References

  1. X. Xu, H. Yang, C. Li, Theoretical model and actual characteristics of air pollution affecting health cost: a review, Int. J. Environ. Res. Public Health, 19 (2022) 3532, doi: 10.3390/ijerph19063532.
  2. European Environment Agency, Report: The European Environment — State and Outlook 2020: Knowledge for Transition to a Sustainable Europe, 2019. Available at https://www.eea.europa.eu/soer/2020 (Access date 4.10.2022).
  3. K. Zhang, R. Ruan, Z. Zhang, S. Zhi, An exhaustive investigation on antibiotics contamination from livestock farms within sensitive reservoir water area: spatial density, source apportionment and risk assessment, Sci. Total Environ., 847 (2022) 157688, doi: 10.1016/j.scitotenv.2022.157688.
  4. N. Kornak, J. Kostecka, Elements of the social perception of the economy of expired drugs, Pol. J. Sustain. Dev., 23 (2019) 37–46 (in Polish).
  5. D. Ginter-Kramarczyk, I. Kruszelnicka, Color problem in water (dye contamination), Wodociągi - Kanalizacja, 12 (2020) 24–27 (in Polish).
  6. A. Koszowska, M. Ebisz, T. Krzyśko-Łupicka, Presence of pharmaceuticals and cosmetics in the aquatic environment as a new environmental health problem, Medycyna Środowiskowa – Environ. Med., 18 (2015) 62–69 (in Polish).
  7. A. Grdulska, R. Kowalik, Pharmaceuticals in water and wastewater – overview, Struct. Environ., 12 (2020) 79–84, doi: 10.30540/sae-2020-009.
  8. I.A. Al-Baldawi, A.A. Mohammed, Z.H. Mutar, S.R.S. Abdullah, S.S. Jasim, A.F. Almansoory, N.I. Ismail, Application of phytotechnology in alleviating pharmaceuticals and personal care products (PPCPs) in wastewater: source, impacts, treatment, mechanisms, fate, and SWOT analysis, J. Cleaner Prod., 319 (2021) 128584, doi: 10.1016/j.jclepro.2021.128584.
  9. Y.Y. Yang, J.L. Zhao, Y.S. Liu, W.R. Liu, Q.Q. Zhang, L. Yao, G.G. Ying, Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination, Sci. Total Environ., 616–617 (2018) 816–823.
  10. M. Liu, H. Yin, Q. Wu, Occurrence and health risk assessment of pharmaceutical and personal care products (PPCPs) in tap water of Shanghai, Ecotoxicol. Environ. Saf., 183 (2019) 109497, doi: 10.1016/j.ecoenv.2019.109497.
  11. S. Dey, F. Bano, A. Malik, Pharmaceuticals and Personal Care Product (PPCP) Contamination—A Global Discharge Inventory, M.N.V. Prasad, M. Vithanage, A. Kapley, Eds., Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, Butterworth-Heinemann, 2019, pp. 1–26. doi: 10.1016/B978-0-12-816189-0.00001-9
  12. Y. Wang, Y. Wu, Q. Wang, J. Zhu, W. Shi, Z. Han, Y. Zhang, K. Chen, Virucidal effect of povidone-iodine against SARS-CoV-2 in vitro, J. Int. Med. Res., 49 (2021), doi: 10.1177/03000605211063695.
  13. S.H.S. Naqvi, M.J. Citardi, D. Cattano, L. Ostrosky-Zeichner, M.I. Knackstedt, R.J. Karni, Povidone-iodine solution as SARSCoV- 2 prophylaxis for procedures of the upper aerodigestive tract a theoretical framework, J. Otolaryngol. – Head & Neck Surg., 49 (2020), doi: 10.1186/s40463-020-00474-x.
  14. G. Gandhi, L. Thimmappa, N. Upadhya, S. Carnelio, Could mouth rinses be an adjuvant in the treatment of SARS-CoV-2 patients? An appraisal with a systematic review, Int. J. Dent. Hyg., 20 (2022) 136–144.
  15. R. Kawana, T. Kitamura, O. Nakagomi, I. Matsumoto, M. Arita, N. Yoshihara, K. Yanagi, A. Yamada, O. Morita, Y. Yoshida, Y. Furuya, S. Chiba, Inactivation of human viruses by povidoneiodine in comparison with other antiseptics, Dermatology, 195 (1997) 29–35.
  16. S. Tsuda, S. Soutome, S. Hayashida, M. Funahara, S. Yanamoto, M. Umeda, Topical povidone-iodine inhibits bacterial growth in the oral cavity of patients on mechanical ventilation: a randomized controlled study, BMC Oral Health, 20 (2020), doi: 10.1186/s12903-020-1043-7.
  17. M. Eggers, T. Koburger-Janssen, M. Eickmann, J. Zorn, In-vitro bactericidal and virucidal efficacy of Povidone-iodine gargle/ mouthwash against respiratory and Oral tract pathogens, Infect. Dis. Ther., 7 (2018) 249–259.
  18. B. Gao, Z. Wang, Q. Liu, R. Du, Immobilization of povidoneiodine on surfaces of silica gel particles and bactericidal property, Colloids Surf., B, 79 (2010) 446–451.
  19. N.S.K. Nawalage, B.K.A. Bellanthudawa, Synthetic polymers in personal care and cosmetics products (PCCPs) as a source of microplastic (MP) pollution, Mar. Pollut. Bull., 182 (2022) 113927, doi: 10.1016/j.marpolbul.2022.113927.
  20. K. Lakhal, J. Faidherbe, R. Choukhi, E. Boissier, X. Capdevila, Povidone-iodine: Features of critical systemic absorption, Annales Françaises d’Anesthésie et de Réanimation, 30 (2011) e1–e3, doi: 10.1016/j.annfar.2011.04.002.
  21. M.K. Moudden, J. Labaye, D. Sarret, G. Cazajous, M. Herody, F. Didelot, Acute renal failure following internal administration of povidone-iodine: a case report, Rev. Med. Int., 28 (2007) 556–558.
  22. C.S. Kim, S.S. Kim, E.H. Bae, S.K. Ma, S.W. Kim, Acute kidney injury due to povidone-iodine ingestion, Medicine, 96 (2017) e8879, doi: 10.1097/MD.0000000000008879.
  23. S. Vats, S. Srivastava, N. Maurya, S. Saxena, B. Mudgil, S. Yadav, R. Chandra, Advances in Dye Contamination: Health Hazards, Biodegradation, and Bioremediation, S. Kumar, M.Z. Hashmi, Eds., Biological Approaches to Controlling Pollutants, Advances in Pollution Research, Woodhead Publishing, 2022, pp. 139–162, doi: 10.1016/B978-0-12-824316-9.00020-3.
  24. L. Young, J. Yu, Ligninase-catalyzed decolorization of synthetic dyes, Water Res., 31 (1997) 1187–1193.
  25. L. Lian, L. Guo, C. Guo, Adsorption of Congo red from aqueous solutions onto Ca-bentonite, J. Hazard. Mater., 161 (2009) 126–131.
  26. M. Czubaszek, J. Choma, Adsorption of selected dyes from aqueous solutions on nanoporous carbon materials obtained from polymer precursors, Ochrona Środowiska, 39 (2017) 3–8 (in Polish).
  27. F. Meinck, H. Stooff, M. Kohlschutter, Industrial Sewage. Toxic Effects of Substances Contained in Sewage on Plants and Animals, Arkady, Warszawa, 1975 (in Polish).
  28. M.A. Hassaan, A.E. Nemr, Health and environmental impacts of dyes: mini review, Am. J. Environ. Sci. Eng., 3 (2017) 64–67.
  29. T. Aysu, M.M. Küçük, Removal of crystal violet and methylene blue from aqueous solutions by activated carbon prepared from Ferula orientalis, Int. J. Environ. Sci. Technol., 12 (2015), 2273–2284.
  30. O. Üner, Ü. Geçgel, Y. Bayrak, Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis, Water Air Soil Pollut., 227 (2016) 247, doi: 10.1007/s11270-016-2949-1.
  31. M. Behera, J. Nayak, S. Banerjee, S. Chakrabortty, S.K. Tripathy, A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach, J. Environ. Chem. Eng., 9 (2021) 105277, doi: 10.1016/j.jece.2021.105277.
  32. Z. Talebzadeh, M. Masjedi-Arani, O. Amiri, M. Salavati- Niasari, La2Sn2O7/g-C3N4 nanocomposites: rapid and green sonochemical fabrication and photo-degradation performance for removal of dye contaminations, Ultrason. Sonochem., 77 (2021) 105678, doi: 10.1016/j.ultsonch.2021.105678.
  33. Y. Luo, G. Huang, Y. Li, Y. Yao, J. Huang, P. Zhang, S. Ren, J. Shen, Z. Zhang, Removal of pharmaceutical and personal care products (PPCPs) by MOF-derived carbons: a review, Sci. Total Environ., 857 (2023) 159279, doi: 10.1016/j.scitotenv.2022. 159279.
  34. A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review, J. Hazard. Mater., 167 (2009) 1–9.
  35. S. Samsami, M. Mohamadizaniani, M.H. Sarrafzadeh, E.R. Rene, M. Firoozbahr, Recent advances in the treatment of dyecontaining wastewater from textile industries: overview and perspectives, Process Saf. Environ. Prot., 143 (2020) 138–163.
  36. A.K. Sahoo, A. Dahiya, B.K. Patel, Biological Methods for Textile Dyes Removal From Wastewaters, M.P. Shah, S. Rodriguez-Couto, R.T. Kapoor, Eds., Development in Wastewater Treatment Research and Processes, Elsevier, 2022, pp. 127–151.
  37. H. Xiang, G. Ren, X. Yang, D. Xu, Z. Zhang, X. Wang, A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-Fenton system, Ecotoxicol. Environ. Saf., 200 (2020) 110744, doi: 10.1016/j. ecoenv.2020.110744.
  38. E. Ayranci, O. Duman, In-situ UV-Visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth, Sep. Sci. Technol., 44 (2009) 3735–3752.
  39. O. Duman, S. Tunç, T.G. Polat, B.K. Bozoğlan, Synthesis of magnetic oxidized multiwalled carbon nanotube-κ- carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic methylene blue dye adsorption, Carbohydr. Polym., 147 (2016) 79–88.
  40. O. Duman, S. Tunç, B.K. Bozoğlan, T.G. Polat, Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite, J. Alloys Compd., 687 (2016) 370–383.
  41. B. Mao, B. Sidhureddy, A.R. Thiruppathi, P.C. Wood, A. Chen, Efficient dye removal and separation based on graphene oxide nanomaterials, New J. Chem., 44 (2020) 4519–4528.
  42. O. Duman, S. Tunç, T.G. Polat, Determination of adsorptive properties of expanded vermiculite for the removal of C.I. Basic Red 9 from aqueous solution: kinetic, isotherm and thermodynamic studies, Appl. Clay Sci., 109–110 (2015) 22–32.
  43. S. Joshi, R.G. Shrestha, R.R. Pradhananga, K. Ariga, L.K. Shrestha, High surface area nanoporous activated carbons materials from areca catechu nut with excellent iodine and methylene blue adsorption, C, 8 (2022) 2, doi: 10.3390/c8010002.
  44. S. Meyer, B. Glaser, P. Quicker, Technical, economical, and climate-related aspects of biochar production technologies: a literature review, Environ. Sci. Technol., 45 (2011) 9473–9483.
  45. X. Wang, Z. Guo, Z. Hu, J. Zhang, Recent advances in biochar application for water and wastewater treatment: a review, PeerJ, 8 (2020) e9164, doi: 10.7717/peerj.9164.
  46. K.N. Palansooriya, Y. Yang, Y.F. Tsang, B. Sarkar, D. Hou, X. Cao, E. Meers, J. Rinklebe, K.H. Kim, Y.S. Ok, Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review, Crit. Rev. Env. Sci. Technol., 50 (2020) 549–611.
  47. N.R. Draper, D.K.J. Lin, Response Surface Designs, S. Ghosh, C.R. Rao, Eds., Design and Analysis of Experiments. Handbook of Statistics, Vol. 13., North-Holland, 1996, pp. 343–375, doi: 10.1016/S0169-7161(96)13013-3.
  48. A. Klimek-Kopyra, U. Sadowska, M. Kuboń, M. Gliniak, J. Sikora, Sunflower husk biochar as a key agrotechnical factor enhancing sustainable soybean production, Agriculture, 11 (2021) 305, doi: 10.3390/agriculture11040305.
  49. K. Gondek, M. Mierzwa-Hersztek, M. Kopeć, J. Sikora, T. Głąb, K. Szczurowska, Influence of biochar application on reduced acidification of sandy soil, increased cation exchange capacity, and the content of available forms of K, Mg, and P, Pol. J. Environ. Stud., 28 (2019) 103–111, doi:10.15244/pjoes/81688.
  50. A. Kubaczyński, A. Walkiewicz, M. Brzezińska, B. Usowicz, How Does Biochar Affect Soil Respiration?, EGU General Assembly 2020, 4–8 May 2020, EGU2020-13343, doi: 10.5194/egusphere-egu2020-13343.
  51. X. Yang, Q. Zheng, M. He, B. Chen, B. Hu, Bromine and iodine species in drinking water supply system along the Changjiang River in China: occurrence and transformation, Water Res., 202 (2021) 117401, doi: 10.1016/j.watres.2021.117401.
  52. F.M.D. Chequer, G.A.R. de Oliveira, E.R.A. Ferraz, J.C. Cardoso, M.V.B. Zanoni, D.P. de Oliveira, Textile Dyes: Dyeing Process and Environmental Impact, M. Günay, Ed., Eco-Friendly Textile Dyeing and Finishing, InTechOpen, 2013, pp. 151–176.
  53. https://pubchem.ncbi.nlm.nih.gov/ (Access date 30.11.2022)
  54. Polish Standard PN-EN ISO 18134-2:2017-03, Solid Biofuels– Determination of Moisture Content–Oven Dry Method–Part 2: Total Moisture–Simplified Method, The Polish Committee for Standardization, Warsaw, Poland, 2017.
  55. Polish Standard PN-ISO 1171:2002, Solid Mineral Fuels. Determination of Ash, The Polish Committee for Standardization, Warsaw, Poland, 2002.
  56. A. Ramirez, R. Ocampo, S. Giraldo, E. Padilla, E. Flórez, N. Acelas, Removal of Cr(VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: kinetics, equilibrium, and density functional theory calculations, J. Environ. Chem. Eng., 8 (2020) 103702, doi: 10.1016/j.jece.2020.103702.
  57. Polish Standard PN-EN ISO 18123:2016-01, Solid Biofuels. Determination of The Content of Volatile Matter, The Polish Committee for Standardization, Warsaw, Poland, 2018.
  58. Polish Standard PN 83/C-97555.04:1983, Activated Carbons, Methods of Tests, Determination of Adsorption Value of Iodine, The Polish Committee for Standardization, Warsaw, Poland, 2013.
  59. S.S. Tripathy, S.B. Kanungo, Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5M NaCl and major ion sea water on a mixture of δ-MnO2 and amorphous FeOOH, J. Colloid Interface Sci., 284 (2005) 30–38.
  60. Z.L. Zhu, H.M. Ma, R.H. Zhang, Y.X. Ge, J.F. Zhao, Removal of cadmium using MnO2 loaded D301 resin, J. Environ. Sci., 19 (2007) 652–656.
  61. A. Mannan, A.J. Khan, M. Khan, G. Abbas, S. Roohullah, M. Hussain, Spectrophotometric estimation of polyvinylpyrrolidone, iodate and iodine simultaneously in complex in pure and pharmaceutical preparations, RADS J. Pharm. Pharm. Sci., 7 (2019) 84–89.
  62. Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
  63. P.S. Ghosal, A.K. Gupta, Determination of thermodynamic parameters from Langmuir isotherm constant-revisited, J. Mol. Liq., 225 (2017) 137–146.
  64. Y. Wang, Y. Hu, X. Zhao, S. Wang, G. Xing, Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times, Energy Fuels, 27 (2013) 5890–5899.
  65. K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro, Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar, Bioresour. Technol., 107 (2012) 419–428.
  66. X. Li, Q. Shen, D. Zhang, X. Mei, W. Ran, Y. Xu, G. Yu, Functional groups determine biochar properties (pH and EC) as studied by two-dimensional ¹³C NMR correlation spectroscopy, PLoS One, 8 (2013) e65949, doi: 10.1371/journal.pone.0065949.
  67. A. Budai, L. Wang, M. Gronli, L.T. Strand, M.J. Antal Jr., S. Abiven, A. Dieguez-Alonso, A. Anca-Couce, D.P. Rasse, Surface properties and chemical composition of corncob and miscanthus biochars: effects of production temperature and method, J. Agric. Food Chem., 62 (2014) 3791−3799.
  68. K. Intani, S. Latif, A.K.M. Rafayatul Kabir, J. Müller, Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves, Bioresour. Technol., 218 (2016) 541–551.
  69. S.X. Zhao, N. Ta, X.D. Wang, Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material, Energies, 10 (2017) 1293, doi: 10.3390/en10091293.
  70. L.C. Malucelli, G.F. Silvestre, J. Carneiro, E.C. Vasconcelos, M. Guiotoku, C.M.B.F. Maia, M.A.S. Carvalho Filho, Biochar higher heating value estimative using thermogravimetric analysis, J. Therm. Anal. Calorim., 139 (2019) 2215–2220.
  71. L. Leng, Q. Xiong, L. Yang, H. Li, Y. Zhou, W. Zhang, S. Jiang, H. Li, H. Huang, An overview on engineering the surface area and porosity of biochar, Sci. Total Environ., 763 (2021) 144204, doi: 10.1016/j.scitotenv.2020.144204.
  72. H. Singh, B.K. Northup, Ch.W. Rice, P.V. Vara Prasad, Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis, Biochar, 4 (2022), doi: 10.1007/s42773-022-00138-1.
  73. M.B. Shaker, M.R. Fenjan, Characterization of biochar produced from sunflower seed husks (Helianthus annuus), J. Adv. Mater. Eng., 7 (2022) 51–57.
  74. W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.M. Fortuna, I. Dallmeyer, M. Garcia-Perez, Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties, Biomass Bioenergy, 84 (2016) 37–48.
  75. O. Duman, E. Ayranci, Adsorption characteristics of benzaldehyde, sulphanilic acid, and p-phenolsulfonate from water, acid, or base solutions onto activated carbon cloth, Sep. Sci. Technol., 41 (2006) 3673–3692.
  76. E. Ayranci, O. Duman, Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification, J. Hazard. Mater., 136 (2006) 542–552.
  77. S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
  78. M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manage., 78 (2018) 630–638.
  79. V. Vadivelan, K.V. Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286 (2005) 90–100.
  80. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir, D. Belhaj, Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment, Bioresour. Technol., 238 (2017) 306–312.
  81. O. Duman, E. Ayranci, Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in-situ UV spectroscopy, J. Hazard. Mater., 174 (2010) 359–367.
  82. T. Tian, S. Sun, Low-carbon transition pathways in the context of carbon-neutral: a quadrilateral evolutionary game analysis, J. Environ. Manage., 322 (2022) 116105, doi: 10.1016/j.jenvman.2022.116105.
  83. H. Li, V.L. Budarin, J.H. Clark, M. North, X. Wu, Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons: mechanism and porosity dependence, J. Hazard. Mater., 436 (2022) 129174, doi: 10.1016/j.jhazmat.2022.129174.
  84. G.Ch. Hill Jr., T.W. Root, Introduction to Chemical Engineering Kinetics and Reactor Design, John Wiley & Sons, Inc., New Jersey, 2014, pp. 153–156.
  85. A. Subratti, J.L. Vidal, L.J. Lalgee, F.M. Kerton, N.K. Jalsa, Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue, Sustain. Chem. Pharm., 21 (2021) 100421, doi: 10.1016/j.scp.2021.100421.
  86. S. Liu, J. Li, S. Xu, M. Wang, Y. Zhang, X. Xue, A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature, Bioresour. Technol., 282 (2019) 48–55.
  87. L. Lonappan, T. Rouissi, R.K. Das, S.K. Brar, A.A. Ramirez, M. Verma, R.Y. Surampalli, J.R. Valero, Adsorption of methylene blue on biochar microparticles derived from different waste materials, Waste Manage., 49 (2016) 537–544.
  88. L. Delgado-Moreno, S. Bazhari, G. Gasco, A. Méndez, M. El Azzouzi, E. Romero, New insights into the efficient removal of emerging contaminants by biochars and hydrochars derived from olive oil wastes, Sci. Total Environ., 752 (2021) 141838, doi: 10.1016/j.scitotenv.2020.141838.
  89. V. Choudhary, L. Philip, Sustainability assessment of acid-modified biochar as adsorbent for the removal of pharmaceuticals and personal care products from secondary J. Environ. Chem. Eng., 10 (2022) 107592,
    doi: 10.1016/j.jece.2022.107592.