References
- Report on the Functioning of the Management of Batteries
and Accumulators as Well as Waste Batteries and Waste
Accumulators for 2018, Chief Inspector of Environmental
Protection, Warsaw, 2019. Available at https://www.gios.gov.
pl/images/dokumenty/raporty/Raport-baterie.pdf Available:
07.09.2022 (in Polish).
- M. Sun, X. Yang, D. Huisingh, R. Wang, Y. Wang, Consumer
behavior and perspectives concerning spent household
battery collection and recycling in China: a case study,
J. Cleaner Prod., 107 (2015) 775–785.
- M.P.S. Krekeler, H.A. Barrett, R. Davis, C. Burnette, T. Doran,
A. Ferraro, A. Meyer, An investigation of mass and brand
diversity in a spent battery recycling collection with an
emphasis on spent alkaline batteries: implications for waste
management and future policy concerns, J. Power Sources,
203 (2012) 222–226.
- The Collection of Waste Portable Batteries in EU in View of the
Achievability of the Collection Target Set by Battery Directive
2006/66/EC, Available at https://www.epbaeurope.net/assets/news/Report-on-the-portable-battery collection-rates-Update-Dec-16-full-version-FINAL-rev.1.pdf (Available: 24.07.2022).
- P. Kuchhal, U.C. Scharma, Battery Waste Management,
Environmental Science and Engineering, Solid Waste
Management Publisher: Studium Press LLC, USA, 2019,
pp. 141–155.
- D. Bauer, D. Diamond, J. Li, D. Sandalow, P. Telleen, B. Wanner,
Critical Materials Strategy, Report of the U.S. Department of
Energy, 2010. Available at https://energy.gov/sites/prod/files/
DOE_CMS2011_FINAL_Full.pdf (Available: 21.07.2022).
- Critical Raw Materials Resilience: Charting a Path Towards
Greater Security and Sustainability, European Commission,
03/09/2020. Available at https://ec.europa.eu/docsroom/
documents/42849 (Available: 22.07.2022).
- S. Guneysu, Lithium sorption from aqueous solution with
cationic resins, Desal. Water Treat., 177 (2019) 102–108.
- A. Siekierka, E. Kmiecik, B. Tomaszewska, K. Wątor, M. Bryjak,
The evaluation of the effectiveness of lithium separation by
hybrid capacitive deionization from geothermal water with
the uncertainty measurement application, Desal. Water Treat.,
128 (2018) 259–264.
- B.W. Jaskula, Lithium Statistic and Information, U.S.
Geological Survey, Mineral Commodity Summaries 2022.
Available at https://www.usgs.gov/centers/national-mineralsinformation-
center/lithium-statistics-and-information
(Available: 06.09.2022).
- M.T. Islam, N. Huda, Material flow analysis (MFA) as a strategic
tool in E-waste management: applications, trends and future
directions, J. Environ. Manage., 244 (2019) 344–361.
- B. Swain, Recovery and recycling of lithium: a review, Sep.
Purif. Technol., 172 (2017) 388–403.
- https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:52020PC0798
- B. Huang, J. Wang, Bio-hydrometallurgically Treatment of
Spent Lithium-Ion Batteries, Recycling of Spent Lithium-Ion
Batteries, Springer International Publishing, 2019, pp. 85–92.
doi: 10.1007/978-3-030-31834-5_4.
- E. Asadi Dalini, Gh. Karimi, S. Zandevakili, M. Goodarzi,
A review on environmental, economic and hydrometallurgical
processes of recycling spent lithium-ion batteries, Miner.
Process. Extr. Metall. Rev., 42 (2021) 451–472.
- E. Sayilgan, T. Kukrer, G. Civelekoglu, F. Ferella, A. Akcil,
F. Veglio, M. Kitis, A review of technologies for the recovery
of metals from spent alkaline and zinc–carbon batteries,
Hydrometallurgy, 97 (2009) 158–166.
- P.G. Schiavi, L. Baldassari, P. Altimari, E. Moscardini, L. Toro,
F. Pagnanelli, Process simulation for Li-MnO2 primary battery
recycling: cryo-mechanical and hydrometallurgical treatments
at pilot scale, Energies, 13 (2020) 4546, doi: 10.3390/en13174546.
- E.Y. Yazici, H. Deveci, Extraction of metals from waste printed
circuit boards (WPCBs) in H2SO4-CuSO4-NaCl solution,
Hydrometallurgy, 139 (2013) 30–38.
- Z.A. Kader, A. Marshall, J. Kennedy, A review on sustainable
recycling technologies for lithium-ion batteries, Emergent
Mater., 4 (2021) 725–735.
- M. Ulewicz, P. Maciejewski, W. Robak, J.A. Wrzesiński,
J. Rakowska, Management of small battery and portable
accumulator waste, Przem. Chem., 92 (2013) 270–278.
- UN Secretariat, Application for Consultative Status by the
European Battery Recycling Association (EBRA), Concerns
Application for Consultative Status With the Subcommittee
of Experts on the Transport of Dangerous Goods, Geneva,
UN, 18 Sept. 2003. Available at https://digitallibrary.un.org/record/504383
- T. Träger, B. Friedrich, R. Weyhe, Recovery concept of value
metals from automotive lithium-ion batteries, Chem. Ing.
Tech., 87 (2015) 1550–1557.
- J. Hu, J. Zhang, H. Li, Y. Chen, C. Wang, A promising approach
for the recovery of high value-added metals from spent
lithium-ion batteries, J. Power Sources, 351 (2017) 192–199.
- J. Xiao, B. Niu, Z. Xu, Highly efficient selective recovery of
lithium from spent lithium-ion batteries by thermal reduction
with cheap ammonia reagent, J. Hazard. Mater., 418 (2021)
126319, doi: 10.1016/j.jhazmat.2021.126319.
- S. Pindar, N. Dhawan, Recycling of mixed discarded lithiumion
batteries via microwave processing route, Sustainable
Mater. Technol., 25 (2020) e00157, doi: 10.1016/j.susmat.2020.
e00157.
- J. Xiao, B. Niu, Q. Song, . Zhan, Z. Xu, Novel targetedly
extracting lithium: an environmental-friendly controlled
chlorinating technology and mechanism of spent
lithium-ion batteries recovery, J. Hazard. Mater., 404 (2021)
123947, doi: 10.1016/j.jhazmat.2020.123947.
- J. Xiao, R. Gao, B. Niu, Z. Xu, Study of reaction characteristics
and controlling mechanism of chlorinating conversion of
cathode materials from spent lithium-ion batteries, J. Hazard.
Mater., 407 (2021) 124704, doi: 10.1016/j.jhazmat.2020.124704.
- Y. Guo, F. Li, H. Zhu, G. Li, J. Huang, W. He, Leaching
lithiumfrom the anode electrode materials of spent lithium-ion
batteries by hydrochloric acid (HCl), Waste Manage., 51 (2016)
227–233.
- S.P. Barik, G. Prabaharan, L. Kumar, Leaching and separation
of Co and Mn from electrode materials of spent lithium-ion
batteries using hydrochloric acid: laboratory and pilot scale
study, J. Cleaner Prod., 147 (2017) 37–43.
- P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T.M. Suzuki,
K. Inoue, Hydrometallurgical process for recovery of metal
values from spent nickel-metal hydride secondary batteries,
Hydrometallurgy, 50 (1998) 61–75.
- J.F. Paulino, N.G. Busnardo, J.C. Afonso, Recovery of valuable
elements from spent Li-batteries, J. Hazard. Mater., 150 (2008)
843–849.
- Panasonic Industry, Battery Product Safety Data Sheet, Lihium
Batteries, Coin. Available at https://industrial.panasonic.com/ww/downloads/psds (Available: 07.09.2022).
- D.A. Boryta, A.J. Maas, Factors influencing rate of carbon
dioxide reaction with lithium hydroxide, Ind. Eng. Chem.
Process Des. Dev., 10 (1971) 489–494.
- J. de Palblo, J. Andersson, M. Azoulay, Kinetic investigation of
the sorption of water by lithium hydroxide, Thermochim. Acta,
113 (1987) 87–94.
- J. Khosravi, Production of Lithium Peroxide and Lithium Oxide
in an Alcohol Medium, Department of Mining, Metals and
Materials Engineering McGill University, Montreal, Canada,
2007, p. 81.
- A. Nora, A. Szczepanek, G. Koenen, Metallic Soap, Ullmann’s
Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim,
2012, pp. 674–675.
- National Center for Biotechnology Information, PubChem
Compound Summary for CID 7924, Propylene Carbonate, 2022.
Available at https://pubchem.ncbi.nlm.nih.gov/compound/Propylene-carbonate (Available: 22.08.2022).