References
- O.S. Djandja, A.A. Salami, Z.-C. Wang, J. Duo, L.-X. Yin,
P.-G. Duan, Random forest-based modeling for insights on
phosphorus content in hydrochar produced from hydrothermal
carbonization of sewage sludge, Energy, 245 (2022) 123295,
doi: 10.1016/j.energy.2022.123295.
- Y. Zhong, G. Liu, X. Yang, Isolating elemental phosphorus
from sewage sludge ash by electrochemistry, Resour. Conserv.
Recycl., 190 (2023) 106815, doi: 10.1016/j.resconrec.2022.106815.
- Y. Ren, W. Zheng, X. Duan, N. Goswami, Y. Liu, Recent advances
in electrochemical removal and recovery of phosphorus from
water: a review, Adv. Funct. Mater., 1 (2022) 10–20.
- X. Chen, Y. Wang, Z. Bai, L. Ma, M. Strokal, C. Kroeze, X. Chen,
F. Zhang, X. Shi, Mitigating phosphorus pollution from
detergents in the surface waters of China, Sci. Total Environ.,
804 (2022) 150125, doi: 10.1016/j.scitotenv.2021.150125.
- W. Feng, T. Wang, Y. Zhu, F. Sun, J.P. Giesy, F. Wu, Chemical
composition, sources, and ecological effect of organic
phosphorus in water ecosystems: a review, Carbon Res.,
2 (2023) 12,
doi: 10.1007/s44246-023-00038-4.
- Y. Jia, S. Sun, S. Wang, X. Yan, J. Qian, B. Pan, Phosphorus in
water: a review on the speciation analysis and species specific
removal strategies, Crit. Rev. Env. Sci. Technol., 53 (2023)
435–456.
- W. Chu, Y. Shi, L. Zhang, Recovery of phosphorus in wastewater
in the form of polyphosphates: a review, Processes, 10 (2022)
144, doi: 10.3390/pr10010144.
- S. Dai, Q. Wen, F. Huang, Y. Bao, X. Xi, Z. Liao, J. Shi, C. Ou,
J. Qin, Preparation and application of MgO-loaded tobermorite
to simultaneously remove nitrogen and phosphorus from
wastewater, Chem. Eng. J., 446 (2022) 136809, doi: 10.1016/j.cej.2022.136809.
- Q. Zhou, H. Sun, L. Jia, W. Wu, J. Wang, Simultaneous biological
removal of nitrogen and phosphorus from secondary effluent
of wastewater treatment plants by advanced treatment:
a review, Chemosphere, 296 (2022) 134054, doi: 10.1016/j.
chemosphere.2022.134054.
- C. Zhang, A. Guisasola, J.A. Baeza, A review on the integration
of mainstream P-recovery strategies with enhanced biological
phosphorus removal, Water Res., 212 (2022) 118102,
doi: 10.1016/j.watres.2022.118102.
- Z. Fan, W. Zeng, Q. Meng, H. Liu, C. Ma, Y. Peng, Achieving
partial nitrification, enhanced biological phosphorus removal
and in-situ fermentation (PNPRF) in continuous-flow system
and mechanism analysis at transcriptional level, Chem. Eng. J.,
428 (2022) 131098, doi: 10.1016/j.cej.2021.131098.
- D. Hu, C. Zhang, Y. Zhang, Comparison of different pretreatment
methods on phosphorus release and recovery as struvite
from excess sludge, Environ. Technol., 44 (2023) 161–169.
- A. Grobelak, L. Spinosa, Chapter 12 – Sustainable/Integrated/
Sewage Sludge Management, M.N.V. Prasad, M. Smol, Eds.,
Sustainable and Circular Management of Resources and Waste
Towards a Green Deal, Elsevier, 2023, pp. 163–181, doi: 10.1016/B978-0-323-95278-1.00016-4.
- A. Mavhungu, V. Masindi, S. Foteinis, R. Mbaya, M. Tekere,
I. Kortidis, E. Chatzisymeon, Advocating circular economy in
wastewater treatment: struvite formation and drinking water
reclamation from real municipal effluents, J. Environ. Chem.
Eng., 8 (2020) 103957, doi: 10.1016/j.jece.2020.103957.
- N. Park, H. Chang, Y. Jang, H. Lim, J. Jung, W. Kim, Prediction
of adequate pH and Mg2+ dosage using an empirical MgO
solubility model for struvite crystallization, Environ. Technol.
Innovation, 21 (2021) 101347, doi: 10.1016/j.eti.2020.101347.
- T. Jóźwiak, A. Kowalkowska, U. Filipkowska, J. Struk-
Sokołowska, L. Bolozan, L. Gache, M. Ilie, M. Recovery of
phosphorus as soluble phosphates from aqueous solutions
using chitosan hydrogel sorbents, Sci. Rep., 11 (2021) 16766,
doi: 10.1038/s41598-021-96416-2.
- E. Wiśniowska, Possibilities of Potassium Recovery From
Wastewater, 2nd International Conference Strategies toward
Green Deal Implementation – Water, Raw Materials &
Energy, Copyright by Mineral and Energy Economy Research
Institute PAS – Publishing House, Cracow, Printed in
Poland, 8–10 December 2021, 2022, pp. 144–154.
- F. Cecchi, C. Cavinato, Smart approaches to food waste final
disposal, Int. J. Environ. Res. Public Health, 16 (2019) 2860,
doi: 10.3390/ijerph16162860.
- T. Park, V. Ampunan, S. Lee, E. Chung, Chemical behavior of
different species of phosphorus in coagulation, Chemosphere,
144 (2016) 2264–2269.
- J. Ge, X. Meng, Y. Song, A. Terracciano, Effect of phosphate
releasing in activated sludge on phosphorus removal from
municipal wastewater, J. Environ. Sci., 67 (2018) 216–223.
- L.D. Manamperuma, H.C. Ratnaweera, A. Martsul, Mechanisms
during suspended solids and phosphate concentration
variations in wastewater coagulation process, Environ. Technol.,
37 (2016) 2405–2413.
- M. Preisner, M. Smol, Investigating phosphorus loads removed
by chemical and biological methods in municipal wastewater
treatment plants in Poland, J. Environ. Manage., 322 (2022)
116058, doi: 10.1016/j.jenvman.2022.116058.
- Sperczyńska E. Usuwanie fosforanów z pofermentacyjnych
cieczy nadosadowych (Removal of phosphates from
fermentation supernatants), Ecol. Eng., 48 (2016) 196–201.
- B. Bień, The influence of condition on the quality of reject water
after sewage sludge mechanical dewatering, Proc. ECOpole,
11 (2017) 471–478.
- B. Bień, J.D. Bień, Analysis of reject water formed in the
mechanical dewatering process of digested sludge conditioned
by physical and chemical methods, Energies, 15 (2022) 1678,
doi: 10.3390/en15051678.