References

  1. H. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation, J. Chem., 2019 (2019) 6730305, doi: 10.1155/2019/6730305.
  2. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  3. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, Mu. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017) 2782–2799.
  4. Y. Zhu, W. Fan, T. Zhou, X. Li, Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms, Sci. Total Environ., 678 (2019) 253–266.
  5. R.S. Alfarra, N.E. Ali, M.M. Yusoff, Removal of heavy metals by natural adsorbent: review, Int. J. Biosci., 4 (2014) 130–139.
  6. R. Shrestha, S. Ban, S. Devkota, S. Sharma, R. Joshi, A.P. Tiwari, H.Y. Kim, M.K. Joshi, Technological trends in heavy metals removal from industrial wastewater: a review, J. Environ. Chem. Eng., 9 (2021) 105688, doi: 10.1016/j.jece.2021.105688.
  7. S. Bolisetty, M. Peydayesh, R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis, Chem. Soc. Rev., 48 (2019) 463–487.
  8. N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17–38.
  9. M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia, 50 (2014) 113–120.
  10. A.S. Thajeel, Isotherm, kinetic and thermodynamic of adsorption of heavy metal ions onto local activated carbon, Aquat. Sci. Technol., 1 (2013) 53–77.
  11. I.A. Aguayo-Villarreal, A. Bonilla-Petriciolet, R. Muñiz-Valencia, Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions, J. Mol. Liq., 230 (2017) 686–695.
  12. V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for removal of heavy metals from water: a review, J. Environ. Manage., 232 (2019) 803–817.
  13. A. Jawed, V. Saxena, L.M. Pandey, Engineered nanomaterials and their surface functionalization for the removal of heavy metals: a review, J. Water Process Eng., 33 (2020) 101009, doi: 10.1016/j.jwpe.2019.101009.
  14. P. Kumari, M. Alam, W.A. Siddiqi, Usage of nanoparticles as adsorbents for wastewater treatment: an emerging trend, Sustainable Mater. Technol., 22 (2019) e00128, doi: 10.1016/j.susmat.2019.e00128.
  15. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2017) 438–462.
  16. W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: a review, Carbohydr. Polym., 83 (2011) 1446–1456.
  17. R. Janani, B. Gurunathan, K. Sivakumar, S. Varjani, H.H. Ngo, E. Gnansounou, Advancements in heavy metals removal from effluents employing nano-adsorbents: way towards cleaner production, Environ. Res., 203 (2022) 111815, doi: 10.1016/j.envres.2021.111815.
  18. S.N.A. Abas, M.H.S. Ismail, L.M. Kamal, S. Izhar, Adsorption process of heavy metals by low-cost adsorbent: a review, World Appl. Sci. J., 28 (2013) 1518–1530.
  19. M. Ahmaruzzaman, Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals, Adv. Colloid Interface Sci., 166 (2011) 36–59.
  20. L. Giraldo, A. Erto, J.C. Moreno-Piraján, Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization, Adsorption, 19 (2013) 465–474.
  21. A. Aftabtalab, H. Sadabadi, Application of magnetite (Fe3O4) nanoparticles in hexavalent chromium adsorption from aquatic solutions, J. Pet. Environ. Biotechnol., 6 (2015) 1–3.
  22. S.A. Abd El Aal, A.M. Abdelhady, N.A. Mansour, N.M. Hassan, F. Elbaz, E.K. Elmaghraby, Physical and chemical characteristics of hematite nanoparticles prepared using microwave-assisted synthesis and its application as adsorbent for Cu, Ni, Co, Cd and Pb from aqueous solution, Mater. Chem. Phys., 235 (2019) 121771, doi: 10.1016/j.matchemphys.2019.121771.
  23. A. Roy, J. Bhattacharya, Removal of Cu(II), Zn(II) and Pb(II) from water using microwave-assisted synthesized maghemite nanotubes, Chem. Eng. J., 211–212 (2012) 493–500.
  24. H. Karami, Heavy metal removal from water by magnetite nanorods, Chem. Eng. J., 219 (2013) 209–216.
  25. N.H. Abdullah, K. Shameli, E.C. Abdullah, L.C. Abdullah, Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes, Composites, Part B, 162 (2019) 538–568.
  26. M. Manyangadze, N.H.M. Chikuruwo, T.B. Narsaiah, C.S. Chakra, M. Radhakumari, G. Danha, Enhancing adsorption capacity of nano-adsorbents via surface modification: a review, S. Afr. J. Chem. Eng., 31 (2020) 25–32.
  27. F. Cao, C. Lian, J. Yu, H. Yang, S. Lin, Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes, Bioresour. Technol., 276 (2019) 211–218.
  28. X. Ma, S.-T. Yang, H. Tang, Y. Liu, H. Wang, Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids, J. Colloid Interface Sci., 448 (2015) 347–355.
  29. I. Ghorbel-Abid, M. Trabelsi-Ayadi, Competitive adsorption of heavy metals on local landfill clay, Arabian J. Chem., 8 (2015) 25–31.
  30. A. Chaturbedi, S. Patil, R. Ramachandran, N.C. Shapley, Adsorption of positively and negatively charged heavy metal ions from wastewater by heteroaggregates of biopolymer particles, Colloids Surf., A, 602 (2020) 124789, doi: 10.1016/j.colsurfa.2020.124789.
  31. N.A. Medellin-Castillo, E. Padilla-Ortega, M.C. Regules-Martínez, R. Leyva-Ramos, R. Ocampo-Pérez,
    C. Carranza-Alvarez, Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste, Sustainable Environ. Res., 27 (2017) 61–69.
  32. M.A. Hossain, H.H. Ngo, W.S. Guo, L.D. Nghiem, F.I. Hai, S. Vigneswaran, T.V. Nguyen, Competitive adsorption of metals on cabbage waste from multi-metal solutions, Bioresour. Technol., 160 (2014) 79–88.
  33. R. Zhang, B. Liu, J. Ma, R. Zhu, Preparation and characterization of carboxymethyl cellulose/chitosan/alginic acid hydrogels with adjustable pore structure for adsorption of heavy metal ions, Eur. Polym. J., 179 (2022) 111577, doi: 10.1016/j.eurpolymj.2022.111577.
  34. S. Lin, C. Lian, M. Xu, W. Zhang, L. Liu, K. Lin, Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: removal of aqueous As(V), Cr(III) and As(III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents, Appl. Surf. Sci., 422 (2017) 675–681.
  35. H. Xu, H. Yuan, J. Yu, S. Lin, Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents, Appl. Surf. Sci., 473 (2019) 960–966.
  36. T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Simultaneous removal of Pb(II) and Cr(III) by magnetite nanoparticles using various synthesis conditions, J. Ind. Eng. Chem., 20 (2014) 3543–3549.
  37. A. Kulpa-Koterwa, J. Ryl, K. Górnicka, P. Niedziałkowski, New nanoadsorbent based on magnetic iron oxide containing 1,4,7,10-tetraazacyclododecane in outer chain (Fe3O4@SiO2-cyclen) for adsorption and removal of selected heavy metal ions Cd2+, Pb2+, Cu2+, J. Mol. Liq., 368 (2022) 120710, doi: 10.1016/j.molliq.2022.120710.
  38. M. Hassan, R. Naidu, J. Du, F. Qi, M.A. Ahsan, Y. Liu, Magnetic responsive mesoporous alginate/β-cyclodextrin polymer beads enhance selectivity and adsorption of heavy metal ions, Int. J. Biol. Macromol., 207 (2022) 826–840.
  39. L.R. Marcelo, J.S. de Gois, A.A. da Silva, D.V. Cesar, Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review, Environ. Chem. Lett., 19 (2021) 1229–1274.
  40. Z. Akchiche, A.B. Abba, S. Saggai, Magnetic nanoparticles for the removal of heavy metals from industrial wastewater: review, Algerian J. Chem. Eng., 1 (2021) 8–15.
  41. M. Bobik, I. Korus, K. Synoradzki, J. Wojnarowicz, D. Biniaś, W. Biniaś, Poly(sodium acrylate)-modified magnetite nanoparticles for separation of heavy metals from aqueous solutions, Materials (Basel), 15 (2022), doi: 10.3390/ma15196562.
  42. I. Korus, M. Bobik, K. Bąk, Influence of ionic environment on the process of adsorption of heavy metal ions on magnetic iron oxides, Desal. Water Treat., 186 (2020) 224–233.
  43. A.Z.M. Badruddoza, Z.B.Z. Shawon, W.J.D. Tay, K. Hidajat, M.S. Uddin, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater, Carbohydr. Polym., 91 (2013) 322–332.
  44. F.P. Fato, D.-W. Li, L.-J. Zhao, K. Qiu, Y.-T. Long, Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles, ACS Omega, 4 (2019) 7543–7549.
  45. M.T.H. Siddiqui, H.A. Baloch, S. Nizamuddin, N.M. Mubarak, S.A. Mazari, G.J. Griffin, M. Srinivasan, Dual-application of novel magnetic carbon nanocomposites as catalytic liquefaction for bio-oil synthesis and multi-heavy metal adsorption, Renewable Energy, 172 (2021) 1103–1119.
  46. H. Tomonaga, Y. Tanigaki, K. Hayashi, T. Matsuyama, J. Ida, Adsorption properties of poly(NIPAM-co-AA) immobilized on silica-coated magnetite nanoparticles prepared with different acrylic acid content for various heavy metal ions, Chem. Eng. Res. Des., 171 (2021) 213–224.
  47. R. Roma-Luciow, L. Sarraf, M. Morcellet, Complexes of poly(acrylic acid) with some divalent, trivalent and tetravalent metal ions, Eur. Polym. J., 37 (2001) 1741–1745.
  48. V.P. Kothavale, A. Sharma, R.P. Dhavale, V.D. Chavan, S.R. Shingte, O. Selyshchev, T.D. Dongale, H.H. Park,
    D.R.T. Zahn, G. Salvan, P.B. Patil, Carboxyl and thiolfunctionalized magnetic nanoadsorbents for efficient and simultaneous removal of Pb(II), Cd(II), and Ni(II) heavy metal ions from aqueous solutions: studies of adsorption, kinetics, and isotherms, J. Phys. Chem. Solids, 172 (2023) 111089, doi: 10.1016/j.jpcs.2022.111089.
  49. S. Guo, Z. Dan, N. Duan, G. Chen, W. Gao, W. Zhao, Zn(II), Pb(II), and Cd(II) adsorption from aqueous solution by magnetic silica gel: preparation, characterization, and adsorption, Environ. Sci. Pollut. Res., 25 (2018) 30938–30948.
  50. A.H. El-Sheikh, I.I. Fasfous, R.M. Al-Salamin, A.P. Newman, Immobilization of citric acid and magnetite on sawdust for competitive adsorption and extraction of metal ions from environmental waters, J. Environ. Chem. Eng., 6 (2018) 5186–5195.
  51. H. Wang, Z. Wang, R. Yue, F. Gao, R. Ren, J. Wei, X. Wang, Z. Kong, Functional group-rich hyperbranched magnetic material for simultaneous efficient removal of heavy metal ions from aqueous solution, J. Hazard. Mater., 384 (2020) 121288, doi: 10.1016/j.jhazmat.2019.121288.
  52. T. Castelo-Grande, P.A. Augusto, J. Rico, J. Marcos, R. Iglesias, L. Hernández, D. Barbosa, Magnetic water treatment in a wastewater treatment plant: Part I – sorption and magnetic particles, J. Environ. Manage., 281 (2021) 111872, doi: 10.1016/j. jenvman.2020.111872.
  53. L. Wei, G. Yang, R. Wang, W. Ma, Selective adsorption and separation of chromium(VI) on the magnetic iron–nickel oxide from waste nickel liquid, J. Hazard. Mater., 164 (2009) 1159–1163.
  54. H. Baseri, S. Tizro, Treatment of nickel ions from contaminated water by magnetite based nanocomposite adsorbents: effects of thermodynamic and kinetic parameters and modeling with Langmuir and Freundlich isotherms, Process Saf. Environ. Prot., 109 (2017) 465–477.
  55. R. Akhbarizadeh, M.R. Shayestefar, E. Darezereshki, Competitive removal of metals from wastewater by maghemite nanoparticles: a comparison between simulated wastewater and AMD, Mine Water Environ., 33 (2014) 89–96.
  56. J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res., 39 (2005) 4528–4536.
  57. A.K. Zhakina, O.V. Arnt, Y.P. Vassilets, V.Y. Shur, A.S. Volegov, Magnetoactive compound based on humic acid and magnetite as a sorbent for heavy metals, Russ. J. Appl. Chem., 93 (2020) 1366–1371.