References
- X. Xu, H. Yang, C. Li, Theoretical model and actual characteristics
of air pollution affecting health cost: a review, Int.
J. Environ. Res. Public Health, 19 (2022) 3532, doi: 10.3390/ijerph19063532.
- European Environment Agency, Report: The European
Environment — State and Outlook 2020: Knowledge for
Transition to a Sustainable Europe, 2019. Available at https://www.eea.europa.eu/soer/2020 (Access date 4.10.2022).
- K. Zhang, R. Ruan, Z. Zhang, S. Zhi, An exhaustive
investigation on antibiotics contamination from livestock
farms within sensitive reservoir water area: spatial density,
source apportionment and risk assessment, Sci. Total Environ.,
847 (2022) 157688, doi: 10.1016/j.scitotenv.2022.157688.
- N. Kornak, J. Kostecka, Elements of the social perception of
the economy of expired drugs, Pol. J. Sustain. Dev., 23 (2019)
37–46 (in Polish).
- D. Ginter-Kramarczyk, I. Kruszelnicka, Color problem in
water (dye contamination), Wodociągi - Kanalizacja, 12 (2020)
24–27 (in Polish).
- A. Koszowska, M. Ebisz, T. Krzyśko-Łupicka, Presence of
pharmaceuticals and cosmetics in the aquatic environment as
a new environmental health problem, Medycyna Środowiskowa
– Environ. Med., 18 (2015) 62–69 (in Polish).
- A. Grdulska, R. Kowalik, Pharmaceuticals in water and
wastewater – overview, Struct. Environ., 12 (2020) 79–84,
doi: 10.30540/sae-2020-009.
- I.A. Al-Baldawi, A.A. Mohammed, Z.H. Mutar, S.R.S. Abdullah,
S.S. Jasim, A.F. Almansoory, N.I. Ismail, Application of
phytotechnology in alleviating pharmaceuticals and personal
care products (PPCPs) in wastewater: source, impacts,
treatment, mechanisms, fate, and SWOT analysis, J. Cleaner
Prod., 319 (2021) 128584, doi: 10.1016/j.jclepro.2021.128584.
- Y.Y. Yang, J.L. Zhao, Y.S. Liu, W.R. Liu, Q.Q. Zhang, L. Yao,
G.G. Ying, Pharmaceuticals and personal care products (PPCPs)
and artificial sweeteners (ASs) in surface and ground waters
and their application as indication of wastewater contamination,
Sci. Total Environ., 616–617 (2018) 816–823.
- M. Liu, H. Yin, Q. Wu, Occurrence and health risk assessment
of pharmaceutical and personal care products (PPCPs) in tap
water of Shanghai, Ecotoxicol. Environ. Saf., 183 (2019) 109497,
doi: 10.1016/j.ecoenv.2019.109497.
- S. Dey, F. Bano, A. Malik, Pharmaceuticals and Personal Care
Product (PPCP) Contamination—A Global Discharge Inventory,
M.N.V. Prasad, M. Vithanage, A. Kapley, Eds., Pharmaceuticals
and Personal Care Products: Waste Management and Treatment
Technology, Butterworth-Heinemann, 2019, pp. 1–26. doi: 10.1016/B978-0-12-816189-0.00001-9
- Y. Wang, Y. Wu, Q. Wang, J. Zhu, W. Shi, Z. Han,
Y. Zhang, K. Chen, Virucidal effect of povidone-iodine
against SARS-CoV-2 in vitro, J. Int. Med. Res., 49 (2021),
doi: 10.1177/03000605211063695.
- S.H.S. Naqvi, M.J. Citardi, D. Cattano, L. Ostrosky-Zeichner,
M.I. Knackstedt, R.J. Karni, Povidone-iodine solution as SARSCoV-
2 prophylaxis for procedures of the upper aerodigestive
tract a theoretical framework, J. Otolaryngol. – Head & Neck
Surg., 49 (2020), doi: 10.1186/s40463-020-00474-x.
- G. Gandhi, L. Thimmappa, N. Upadhya, S. Carnelio, Could
mouth rinses be an adjuvant in the treatment of SARS-CoV-2
patients? An appraisal with a systematic review, Int. J. Dent.
Hyg., 20 (2022) 136–144.
- R. Kawana, T. Kitamura, O. Nakagomi, I. Matsumoto, M. Arita,
N. Yoshihara, K. Yanagi, A. Yamada, O. Morita, Y. Yoshida,
Y. Furuya, S. Chiba, Inactivation of human viruses by povidoneiodine
in comparison with other antiseptics, Dermatology,
195 (1997) 29–35.
- S. Tsuda, S. Soutome, S. Hayashida, M. Funahara, S. Yanamoto,
M. Umeda, Topical povidone-iodine inhibits bacterial growth
in the oral cavity of patients on mechanical ventilation: a
randomized controlled study, BMC Oral Health, 20 (2020),
doi: 10.1186/s12903-020-1043-7.
- M. Eggers, T. Koburger-Janssen, M. Eickmann, J. Zorn, In-vitro
bactericidal and virucidal efficacy of Povidone-iodine gargle/
mouthwash against respiratory and Oral tract pathogens,
Infect. Dis. Ther., 7 (2018) 249–259.
- B. Gao, Z. Wang, Q. Liu, R. Du, Immobilization of povidoneiodine
on surfaces of silica gel particles and bactericidal
property, Colloids Surf., B, 79 (2010) 446–451.
- N.S.K. Nawalage, B.K.A. Bellanthudawa, Synthetic polymers
in personal care and cosmetics products (PCCPs) as a source
of microplastic (MP) pollution, Mar. Pollut. Bull., 182 (2022)
113927, doi: 10.1016/j.marpolbul.2022.113927.
- K. Lakhal, J. Faidherbe, R. Choukhi, E. Boissier, X. Capdevila,
Povidone-iodine: Features of critical systemic absorption,
Annales Françaises d’Anesthésie et de Réanimation, 30 (2011)
e1–e3, doi: 10.1016/j.annfar.2011.04.002.
- M.K. Moudden, J. Labaye, D. Sarret, G. Cazajous, M. Herody,
F. Didelot, Acute renal failure following internal administration
of povidone-iodine: a case report, Rev. Med. Int., 28 (2007)
556–558.
- C.S. Kim, S.S. Kim, E.H. Bae, S.K. Ma, S.W. Kim, Acute kidney
injury due to povidone-iodine ingestion, Medicine, 96 (2017)
e8879, doi: 10.1097/MD.0000000000008879.
- S. Vats, S. Srivastava, N. Maurya, S. Saxena, B. Mudgil, S. Yadav,
R. Chandra, Advances in Dye Contamination: Health Hazards,
Biodegradation, and Bioremediation, S. Kumar, M.Z. Hashmi,
Eds., Biological Approaches to Controlling Pollutants,
Advances in Pollution Research, Woodhead Publishing, 2022,
pp. 139–162, doi: 10.1016/B978-0-12-824316-9.00020-3.
- L. Young, J. Yu, Ligninase-catalyzed decolorization of
synthetic dyes, Water Res., 31 (1997) 1187–1193.
- L. Lian, L. Guo, C. Guo, Adsorption of Congo red from
aqueous solutions onto Ca-bentonite, J. Hazard. Mater.,
161 (2009) 126–131.
- M. Czubaszek, J. Choma, Adsorption of selected dyes from
aqueous solutions on nanoporous carbon materials obtained
from polymer precursors, Ochrona Środowiska, 39 (2017)
3–8 (in Polish).
- F. Meinck, H. Stooff, M. Kohlschutter, Industrial Sewage. Toxic
Effects of Substances Contained in Sewage on Plants and
Animals, Arkady, Warszawa, 1975 (in Polish).
- M.A. Hassaan, A.E. Nemr, Health and environmental impacts
of dyes: mini review, Am. J. Environ. Sci. Eng., 3 (2017) 64–67.
- T. Aysu, M.M. Küçük, Removal of crystal violet and methylene
blue from aqueous solutions by activated carbon prepared
from Ferula orientalis, Int. J. Environ. Sci. Technol., 12 (2015),
2273–2284.
- O. Üner, Ü. Geçgel, Y. Bayrak, Adsorption of methylene blue
by an efficient activated carbon prepared from Citrullus lanatus
rind: kinetic, isotherm, thermodynamic, and mechanism
analysis, Water Air Soil Pollut., 227 (2016) 247, doi: 10.1007/s11270-016-2949-1.
- M. Behera, J. Nayak, S. Banerjee, S. Chakrabortty, S.K. Tripathy,
A review on the treatment of textile industry waste effluents
towards the development of efficient mitigation strategy: an
integrated system design approach, J. Environ. Chem. Eng.,
9 (2021) 105277, doi: 10.1016/j.jece.2021.105277.
- Z. Talebzadeh, M. Masjedi-Arani, O. Amiri, M. Salavati-
Niasari, La2Sn2O7/g-C3N4 nanocomposites: rapid and green
sonochemical fabrication and photo-degradation performance
for removal of dye contaminations, Ultrason. Sonochem.,
77 (2021) 105678, doi: 10.1016/j.ultsonch.2021.105678.
- Y. Luo, G. Huang, Y. Li, Y. Yao, J. Huang, P. Zhang, S. Ren,
J. Shen, Z. Zhang, Removal of pharmaceutical and personal
care products (PPCPs) by MOF-derived carbons: a review, Sci.
Total Environ., 857 (2023) 159279, doi: 10.1016/j.scitotenv.2022.
159279.
- A. Demirbas, Agricultural based activated carbons for the
removal of dyes from aqueous solutions: a review, J. Hazard.
Mater., 167 (2009) 1–9.
- S. Samsami, M. Mohamadizaniani, M.H. Sarrafzadeh, E.R. Rene,
M. Firoozbahr, Recent advances in the treatment of dyecontaining
wastewater from textile industries: overview and
perspectives, Process Saf. Environ. Prot., 143 (2020) 138–163.
- A.K. Sahoo, A. Dahiya, B.K. Patel, Biological Methods for Textile
Dyes Removal From Wastewaters, M.P. Shah, S. Rodriguez-Couto, R.T. Kapoor, Eds., Development in Wastewater
Treatment Research and Processes, Elsevier, 2022, pp. 127–151.
- H. Xiang, G. Ren, X. Yang, D. Xu, Z. Zhang, X. Wang, A low-cost
solvent-free method to synthesize α-Fe2O3 nanoparticles with
applications to degrade methyl orange in photo-Fenton system,
Ecotoxicol. Environ. Saf., 200 (2020) 110744, doi: 10.1016/j.
ecoenv.2020.110744.
- E. Ayranci, O. Duman, In-situ UV-Visible spectroscopic study
on the adsorption of some dyes onto activated carbon cloth,
Sep. Sci. Technol., 44 (2009) 3735–3752.
- O. Duman, S. Tunç, T.G. Polat, B.K. Bozoğlan, Synthesis
of magnetic oxidized multiwalled carbon nanotube-κ-
carrageenan-Fe3O4 nanocomposite adsorbent and its application
in cationic methylene blue dye adsorption, Carbohydr. Polym.,
147 (2016) 79–88.
- O. Duman, S. Tunç, B.K. Bozoğlan, T.G. Polat, Removal
of triphenylmethane and reactive azo dyes from aqueous
solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4
nanocomposite, J. Alloys Compd., 687 (2016) 370–383.
- B. Mao, B. Sidhureddy, A.R. Thiruppathi, P.C. Wood, A. Chen,
Efficient dye removal and separation based on graphene oxide
nanomaterials, New J. Chem., 44 (2020) 4519–4528.
- O. Duman, S. Tunç, T.G. Polat, Determination of adsorptive
properties of expanded vermiculite for the removal of C.I.
Basic Red 9 from aqueous solution: kinetic, isotherm and
thermodynamic studies, Appl. Clay Sci., 109–110 (2015) 22–32.
- S. Joshi, R.G. Shrestha, R.R. Pradhananga, K. Ariga,
L.K. Shrestha, High surface area nanoporous activated carbons
materials from areca catechu nut with excellent iodine and
methylene blue adsorption, C, 8 (2022) 2, doi: 10.3390/c8010002.
- S. Meyer, B. Glaser, P. Quicker, Technical, economical, and
climate-related aspects of biochar production technologies: a
literature review, Environ. Sci. Technol., 45 (2011) 9473–9483.
- X. Wang, Z. Guo, Z. Hu, J. Zhang, Recent advances in biochar
application for water and wastewater treatment: a review,
PeerJ, 8 (2020) e9164, doi: 10.7717/peerj.9164.
- K.N. Palansooriya, Y. Yang, Y.F. Tsang, B. Sarkar, D. Hou,
X. Cao, E. Meers, J. Rinklebe, K.H. Kim, Y.S. Ok, Occurrence
of contaminants in drinking water sources and the potential
of biochar for water quality improvement: a review, Crit. Rev.
Env. Sci. Technol., 50 (2020) 549–611.
- N.R. Draper, D.K.J. Lin, Response Surface Designs, S. Ghosh,
C.R. Rao, Eds., Design and Analysis of Experiments. Handbook
of Statistics, Vol. 13., North-Holland, 1996, pp. 343–375,
doi: 10.1016/S0169-7161(96)13013-3.
- A. Klimek-Kopyra, U. Sadowska, M. Kuboń, M. Gliniak,
J. Sikora, Sunflower husk biochar as a key agrotechnical factor
enhancing sustainable soybean production, Agriculture,
11 (2021) 305, doi: 10.3390/agriculture11040305.
- K. Gondek, M. Mierzwa-Hersztek, M. Kopeć, J. Sikora, T. Głąb,
K. Szczurowska, Influence of biochar application on reduced
acidification of sandy soil, increased cation exchange capacity,
and the content of available forms of K, Mg, and P, Pol.
J. Environ. Stud., 28 (2019) 103–111, doi:10.15244/pjoes/81688.
- A. Kubaczyński, A. Walkiewicz, M. Brzezińska, B. Usowicz,
How Does Biochar Affect Soil Respiration?, EGU General
Assembly 2020, 4–8 May 2020, EGU2020-13343, doi: 10.5194/egusphere-egu2020-13343.
- X. Yang, Q. Zheng, M. He, B. Chen, B. Hu, Bromine and iodine
species in drinking water supply system along the Changjiang
River in China: occurrence and transformation, Water
Res., 202 (2021) 117401, doi: 10.1016/j.watres.2021.117401.
- F.M.D. Chequer, G.A.R. de Oliveira, E.R.A. Ferraz, J.C. Cardoso,
M.V.B. Zanoni, D.P. de Oliveira, Textile Dyes: Dyeing Process
and Environmental Impact, M. Günay, Ed., Eco-Friendly
Textile Dyeing and Finishing, InTechOpen, 2013, pp. 151–176.
- https://pubchem.ncbi.nlm.nih.gov/ (Access date 30.11.2022)
- Polish Standard PN-EN ISO 18134-2:2017-03, Solid Biofuels–
Determination of Moisture Content–Oven Dry Method–Part 2:
Total Moisture–Simplified Method, The Polish Committee for
Standardization, Warsaw, Poland, 2017.
- Polish Standard PN-ISO 1171:2002, Solid Mineral
Fuels. Determination of Ash, The Polish Committee for
Standardization, Warsaw, Poland, 2002.
- A. Ramirez, R. Ocampo, S. Giraldo, E. Padilla, E. Flórez,
N. Acelas, Removal of Cr(VI) from an aqueous solution using
an activated
carbon obtained from teakwood sawdust: kinetics,
equilibrium, and density functional theory calculations,
J. Environ. Chem. Eng., 8 (2020) 103702, doi: 10.1016/j.jece.2020.103702.
- Polish Standard PN-EN ISO 18123:2016-01, Solid Biofuels.
Determination of The Content of Volatile Matter, The Polish
Committee for Standardization, Warsaw, Poland, 2018.
- Polish Standard PN 83/C-97555.04:1983, Activated Carbons,
Methods of Tests, Determination of Adsorption Value of
Iodine, The Polish Committee for Standardization, Warsaw,
Poland, 2013.
- S.S. Tripathy, S.B. Kanungo, Adsorption of Co2+, Ni2+, Cu2+ and
Zn2+ from 0.5M NaCl and major ion sea water on a mixture
of δ-MnO2 and amorphous FeOOH, J. Colloid Interface Sci.,
284 (2005) 30–38.
- Z.L. Zhu, H.M. Ma, R.H. Zhang, Y.X. Ge, J.F. Zhao, Removal
of cadmium using MnO2 loaded D301 resin, J. Environ. Sci.,
19 (2007) 652–656.
- A. Mannan, A.J. Khan, M. Khan, G. Abbas, S. Roohullah,
M. Hussain, Spectrophotometric estimation of polyvinylpyrrolidone,
iodate and iodine simultaneously in
complex in pure and pharmaceutical
preparations, RADS J. Pharm. Pharm. Sci., 7 (2019) 84–89.
- Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep.
Purif. Rev., 29 (2000) 189–232.
- P.S. Ghosal, A.K. Gupta, Determination of thermodynamic parameters from Langmuir isotherm
constant-revisited,
J. Mol. Liq., 225 (2017) 137–146.
- Y. Wang, Y. Hu, X. Zhao, S. Wang, G. Xing, Comparisons of biochar properties from wood
material and crop residues at different temperatures and residence times, Energy Fuels, 27 (2013)
5890–5899.
- K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak,
K.S. Ro, Impact of pyrolysis temperature and manure source on physicochemical characteristics of
biochar, Bioresour. Technol., 107 (2012) 419–428.
- X. Li, Q. Shen, D. Zhang, X. Mei, W. Ran, Y. Xu, G. Yu, Functional groups determine biochar
properties (pH and EC) as studied by two-dimensional ¹³C NMR correlation spectroscopy, PLoS One, 8
(2013) e65949, doi: 10.1371/journal.pone.0065949.
- A. Budai, L. Wang, M. Gronli, L.T. Strand, M.J. Antal Jr.,
S. Abiven, A. Dieguez-Alonso, A. Anca-Couce, D.P. Rasse, Surface properties and chemical
composition of corncob and miscanthus biochars: effects of production temperature and method, J.
Agric. Food Chem., 62 (2014) 3791−3799.
- K. Intani, S. Latif, A.K.M. Rafayatul Kabir, J. Müller, Effect of self-purging pyrolysis on
yield of biochar from maize cobs, husks and leaves, Bioresour. Technol., 218 (2016) 541–551.
- S.X. Zhao, N. Ta, X.D. Wang, Effect of temperature on the structural and physicochemical
properties of biochar with apple tree branches as feedstock material, Energies, 10 (2017) 1293,
doi: 10.3390/en10091293.
- L.C. Malucelli, G.F. Silvestre, J. Carneiro, E.C. Vasconcelos,
M. Guiotoku, C.M.B.F. Maia, M.A.S. Carvalho Filho, Biochar higher heating value estimative using
thermogravimetric analysis, J. Therm. Anal. Calorim., 139 (2019) 2215–2220.
- L. Leng, Q. Xiong, L. Yang, H. Li, Y. Zhou, W. Zhang, S. Jiang,
H. Li, H. Huang, An overview on engineering the surface area and porosity of biochar, Sci. Total
Environ., 763 (2021) 144204, doi: 10.1016/j.scitotenv.2020.144204.
- H. Singh, B.K. Northup, Ch.W. Rice, P.V. Vara Prasad, Biochar applications influence soil
physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis,
Biochar, 4 (2022), doi: 10.1007/s42773-022-00138-1.
- M.B. Shaker, M.R. Fenjan, Characterization of biochar produced from sunflower seed husks
(Helianthus annuus), J. Adv. Mater. Eng., 7 (2022) 51–57.
- W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.M. Fortuna, I. Dallmeyer, M. Garcia-Perez,
Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties,
Biomass Bioenergy, 84 (2016) 37–48.
- O. Duman, E. Ayranci, Adsorption characteristics of benzaldehyde, sulphanilic acid, and
p-phenolsulfonate from water, acid, or base solutions onto activated carbon cloth, Sep. Sci.
Technol., 41 (2006) 3673–3692.
- E. Ayranci, O. Duman, Adsorption of aromatic organic acids onto high area activated carbon
cloth in relation to wastewater purification, J. Hazard. Mater., 136 (2006) 542–552.
- S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Removal
of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics,
equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
- M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto,
G.C. Collazzo, G.L. Dotto, Development of CO2 activated biochar from solid wastes of a beer
industry and its application for methylene blue adsorption, Waste Manage., 78 (2018) 630–638.
- V. Vadivelan, K.V. Kumar, Equilibrium, kinetics, mechanism, and process design for the
sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286 (2005) 90–100.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir,
D. Belhaj, Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward
functionalized biochar for water and wastewater treatment, Bioresour. Technol., 238 (2017) 306–312.
- O. Duman, E. Ayranci, Adsorptive removal of cationic surfactants from aqueous solutions onto
high-area activated carbon cloth monitored by in-situ UV spectroscopy, J. Hazard. Mater., 174
(2010) 359–367.
- T. Tian, S. Sun, Low-carbon transition pathways in the context of carbon-neutral: a
quadrilateral evolutionary game analysis, J. Environ. Manage., 322 (2022) 116105, doi: 10.1016/j.jenvman.2022.116105.
- H. Li, V.L. Budarin, J.H. Clark, M. North, X. Wu, Rapid and efficient adsorption of methylene
blue dye from aqueous solution by hierarchically porous, activated starbons: mechanism and
porosity dependence, J. Hazard. Mater., 436 (2022) 129174, doi: 10.1016/j.jhazmat.2022.129174.
- G.Ch. Hill Jr., T.W. Root, Introduction to Chemical Engineering Kinetics and Reactor Design,
John Wiley & Sons, Inc., New Jersey, 2014, pp. 153–156.
- A. Subratti, J.L. Vidal, L.J. Lalgee, F.M. Kerton, N.K. Jalsa, Preparation and
characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its
adsorption capacity with methylene blue, Sustain. Chem. Pharm., 21 (2021) 100421, doi:
10.1016/j.scp.2021.100421.
- S. Liu, J. Li, S. Xu, M. Wang, Y. Zhang, X. Xue, A modified method for enhancing adsorption
capability of banana pseudostem biochar towards methylene blue at low temperature, Bioresour.
Technol., 282 (2019) 48–55.
- L. Lonappan, T. Rouissi, R.K. Das, S.K. Brar, A.A. Ramirez,
M. Verma, R.Y. Surampalli, J.R. Valero, Adsorption of methylene blue on biochar microparticles
derived from different waste materials, Waste Manage., 49 (2016) 537–544.
- L. Delgado-Moreno, S. Bazhari, G. Gasco, A. Méndez, M. El Azzouzi, E. Romero, New insights
into the efficient removal of emerging contaminants by biochars and hydrochars derived from olive
oil wastes, Sci. Total Environ., 752 (2021) 141838, doi: 10.1016/j.scitotenv.2020.141838.
- V. Choudhary, L. Philip, Sustainability assessment of acid-modified biochar as adsorbent
for the removal of pharmaceuticals and personal care products from secondary
J. Environ. Chem. Eng., 10 (2022) 107592,
doi: 10.1016/j.jece.2022.107592.