References

  1. O.S. Djandja, A.A. Salami, Z.-C. Wang, J. Duo, L.-X. Yin, P.-G. Duan, Random forest-based modeling for insights on phosphorus content in hydrochar produced from hydrothermal carbonization of sewage sludge, Energy, 245 (2022) 123295, doi: 10.1016/j.energy.2022.123295.
  2. Y. Zhong, G. Liu, X. Yang, Isolating elemental phosphorus from sewage sludge ash by electrochemistry, Resour. Conserv. Recycl., 190 (2023) 106815, doi: 10.1016/j.resconrec.2022.106815.
  3. Y. Ren, W. Zheng, X. Duan, N. Goswami, Y. Liu, Recent advances in electrochemical removal and recovery of phosphorus from water: a review, Adv. Funct. Mater., 1 (2022) 10–20.
  4. X. Chen, Y. Wang, Z. Bai, L. Ma, M. Strokal, C. Kroeze, X. Chen, F. Zhang, X. Shi, Mitigating phosphorus pollution from detergents in the surface waters of China, Sci. Total Environ., 804 (2022) 150125, doi: 10.1016/j.scitotenv.2021.150125.
  5. W. Feng, T. Wang, Y. Zhu, F. Sun, J.P. Giesy, F. Wu, Chemical composition, sources, and ecological effect of organic phosphorus in water ecosystems: a review, Carbon Res., 2 (2023) 12,
    doi: 10.1007/s44246-023-00038-4.
  6. Y. Jia, S. Sun, S. Wang, X. Yan, J. Qian, B. Pan, Phosphorus in water: a review on the speciation analysis and species specific removal strategies, Crit. Rev. Env. Sci. Technol., 53 (2023) 435–456.
  7. W. Chu, Y. Shi, L. Zhang, Recovery of phosphorus in wastewater in the form of polyphosphates: a review, Processes, 10 (2022) 144, doi: 10.3390/pr10010144.
  8. S. Dai, Q. Wen, F. Huang, Y. Bao, X. Xi, Z. Liao, J. Shi, C. Ou, J. Qin, Preparation and application of MgO-loaded tobermorite to simultaneously remove nitrogen and phosphorus from wastewater, Chem. Eng. J., 446 (2022) 136809, doi: 10.1016/j.cej.2022.136809.
  9. Q. Zhou, H. Sun, L. Jia, W. Wu, J. Wang, Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: a review, Chemosphere, 296 (2022) 134054, doi: 10.1016/j. chemosphere.2022.134054.
  10. C. Zhang, A. Guisasola, J.A. Baeza, A review on the integration of mainstream P-recovery strategies with enhanced biological phosphorus removal, Water Res., 212 (2022) 118102, doi: 10.1016/j.watres.2022.118102.
  11. Z. Fan, W. Zeng, Q. Meng, H. Liu, C. Ma, Y. Peng, Achieving partial nitrification, enhanced biological phosphorus removal and in-situ fermentation (PNPRF) in continuous-flow system and mechanism analysis at transcriptional level, Chem. Eng. J., 428 (2022) 131098, doi: 10.1016/j.cej.2021.131098.
  12. D. Hu, C. Zhang, Y. Zhang, Comparison of different pretreatment methods on phosphorus release and recovery as struvite from excess sludge, Environ. Technol., 44 (2023) 161–169.
  13. A. Grobelak, L. Spinosa, Chapter 12 – Sustainable/Integrated/ Sewage Sludge Management, M.N.V. Prasad, M. Smol, Eds., Sustainable and Circular Management of Resources and Waste Towards a Green Deal, Elsevier, 2023, pp. 163–181, doi: 10.1016/B978-0-323-95278-1.00016-4.
  14. A. Mavhungu, V. Masindi, S. Foteinis, R. Mbaya, M. Tekere, I. Kortidis, E. Chatzisymeon, Advocating circular economy in wastewater treatment: struvite formation and drinking water reclamation from real municipal effluents, J. Environ. Chem. Eng., 8 (2020) 103957, doi: 10.1016/j.jece.2020.103957.
  15. N. Park, H. Chang, Y. Jang, H. Lim, J. Jung, W. Kim, Prediction of adequate pH and Mg2+ dosage using an empirical MgO solubility model for struvite crystallization, Environ. Technol. Innovation, 21 (2021) 101347, doi: 10.1016/j.eti.2020.101347.
  16. T. Jóźwiak, A. Kowalkowska, U. Filipkowska, J. Struk- Sokołowska, L. Bolozan, L. Gache, M. Ilie, M. Recovery of phosphorus as soluble phosphates from aqueous solutions using chitosan hydrogel sorbents, Sci. Rep., 11 (2021) 16766, doi: 10.1038/s41598-021-96416-2.
  17. E. Wiśniowska, Possibilities of Potassium Recovery From Wastewater, 2nd International Conference Strategies toward Green Deal Implementation – Water, Raw Materials & Energy, Copyright by Mineral and Energy Economy Research Institute PAS – Publishing House, Cracow, Printed in Poland, 8–10 December 2021, 2022, pp. 144–154.
  18. F. Cecchi, C. Cavinato, Smart approaches to food waste final disposal, Int. J. Environ. Res. Public Health, 16 (2019) 2860, doi: 10.3390/ijerph16162860.
  19. T. Park, V. Ampunan, S. Lee, E. Chung, Chemical behavior of different species of phosphorus in coagulation, Chemosphere, 144 (2016) 2264–2269.
  20. J. Ge, X. Meng, Y. Song, A. Terracciano, Effect of phosphate releasing in activated sludge on phosphorus removal from municipal wastewater, J. Environ. Sci., 67 (2018) 216–223.
  21. L.D. Manamperuma, H.C. Ratnaweera, A. Martsul, Mechanisms during suspended solids and phosphate concentration variations in wastewater coagulation process, Environ. Technol., 37 (2016) 2405–2413.
  22. M. Preisner, M. Smol, Investigating phosphorus loads removed by chemical and biological methods in municipal wastewater treatment plants in Poland, J. Environ. Manage., 322 (2022) 116058, doi: 10.1016/j.jenvman.2022.116058.
  23. Sperczyńska E. Usuwanie fosforanów z pofermentacyjnych cieczy nadosadowych (Removal of phosphates from fermentation supernatants), Ecol. Eng., 48 (2016) 196–201.
  24. B. Bień, The influence of condition on the quality of reject water after sewage sludge mechanical dewatering, Proc. ECOpole, 11 (2017) 471–478.
  25. B. Bień, J.D. Bień, Analysis of reject water formed in the mechanical dewatering process of digested sludge conditioned by physical and chemical methods, Energies, 15 (2022) 1678, doi: 10.3390/en15051678.