assess reliability
and improvement of wastewater treatment plant operating
conditions, Desal. Water Treat., 140 (2019) 143–154.
- Y. Zhang, C. Li, H. Duan, K. Yan, J. Wang, W. Wang, Deep
learning based data-driven model for detecting time-delay
water quality indicators of wastewater treatment plant
influent, Chem. Eng. J., 467 (2023) 143483, doi: 10.1016/j.cej.2023.143483.
- American Public Health Association, Standard Methods
for the Examination of Water and Wastewater, 21st ed.,
Washington D.C., 2005.
- T. Hastie, R. Tibshirani, J. Friedman, Random Forests,
In: The Elements of Statistical Learning, Springer Series
in Statistics, Springer, New York, NY, 2009. doi: 10.1007/978-0-387-84858-7_15
- T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting
System, KDD’16: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 785–794. doi: 10.1145/2939672.2939785
- B. Ráduly, K.V. Gernaey, A.G. Capodaglio, P.S. Mikkelsen,
M. Henze, Artificial neural networks for rapid WWTP
performance evaluation: methodology and case study,
Environ. Modell. Software, 22 (2007) 1208–1216.
- D.S. Lee, M.W. Lee, S.H. Woo, Y.J. Kim, J.M. Park, Nonlinear
dynamic partial least squares modeling of a full-scale
biological wastewater treatment plant, Process Biochem.,
41 (2006) 2050–2057.
- F. Luo, R.H. Yu, Y.G. Xu, Y. Li, Effluent Quality Prediction of
Wastewater Treatment Plant Based on Fuzzy-Rough Sets and
Artificial Neural Networks, 6th International Conference on
Fuzzy Systems and Knowledge Discovery, FSKD 2009, 2009,
pp. 47–51. doi: 10.1109/FSKD.2009.494
- H.W. Lee, M.W. Lee, J.M. Park, Multi-scale extension of
PLS algorithm for advanced on-line process monitoring,
Chemom. Intell. Lab. Syst., 98 (2009) 201–212.
- H. Guo, K. Jeong, J. Lim, J. Jo, Y.M. Kim, J. pyo Park,
J.H. Kim, K.H. Cho, Prediction of effluent concentration in a
wastewater treatment plant using machine learning models,
J. Environ. Sci. (China), 32 (2015) 90–101.
- M. Yaqub, H. Asif, S. Kim, W. Lee, Modeling of a full-scale
sewage treatment plant to predict the nutrient removal
efficiency using a long short-term memory (LSTM) neural
network, J. Water Process Eng., 37 (2020), doi: 10.1016/j.jwpe.
2020.101388.
- B. Szeląg, K. Barbusiński, J. Studziński, Activated sludge
process modelling using selected machine learning
techniques, Desal. Water Treat., 117 (2018) 78–87.
- N. Hvala, J. Kocijan, Design of a hybrid mechanistic/Gaussian
process model to predict full-scale wastewater treatment
plant effluent, Comput. Chem. Eng., 140 (2020), doi: 10.1016/j.compchemeng.2020.106934.
- F. Bagherzadeh, M.-J. Mehrani, M. Basirifard, J. Roostaei,
Comparative study on total nitrogen prediction in wastewater
treatment plant and effect of various feature selection
methods on machine learning algorithms performance,
J. Water Process Eng., 41 (2021) 102033, doi: 10.1016/j.jwpe.
2021.102033.