References

  1. Y.S. Ok, D.C.W. Tsang, N. Bolan, J.M. Novak, Eds., Biochar from Biomass and Waste, Fundamentals and Applications, Elsevier Inc., 2019. doi: 10.1016/ C2016-0-01974-5
  2. J. Gładki, Biochar as a Chance for Sustainable Development, Printing House Apla Sp.J., Sędziszów, 2017 (in Polish).
  3. K. Malińska, Biochar as an answer to current problems environmental protection, Eng. Environ. Prot., 4 (2012) 387–403 (in Polish).
  4. T. Bandara, J.B.A.J. Chathurika, A. Franks, J. Xu, C. Tang, Interactive effects of biochar type and pH on the bioavailability of As and Cd and microbial activities in co-contaminated soils, Environ. Technol. Innovation, 23 (2021) 101767, doi: 10.1016/j.eti.2021.101767.
  5. J. Luo, L. Lin, C. Liu, C. Jia, T. Chen, Y. Yang, M. Shen, H. Shang, S. Zhou, M. Huang, Y. Wang, D. Zhou, J. Fan, J.H. Clark, S. Zhang, X. Zhu, Reveal a hidden highly toxic substance in biochar to support its effective elimination strategy, J. Hazard. Mater., 399 (2020) 123055, doi: 10.1016/j.jhazmat.2020.123055.
  6. Y.Y. Wang, X.R. Jing, L.L. Li, W.J. Liu, Z.H. Tong, H. Jiang, Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms, ACS Sustainable Chem. Eng., 5 (2017) 481–488.
  7. L. Wang, D. O’Connor, J. Rinklebe, Y.S. Ok, D.C.W. Tsang, Z. Shen, D. Hou, Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications, Environ. Sci. Technol., 54 (2020) 14797–14814.
  8. A. He, Z. Zhang, Q. Yu, K. Yang, G.D. Sheng, Lindane degradation in wet-dry cycling soil as affected by aging and microbial toxicity of biochar, Ecotoxicol. Environ. Saf., 219 (2021) 112374, doi: 10.1016/j.ecoenv.2021.112374.
  9. Act of 10 July 2007 on Fertilizers and Fertilization, Dz. U. Nr 147, poz. 1033 (in Polish).
  10. Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the Implementation of Certain Provisions of the Act on Fertilizers and Fertilization, Dz.U. z 2008 r. nr 119, 765 (in Polish).
  11. M. Prodana, A.C. Bastos, A. Amaro, D. Cardoso, R. Morgado, A.L. Machado, F.G.A. Verheijen, J.J. Keizer, S. Loureiro, Biomonitoring tools for biochar and biochar-compost amended soil underviticulture: looking at exposure and effects, 137 (2019) 120–128.
  12. M.K. Hossain, V. Strezov, K.Y. Chan, A. Ziolkowski, P.F. Nelson, Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar, J. Environ. Manage., 92 (2011) 223–228.
  13. P. Ochal, Innovations on the Calcium Fertilizer Market in Poland, Studies and Report, IUNG-PIB, Vol. 48, 2016, pp. 35–47, doi: 10.26114/sir.iung.2016.48.03 (in Polish).
  14. A. Kicińska, J. Wikar, Ecological risk associated with agricultural production in soils contaminated by the activities of the metal ore mining and processing industry – example from southern Poland, Soil Tillage Res., 205 (2020) 104817, doi: 10.1016/j.still.2020.104817.
  15. A. Ostrowska, S. Gawlinski, Z. Szczubiałka, Methods of Analysis and Evaluation of Soil and Plant Properties, Catalog of the Institute of Environmental Protection, Warszawa, Poland, 1991 (in Polish).
  16. Regulation of the Minister of the Environment of 1 September 2016 On the Method of Conducting the Assessment of Pollution of the Earth Surface. Available at http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf, (in Polish).
  17. Polycyclic Aromatic Hydrocarbons (PAHs) Standards EPA. Available at: https://ec.europa.eu/jrc/sites/default/files/ Factsheet%20PAH_0.pdf (Downloaded 21. 07. 2022).
  18. K. Malińska, K. Mełgieś, Current quality and legal requirements for biochar as a fertilizer and soil improver, Works ICiMB, 26 (2016) 82–95.
  19. https://biochar-international.org/
  20. H. Borkowska, B. Styk, Virginia Mallow (Sida hermaphrodita Rusby) Cultivation and Use, Virginia Mallow (Sida hermaphrodita Rusby) Cultivation and Use, Publishing House of the Agricultural University in Lublin, Lublin, 2006, (in Polish).
  21. M. Bury, S. Rusinowski, K. Sitko, J. Krzyżak, T. Kitczak, E. Możdżer, H. Siwek, M. Włodarczyk, P. Zieleźnik-Rusinowska, A. Szada-Borzyszkowska, M. Pogrzeba, Physiological status and biomass yield of Sida hermaphrodita (L.) Rusby cultivated on two distinct marginal lands in Southern and Northern Poland, Ind. Crops Prod., 167 (2021) 113502, doi: 10.1016/j.indcrop.2021.113502.
  22. M. Zieliński, P. Rusanowska, M. Zielińska, M. Dudek, A. Nowicka, C. Purwin, M. Fijałkowska, M. Dębowski, Influence of preparation of Sida hermaphrodita silages on its conversion to methane, Renewable Energy, 163 (2021) 437–444.
  23. S. Szwaja, A. Poskart, M. Zajemska, A new approach for evaluating biochar quality from Virginia Mallow biomass thermal processing, J. Cleaner Prod., 214 (2019) 356–364.
  24. E. Stańczyk-Mazanek, Evaluation of the effect of toxicity of biochar used for soil fertilization and its water extract on plants, Desal. Water Treat., 199 (2020) 128–136.
  25. A. Kabata-Pendias, M. Piotrowska, T. Motowicka-Terelak, Fundamentals of Evaluation of Chemical Soil Contamination (Heavy Metals, Sulphur and PAH), National Inspectorate for Environmental Protection IUNG, Puławy, Poland, 1995 (in Polish).
  26. A. Nigussie, E. Kissi, M. Misganaw, G. Ambaw, Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils, Am.-Eurasian J. Agric. Environ. Sci., 12 (2012) 369–376.
  27. M. Prodana, A.C. Bastos, A. Amaro, D. Cardoso, R. Morgado, A.L. Machado, F.G.A. Verheijen, J.J. Keizer, S. Loureiro, Biomonitoring tools for biochar and biochar-compost amended soil underviticulture: looking at exposure and effects, 137 (2019) 120–128.
  28. A. El-Naggar, S.S. Lee, J. Rinklebe, M. Farooq, H. Song, A.K. Sarmah, A.R. Zimmerman, M. Ahmad, S.M. Shaheen, Y.S. Ok, Biochar application to low fertility soils: a review of current status, and future prospects, Geoderma, 337 (2019) 536–554.
  29. D. Cao, Y. Lan, W. Chen, X. Yang, D. Wang, S. Ge, J. Yang, Q. Wang, Successive applications of fertilizers blended with biochar in the soil improve the availability of phosphorus and productivity of maize (Zea mays L.), Eur. J. Agron., 130 (2021) 126344, doi: 10.1016/j.eja.2021.126344.
  30. P. Soudek, I.M. Rodriguez, V.S. Petrova, J. Song, T. Vanek, Characteristics of different types of biochar and effects on the toxicity of heavy metals to germinating sorghum seeds, J. Geochem. Explor., 182 (2017) 157–165.
  31. J. Mumme, J. Getz, M. Prasad, U. Lüder, J. Kern, O. Masek, W. Buss, Toxicity screening of biochar-mineral composites using germination tests, Chemosphere, 207 (2018) 91–100.
  32. L. Bouqbis, S. Daoud, H.W. Koyro, C.I. Kammann, F.Z. Ainlhout, M.Ch. Harrouni, Phytotoxic effects of argan shell biochar on salad and barley germination, Agric. Nat. Resour., 51 (2017) 247–252.
  33. T. Bandara, J.B.A.J. Chathurika, A. Franks, J. Xu, C. Tang, Interactive effects of biochar type and pH on the bioavailability of As and Cd and microbial activities in co-contaminated soils, Environ. Technol. Innovation, 23 (2021) 101767, doi: 10.1016/j.eti.2021.101767.
  34. PN-EN 14961:2010, Solid Biofuels – Fuel Specifications and Classes (in Polish).
  35. C. Kabała, A. Karczewska, M. Kozak, Usefulness of energy plants for reclamation and development of degraded soils, Sci. J. Univ. Life Sci. Wrocław, 576, Agriculture, 96 (2010) 97–117 (in Polish).
  36. E. Stańczyk-Mazanek, S. Szwaja, M. Włodarczyk-Makuła, U. Kępa, The effect of biochar on migration of selected heavy metals to soil, waters and plant biomass and physical and chemical properties of soil, Desal. Water Treat., 199 (2020) 144–151.