References

  1. Report on the Functioning of the Management of Batteries and Accumulators as Well as Waste Batteries and Waste Accumulators for 2018, Chief Inspector of Environmental Protection, Warsaw, 2019. Available at https://www.gios.gov. pl/images/dokumenty/raporty/Raport-baterie.pdf Available: 07.09.2022 (in Polish).
  2. M. Sun, X. Yang, D. Huisingh, R. Wang, Y. Wang, Consumer behavior and perspectives concerning spent household battery collection and recycling in China: a case study, J. Cleaner Prod., 107 (2015) 775–785.
  3. M.P.S. Krekeler, H.A. Barrett, R. Davis, C. Burnette, T. Doran, A. Ferraro, A. Meyer, An investigation of mass and brand diversity in a spent battery recycling collection with an emphasis on spent alkaline batteries: implications for waste management and future policy concerns, J. Power Sources, 203 (2012) 222–226.
  4. The Collection of Waste Portable Batteries in EU in View of the Achievability of the Collection Target Set by Battery Directive 2006/66/EC, Available at https://www.epbaeurope.net/assets/news/Report-on-the-portable-battery collection-rates-Update-Dec-16-full-version-FINAL-rev.1.pdf (Available: 24.07.2022).
  5. P. Kuchhal, U.C. Scharma, Battery Waste Management, Environmental Science and Engineering, Solid Waste Management Publisher: Studium Press LLC, USA, 2019, pp. 141–155.
  6. D. Bauer, D. Diamond, J. Li, D. Sandalow, P. Telleen, B. Wanner, Critical Materials Strategy, Report of the U.S. Department of Energy, 2010. Available at https://energy.gov/sites/prod/files/ DOE_CMS2011_FINAL_Full.pdf (Available: 21.07.2022).
  7. Critical Raw Materials Resilience: Charting a Path Towards Greater Security and Sustainability, European Commission, 03/09/2020. Available at https://ec.europa.eu/docsroom/ documents/42849 (Available: 22.07.2022).
  8. S. Guneysu, Lithium sorption from aqueous solution with cationic resins, Desal. Water Treat., 177 (2019) 102–108.
  9. A. Siekierka, E. Kmiecik, B. Tomaszewska, K. Wątor, M. Bryjak, The evaluation of the effectiveness of lithium separation by hybrid capacitive deionization from geothermal water with the uncertainty measurement application, Desal. Water Treat., 128 (2018) 259–264.
  10. B.W. Jaskula, Lithium Statistic and Information, U.S. Geological Survey, Mineral Commodity Summaries 2022. Available at https://www.usgs.gov/centers/national-mineralsinformation- center/lithium-statistics-and-information (Available: 06.09.2022).
  11. M.T. Islam, N. Huda, Material flow analysis (MFA) as a strategic tool in E-waste management: applications, trends and future directions, J. Environ. Manage., 244 (2019) 344–361.
  12. B. Swain, Recovery and recycling of lithium: a review, Sep. Purif. Technol., 172 (2017) 388–403.
  13. https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:52020PC0798
  14. B. Huang, J. Wang, Bio-hydrometallurgically Treatment of Spent Lithium-Ion Batteries, Recycling of Spent Lithium-Ion Batteries, Springer International Publishing, 2019, pp. 85–92.
    doi: 10.1007/978-3-030-31834-5_4.
  15. E. Asadi Dalini, Gh. Karimi, S. Zandevakili, M. Goodarzi, A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries, Miner. Process. Extr. Metall. Rev., 42 (2021) 451–472.
  16. E. Sayilgan, T. Kukrer, G. Civelekoglu, F. Ferella, A. Akcil, F. Veglio, M. Kitis, A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries, Hydrometallurgy, 97 (2009) 158–166.
  17. P.G. Schiavi, L. Baldassari, P. Altimari, E. Moscardini, L. Toro, F. Pagnanelli, Process simulation for Li-MnO2 primary battery recycling: cryo-mechanical and hydrometallurgical treatments at pilot scale, Energies, 13 (2020) 4546, doi: 10.3390/en13174546.
  18. E.Y. Yazici, H. Deveci, Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4-CuSO4-NaCl solution, Hydrometallurgy, 139 (2013) 30–38.
  19. Z.A. Kader, A. Marshall, J. Kennedy, A review on sustainable recycling technologies for lithium-ion batteries, Emergent Mater., 4 (2021) 725–735.
  20. M. Ulewicz, P. Maciejewski, W. Robak, J.A. Wrzesiński, J. Rakowska, Management of small battery and portable accumulator waste, Przem. Chem., 92 (2013) 270–278.
  21. UN Secretariat, Application for Consultative Status by the European Battery Recycling Association (EBRA), Concerns Application for Consultative Status With the Subcommittee of Experts on the Transport of Dangerous Goods, Geneva, UN, 18 Sept. 2003. Available at https://digitallibrary.un.org/record/504383
  22. T. Träger, B. Friedrich, R. Weyhe, Recovery concept of value metals from automotive lithium-ion batteries, Chem. Ing. Tech., 87 (2015) 1550–1557.
  23. J. Hu, J. Zhang, H. Li, Y. Chen, C. Wang, A promising approach for the recovery of high value-added metals from spent lithium-ion batteries, J. Power Sources, 351 (2017) 192–199.
  24. J. Xiao, B. Niu, Z. Xu, Highly efficient selective recovery of lithium from spent lithium-ion batteries by thermal reduction with cheap ammonia reagent, J. Hazard. Mater., 418 (2021) 126319, doi: 10.1016/j.jhazmat.2021.126319.
  25. S. Pindar, N. Dhawan, Recycling of mixed discarded lithiumion batteries via microwave processing route, Sustainable Mater. Technol., 25 (2020) e00157, doi: 10.1016/j.susmat.2020. e00157.
  26. J. Xiao, B. Niu, Q. Song, . Zhan, Z. Xu, Novel targetedly extracting lithium: an environmental-friendly controlled chlorinating technology and mechanism of spent lithium-ion batteries recovery, J. Hazard. Mater., 404 (2021) 123947, doi: 10.1016/j.jhazmat.2020.123947.
  27. J. Xiao, R. Gao, B. Niu, Z. Xu, Study of reaction characteristics and controlling mechanism of chlorinating conversion of cathode materials from spent lithium-ion batteries, J. Hazard. Mater., 407 (2021) 124704, doi: 10.1016/j.jhazmat.2020.124704.
  28. Y. Guo, F. Li, H. Zhu, G. Li, J. Huang, W. He, Leaching lithiumfrom the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl), Waste Manage., 51 (2016) 227–233.
  29. S.P. Barik, G. Prabaharan, L. Kumar, Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study, J. Cleaner Prod., 147 (2017) 37–43.
  30. P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T.M. Suzuki, K. Inoue, Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries, Hydrometallurgy, 50 (1998) 61–75.
  31. J.F. Paulino, N.G. Busnardo, J.C. Afonso, Recovery of valuable elements from spent Li-batteries, J. Hazard. Mater., 150 (2008) 843–849.
  32. Panasonic Industry, Battery Product Safety Data Sheet, Lihium Batteries, Coin. Available at https://industrial.panasonic.com/ww/downloads/psds (Available: 07.09.2022).
  33. D.A. Boryta, A.J. Maas, Factors influencing rate of carbon dioxide reaction with lithium hydroxide, Ind. Eng. Chem. Process Des. Dev., 10 (1971) 489–494.
  34. J. de Palblo, J. Andersson, M. Azoulay, Kinetic investigation of the sorption of water by lithium hydroxide, Thermochim. Acta, 113 (1987) 87–94.
  35. J. Khosravi, Production of Lithium Peroxide and Lithium Oxide in an Alcohol Medium, Department of Mining, Metals and Materials Engineering McGill University, Montreal, Canada, 2007, p. 81.
  36. A. Nora, A. Szczepanek, G. Koenen, Metallic Soap, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012, pp. 674–675.
  37. National Center for Biotechnology Information, PubChem Compound Summary for CID 7924, Propylene Carbonate, 2022. Available at https://pubchem.ncbi.nlm.nih.gov/compound/Propylene-carbonate (Available: 22.08.2022).