References
- H. Ali, E. Khan, I. Ilahi, Environmental chemistry and
ecotoxicology of hazardous heavy metals: environmental
persistence, toxicity, and bioaccumulation, J. Chem., 2019 (2019)
6730305, doi: 10.1155/2019/6730305.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, Mu.
Naushad, Efficient techniques for the removal of toxic heavy
metals from aquatic environment: a review, J. Environ. Chem.
Eng., 5 (2017) 2782–2799.
- Y. Zhu, W. Fan, T. Zhou, X. Li, Removal of chelated heavy
metals from aqueous solution: a review of current methods
and mechanisms, Sci. Total Environ., 678 (2019) 253–266.
- R.S. Alfarra, N.E. Ali, M.M. Yusoff, Removal of heavy metals by
natural adsorbent: review, Int. J. Biosci., 4 (2014) 130–139.
- R. Shrestha, S. Ban, S. Devkota, S. Sharma, R. Joshi, A.P. Tiwari,
H.Y. Kim, M.K. Joshi, Technological trends in heavy metals
removal from industrial wastewater: a review, J. Environ.
Chem. Eng., 9 (2021) 105688, doi: 10.1016/j.jece.2021.105688.
- S. Bolisetty, M. Peydayesh, R. Mezzenga, Sustainable
technologies for water purification from heavy metals: review
and analysis, Chem. Soc. Rev., 48 (2019) 463–487.
- N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent
trends of heavy metal removal from water/wastewater by
membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17–38.
- M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals
removal using activated carbon, silica and silica activated
carbon composite, Energy Procedia, 50 (2014) 113–120.
- A.S. Thajeel, Isotherm, kinetic and thermodynamic of
adsorption of heavy metal ions onto local activated carbon,
Aquat. Sci. Technol., 1 (2013) 53–77.
- I.A. Aguayo-Villarreal, A. Bonilla-Petriciolet, R. Muñiz-Valencia,
Preparation of activated carbons from pecan nutshell and their
application in the antagonistic adsorption of heavy metal ions,
J. Mol. Liq., 230 (2017) 686–695.
- V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for
removal of heavy metals from water: a review, J. Environ.
Manage., 232 (2019) 803–817.
- A. Jawed, V. Saxena, L.M. Pandey, Engineered nanomaterials
and their surface functionalization for the removal of heavy
metals: a review, J. Water Process Eng., 33 (2020) 101009,
doi: 10.1016/j.jwpe.2019.101009.
- P. Kumari, M. Alam, W.A. Siddiqi, Usage of nanoparticles as
adsorbents for wastewater treatment: an emerging trend,
Sustainable Mater. Technol., 22 (2019) e00128, doi: 10.1016/j.susmat.2019.e00128.
- M.K. Uddin, A review on the adsorption of heavy metals
by clay minerals, with special focus on the past decade,
Chem. Eng. J., 308 (2017) 438–462.
- W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption
of dyes and heavy metal ions by chitosan composites: a review,
Carbohydr. Polym., 83 (2011) 1446–1456.
- R. Janani, B. Gurunathan, K. Sivakumar, S. Varjani, H.H. Ngo,
E. Gnansounou, Advancements in heavy metals removal from
effluents employing nano-adsorbents: way towards cleaner
production, Environ. Res., 203 (2022) 111815, doi: 10.1016/j.envres.2021.111815.
- S.N.A. Abas, M.H.S. Ismail, L.M. Kamal, S. Izhar, Adsorption
process of heavy metals by low-cost adsorbent: a review,
World Appl. Sci. J., 28 (2013) 1518–1530.
- M. Ahmaruzzaman, Industrial wastes as low-cost potential
adsorbents for the treatment of wastewater laden with heavy
metals, Adv. Colloid Interface Sci., 166 (2011) 36–59.
- L. Giraldo, A. Erto, J.C. Moreno-Piraján, Magnetite nanoparticles
for removal of heavy metals from aqueous solutions:
synthesis and characterization, Adsorption, 19 (2013) 465–474.
- A. Aftabtalab, H. Sadabadi, Application of magnetite (Fe3O4)
nanoparticles in hexavalent chromium adsorption from
aquatic solutions, J. Pet. Environ. Biotechnol., 6 (2015) 1–3.
- S.A. Abd El Aal, A.M. Abdelhady, N.A. Mansour, N.M. Hassan,
F. Elbaz, E.K. Elmaghraby, Physical and chemical characteristics
of hematite nanoparticles prepared using microwave-assisted
synthesis and its application as adsorbent for Cu, Ni, Co,
Cd and Pb from aqueous solution, Mater. Chem. Phys.,
235 (2019) 121771, doi: 10.1016/j.matchemphys.2019.121771.
- A. Roy, J. Bhattacharya, Removal of Cu(II), Zn(II) and Pb(II)
from water using microwave-assisted synthesized maghemite
nanotubes, Chem. Eng. J., 211–212 (2012) 493–500.
- H. Karami, Heavy metal removal from water by magnetite
nanorods, Chem. Eng. J., 219 (2013) 209–216.
- N.H. Abdullah, K. Shameli, E.C. Abdullah, L.C. Abdullah,
Solid matrices for fabrication of magnetic iron oxide nanocomposites:
synthesis, properties, and application for the
adsorption of heavy metal ions and dyes, Composites, Part B,
162 (2019) 538–568.
- M. Manyangadze, N.H.M. Chikuruwo, T.B. Narsaiah,
C.S. Chakra, M. Radhakumari, G. Danha, Enhancing adsorption
capacity of nano-adsorbents via surface modification: a review,
S. Afr. J. Chem. Eng., 31 (2020) 25–32.
- F. Cao, C. Lian, J. Yu, H. Yang, S. Lin, Study on the adsorption
performance and competitive mechanism for heavy metal
contaminants removal using novel multi-pore activated
carbons derived from recyclable long-root Eichhornia crassipes,
Bioresour. Technol., 276 (2019) 211–218.
- X. Ma, S.-T. Yang, H. Tang, Y. Liu, H. Wang, Competitive
adsorption of heavy metal ions on carbon nanotubes and the
desorption in simulated biofluids, J. Colloid Interface Sci.,
448 (2015) 347–355.
- I. Ghorbel-Abid, M. Trabelsi-Ayadi, Competitive adsorption of
heavy metals on local landfill clay, Arabian J. Chem., 8 (2015)
25–31.
- A. Chaturbedi, S. Patil, R. Ramachandran, N.C. Shapley,
Adsorption of positively and negatively charged heavy metal
ions from wastewater by heteroaggregates of biopolymer
particles, Colloids Surf., A, 602 (2020) 124789, doi: 10.1016/j.colsurfa.2020.124789.
- N.A. Medellin-Castillo, E. Padilla-Ortega, M.C. Regules-Martínez, R. Leyva-Ramos, R. Ocampo-Pérez,
C. Carranza-Alvarez, Single and competitive adsorption of Cd(II) and
Pb(II) ions from aqueous solutions onto industrial chili seeds
(Capsicum annuum) waste, Sustainable Environ. Res., 27 (2017)
61–69.
- M.A. Hossain, H.H. Ngo, W.S. Guo, L.D. Nghiem, F.I. Hai,
S. Vigneswaran, T.V. Nguyen, Competitive adsorption
of metals on cabbage waste from multi-metal solutions,
Bioresour. Technol., 160 (2014) 79–88.
- R. Zhang, B. Liu, J. Ma, R. Zhu, Preparation and characterization
of carboxymethyl cellulose/chitosan/alginic acid hydrogels
with adjustable pore structure for adsorption of heavy
metal ions, Eur. Polym. J., 179 (2022) 111577, doi: 10.1016/j.eurpolymj.2022.111577.
- S. Lin, C. Lian, M. Xu, W. Zhang, L. Liu, K. Lin, Study on
competitive adsorption mechanism among oxyacid-type
heavy metals in co-existing system: removal of aqueous As(V),
Cr(III) and As(III) using magnetic iron oxide nanoparticles
(MIONPs) as adsorbents, Appl. Surf. Sci., 422 (2017) 675–681.
- H. Xu, H. Yuan, J. Yu, S. Lin, Study on the competitive
adsorption and correlational mechanism for heavy metal ions
using the carboxylated magnetic iron oxide nanoparticles
(MNPs-COOH) as efficient adsorbents, Appl. Surf. Sci.,
473 (2019) 960–966.
- T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Simultaneous
removal of Pb(II) and Cr(III) by magnetite nanoparticles using
various synthesis conditions, J. Ind. Eng. Chem., 20 (2014)
3543–3549.
- A. Kulpa-Koterwa, J. Ryl, K. Górnicka, P. Niedziałkowski,
New nanoadsorbent based on magnetic iron oxide containing
1,4,7,10-tetraazacyclododecane in outer chain (Fe3O4@SiO2-cyclen) for adsorption and removal of selected heavy metal ions
Cd2+, Pb2+, Cu2+, J. Mol. Liq., 368 (2022) 120710, doi: 10.1016/j.molliq.2022.120710.
- M. Hassan, R. Naidu, J. Du, F. Qi, M.A. Ahsan, Y. Liu, Magnetic
responsive mesoporous alginate/β-cyclodextrin polymer
beads enhance selectivity and adsorption of heavy metal ions,
Int. J. Biol. Macromol., 207 (2022) 826–840.
- L.R. Marcelo, J.S. de Gois, A.A. da Silva, D.V. Cesar, Synthesis
of iron-based magnetic nanocomposites and applications in
adsorption processes for water treatment: a review, Environ.
Chem. Lett., 19 (2021) 1229–1274.
- Z. Akchiche, A.B. Abba, S. Saggai, Magnetic nanoparticles
for the removal of heavy metals from industrial wastewater:
review, Algerian J. Chem. Eng., 1 (2021) 8–15.
- M. Bobik, I. Korus, K. Synoradzki, J. Wojnarowicz, D. Biniaś,
W. Biniaś, Poly(sodium acrylate)-modified magnetite
nanoparticles for separation of heavy metals from aqueous
solutions, Materials (Basel), 15 (2022), doi: 10.3390/ma15196562.
- I. Korus, M. Bobik, K. Bąk, Influence of ionic environment on
the process of adsorption of heavy metal ions on magnetic
iron oxides, Desal. Water Treat., 186 (2020) 224–233.
- A.Z.M. Badruddoza, Z.B.Z. Shawon, W.J.D. Tay, K. Hidajat,
M.S. Uddin, Fe3O4/cyclodextrin polymer nanocomposites for
selective heavy metals removal from industrial wastewater,
Carbohydr. Polym., 91 (2013) 322–332.
- F.P. Fato, D.-W. Li, L.-J. Zhao, K. Qiu, Y.-T. Long, Simultaneous
removal of multiple heavy metal ions from river water using
ultrafine mesoporous magnetite nanoparticles, ACS Omega,
4 (2019) 7543–7549.
- M.T.H. Siddiqui, H.A. Baloch, S. Nizamuddin, N.M. Mubarak,
S.A. Mazari, G.J. Griffin, M. Srinivasan, Dual-application of
novel magnetic carbon nanocomposites as catalytic liquefaction
for bio-oil synthesis and multi-heavy metal adsorption,
Renewable Energy, 172 (2021) 1103–1119.
- H. Tomonaga, Y. Tanigaki, K. Hayashi, T. Matsuyama, J. Ida,
Adsorption properties of poly(NIPAM-co-AA) immobilized on
silica-coated magnetite nanoparticles prepared with different
acrylic acid content for various heavy metal ions, Chem. Eng.
Res. Des., 171 (2021) 213–224.
- R. Roma-Luciow, L. Sarraf, M. Morcellet, Complexes of
poly(acrylic acid) with some divalent, trivalent and tetravalent
metal ions, Eur. Polym. J., 37 (2001) 1741–1745.
- V.P. Kothavale, A. Sharma, R.P. Dhavale, V.D. Chavan,
S.R. Shingte, O. Selyshchev, T.D. Dongale, H.H. Park,
D.R.T. Zahn, G. Salvan, P.B. Patil, Carboxyl and thiolfunctionalized
magnetic nanoadsorbents for efficient and
simultaneous removal of Pb(II), Cd(II), and Ni(II) heavy metal
ions from aqueous solutions: studies of adsorption, kinetics,
and isotherms, J. Phys. Chem. Solids, 172 (2023) 111089,
doi: 10.1016/j.jpcs.2022.111089.
- S. Guo, Z. Dan, N. Duan, G. Chen, W. Gao, W. Zhao, Zn(II),
Pb(II), and Cd(II) adsorption from aqueous solution by magnetic
silica gel: preparation, characterization, and adsorption,
Environ. Sci. Pollut. Res., 25 (2018) 30938–30948.
- A.H. El-Sheikh, I.I. Fasfous, R.M. Al-Salamin, A.P. Newman,
Immobilization of citric acid and magnetite on sawdust for
competitive adsorption and extraction of metal ions from
environmental waters, J. Environ. Chem. Eng., 6 (2018)
5186–5195.
- H. Wang, Z. Wang, R. Yue, F. Gao, R. Ren, J. Wei, X. Wang,
Z. Kong, Functional group-rich hyperbranched magnetic
material for simultaneous efficient removal of heavy metal ions
from aqueous solution, J. Hazard. Mater., 384 (2020) 121288,
doi: 10.1016/j.jhazmat.2019.121288.
- T. Castelo-Grande, P.A. Augusto, J. Rico, J. Marcos, R. Iglesias,
L. Hernández, D. Barbosa, Magnetic water treatment in a
wastewater treatment plant: Part I – sorption and magnetic
particles, J. Environ. Manage., 281 (2021) 111872, doi: 10.1016/j.
jenvman.2020.111872.
- L. Wei, G. Yang, R. Wang, W. Ma, Selective adsorption and
separation of chromium(VI) on the magnetic iron–nickel
oxide from waste nickel liquid, J. Hazard. Mater., 164 (2009)
1159–1163.
- H. Baseri, S. Tizro, Treatment of nickel ions from contaminated
water by magnetite based nanocomposite adsorbents: effects
of thermodynamic and kinetic parameters and modeling with
Langmuir and Freundlich isotherms, Process Saf. Environ.
Prot., 109 (2017) 465–477.
- R. Akhbarizadeh, M.R. Shayestefar, E. Darezereshki, Competitive
removal of metals from wastewater by maghemite
nanoparticles: a comparison between simulated wastewater
and AMD, Mine Water Environ., 33 (2014) 89–96.
- J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI) from
wastewater by maghemite nanoparticles, Water Res., 39 (2005)
4528–4536.
- A.K. Zhakina, O.V. Arnt, Y.P. Vassilets, V.Y. Shur, A.S. Volegov,
Magnetoactive compound based on humic acid and magnetite
as a sorbent for heavy metals, Russ. J. Appl. Chem., 93 (2020)
1366–1371.