References
- R. Baker, Membrane Technology and Application, John Wiley
& Sons, New York, 2012.
- S.V. Jadhav, K.V. Marathe, V.K. Rathod, A pilot scale concurrent
removal of fluoride, arsenic, sulfate and nitrate by using
nanofiltration: competing ion interaction and modelling
approach, J. Water Process Eng., 13 (2016) 153–167.
- T. Uragami, Science and Technology of Separation Membranes,
John Wiley & Sons, Chichester, UK, 2017.
- Y. Dermirel, Nonequilibrium Thermodynamics: Transport and
Rate Processes in Physical, Chemical and Biological Systems,
Elsevier, Amsterdam, 2007.
- V. Gerbaud, N. Shcherbakova, S. Da Cunha, A nonequilibrium
thermodynamics perspective on nature-inspired chemical
engineering processes, Chem. Eng. Res. Des., 154 (2020)
316–330.
- S. Raghuvanshi, B. La Prairie, S. Rajagopal, V.G. Yadav,
Chapter 11 – Polymeric Nanomaterials for Ocular Drug
Delivery, A.K. Bajpai, R.K. Saini, Eds., Advances in Polymeric
Nanomaterials for Biomedical Applications: Micro and Nano
Technologies, Elsevier, Amsterdam, 2021.
- J. Rewak-Soroczynska, P. Sobierajska, S. Targonska, A. Piecuch,
L. Grosman, J. Rachuna, S. Wasik, M. Arabski, R. Ogorek,
R.J. Wiglusz, New approach to antifungal activity of fluconazole
incorporated into the porous
6-anhydro-α-l-galacto-β-dgalactan
structures modified with nanohydroxyapatite for
chronic-wound treatments-in vitro evaluation, Int. J. Mol. Sci.,
22 (2021) 3112, doi: 10.3390/ijms22063112.
- D. Rana, T. Matsuura, S. Sourirajan, Physicochemical and
Engineering Properties of Food in Membrane Separation
Processes, M.A. Rao, S.S.H. Rizvi, A.K. Datta, J. Ahmed, Eds.,
Engineering Properties of Foods, Taylor & Francis/CRC Press,
Boca Raton, FL, 2014, pp. 437–525.
- D. Rana, T. Matsuura, State of the art reviews in membrane
science and research, J. Membr. Sci. Res., 3 (2017) 118–119.
- D. Rana, T. Matsuura, Membrane Transport Models,
D.R. Heldman, C.I. Moraru, Eds., Encyclopedia of Agriculture,
Food and Biological Engineering, Taylor & Francis, New York,
NY, 2010, pp. 1041–1047.
- D. Rana, T. Matsuura, M.A. Kassim, A.F. Ismail, Reverse
Osmosis Membrane, A.K. Pabby, S.S.H. Rizvi, A.M. Sastre,
Eds., Handbook of Membrane Separations: Chemical,
Pharmaceutical, Food, and Biotechnological Applications,
Taylor & Francis/CRC Press, Boca Raton, FL, 2015, pp. 35–52.
- A. Katchalsky, P.F. Curran, Nonequilibrium Thermodynamics
in Biophysics, Harvard University Press, Cambridge, MA, USA,
1965.
- D. Kondepudi, I. Prigogine, Modern Thermodynamics: From
Heat Engines to Dissipative Structures, John Wiley & Sons,
Chichester, 2006.
- J.G. Wijmans, R.W. Baker, The solution–diffusion model: a
review, J. Membr. Sci., 107 (1995) 1–21.
- M.A. Al-Obaidi, C. Kara-Zaitri, I.M. Mujtaba, Scope and
limitation of the irreversible thermodynamics and the solution
diffusion models for the separation of binary and multicomponent
systems in reverse osmosis process, Comput. Chem.
Eng., 100 (2017) 48–79.
- K.S. Spiegler, Transport processes in ionic membranes, Trans.
Faraday Soc., 54 (1958) 1408–1428.
- O. Kedem, A. Katchalsky, A physical interpretation of the
phenomenological coefficients of membrane permeability,
J. Gen. Physiol., 45 (1961) 143–179.
- A. Ślęzak, A frictional interpretation of the phenomenological
coefficients of membrane permeability for multicomponent,
non-ionic solutions, J. Biol. Phys., 23 (1997) 239–250.
- M.H. Friedman, R.A. Meyer, Transport across homoporous
and heteroporous membranes in nonideal, nondilute solutions.
I. Inequality of reflection coefficients for volume flow and
solute flow, Biophys. J., 34 (1981) 535–544.
- E.A. Mason, H.K. Lonsdale, Statistical-mechanical theory of
membrane transport, J. Membr. Sci., 51 (1990) 1–81.
- X. Cheng, P.M. Pinsky, The balance of fluid and osmotic
pressures across active biological membranes with application
to the corneal endothelium, PLoS One, 10 (2015) e0145422,
doi: 10.1371/journal.pone.0145422.
- L. Peusner, The Principles of Network Thermodynamics:
Theory and Biophysical Applications, Ph.D. Thesis, Harvard
University, Cambridge, MA, USA, 1970.
- G. Oster, A. Perelson, A. Katchalsky, Network thermodynamics,
Nature, 234 (1971) 239–399.
- L. Peusner, Hierarchies of irreversible energy conversion
systems: a network thermodynamic approach. I. Linear steady
state without storage, J. Theor. Biol., 10 (1983) 27–39.
- L. Peusner, Hierarchies of irreversible energy conversion
systems. II. Network derivation of linear transport equations,
J. Theor. Biol., 115 (1985) 319–335.
- L. Peusner, Network representation yielding the evolution of
Brownian motion with multiple particle interactions, Phys.
Rev. A, 32 (1985) 1237–1238.
- L. Peusner, D.C. Mikulecky, B. Bunow; S. Roy Caplan, A network
thermodynamic approach to Hill and King–Altman reaction–
diffusion kinetics, J. Chem. Phys., 83 (1985) 5559–5566.
- L. Peusner, Studies in Network Thermodynamics, Elsevier,
Amsterdam, 1986.
- L. Peusner, Hierarchies of energy conversion processes III. Why
are Onsager equations reciprocal? The euclidean geometry of
fluctuation–dissipation space, J. Theor. Biol., 122 (1983) 125–155.
- L. Peusner, Premetric thermodynamics. A topological graphical
model, J. Chem. Soc., Faraday Trans., 81 (1985) 1151–1161.
- A. Ślęzak, S. Grzegorczyn, K.M. Batko, Resistance coefficients
of polymer membrane with concentration polarization,
Transp. Porous Media, 95 (2012) 151–170.
- K.M. Batko, I. Ślęzak-Prochazka, S. Grzegorczyn, A. Ślęzak,
Membrane transport in concentration polarization conditions:
network thermodynamics model equations, J. Porous Media,
17 (2014) 573–586.
- I. Ślęzak-Prochazka, K.M. Batko, S. Wąsik, A. Ślęzak, H*
Peusner’s form of the Kedem–Katchalsky equations for nonhomogenous
non-electrolyte binary solutions, Transp. Porous
Media, 111 (2016) 457–477.
- K.M. Batko, I. Ślęzak-Prochazka, A. Ślęzak, Network hybrid
form of the Kedem–Katchalsky equations for non-homogenous
binary non-electrolyte solutions: evaluation of Pij* Peusner’s
tensor coefficients, Transp. Porous Media, 106 (2015) 1–20.
- K.M. Batko, A. Ślęzak, Membrane transport of non-electrolyte
solutions in concentration polarization conditions: Hr form of
the Kedem–Katchalsky–Peusner equations, Int. J. Chem. Eng.,
2019 (2019) 5629259, doi: 10.1155/2019/5629259.
- M. Kargol, A. Kargol, Mechanistic equations for membrane
substance transport and their identity with Kedem–Katchalsky
equations, Biophys. Chem., 103 (2003) 117–127.
- H.Y. Elmoazzen, J.A.W. Elliot, L.E. McGann, Osmotic transport
across cell membranes in nondilute solutions: a new nondilute
solute transport equation, Biophys. J., 96 (2009) 2559–2571.
- J. Meixner, Thermodynamics of electrical networks and
Onsager–Casimir reciprocal relations, J. Math. Phys., 4 (1963)
154–159.
- A. Ślęzak, S. Grzegorczyn, K.M. Batko, W.M. Bajdur,
M. Włodarczyk-Makuła, M. Applicability of the Lr form of
the Kedem–Katchalsky–Peusner equations for membrane
transport in water purification technology, Desal. Water Treat.,
202 (2020) 48–60.
- K.M. Batko, A. Ślęzak, S. Grzegorczyn, W.M. Bajdur, The Rr
form of the Kedem–Katchalsky–Peusner model equations
for description of the membrane transport in concentration
polarization conditions, Entropy, 22 (2020) 857, doi: 10.3390/
e22080857.
- K. Batko, I. Ślęzak-Prochazka, A. Ślęzak, W.M. Bajdur,
M. Makuła-Włodarczyk, Management of energy conversion
processes in membrane system, Energies, 15 (2022) 1661,
doi: 10.3390/en15051661.
- A. Ślęzak, K. Dworecki, I.H. Ślęzak, S. Wąsik, Permeability
coefficient model equations of the complex: membraneconcentration
boundary layers for ternary non-electrolyte
solutions, J. Membr. Sci., 267 (2005) 50–57.
- A. Ślęzak, S. Grzegorczyn, J. Jasik-Ślęzak, K. Michalska-
Małecka, Natural convection as an asymmetrical factor of the
transport through porous membrane, Transp. Porous Media,
84 (2010) 685–698.
- K. Dworecki, A. Ślęzak, B. Ornal-Wąsik, S. Wąsik, Effect of
hydrodynamic instabilities on solute transport in a membrane
system, J. Membr. Sci., 265 (2005) 94–100.
- J.S. Jasik-Ślęzak, K.M. Olszówka, A. Ślęzak, Estimation of
thickness of concentration boundary layers by osmotic volume
flux determination, Gen. Physiol. Biophys., 30 (2011) 186–195.
- A. Ślęzak, Irreversible thermodynamic model equations of
the transport across a horizontally mounted membrane,
Biophys. Chem., 34 (1989) 91–102.
- A. Ślęzak, K. Dworecki, J. Jasik-Ślęzak, J. Wąsik, Method
to determine the critical concentration Rayleigh number
in isothermal passive membrane transport processes,
Desalination, 168 (2004) 397–412.
- A. Ślęzak, K. Dworecki, J.E. Anderson, Gravitational effects
on transmembrane flux: the Rayleigh—Taylor convective
instability, J. Membr. Sci., 23 (1985) 71–81.
- H. Klinkman, M. Holtz, W. Wilgerodt, G. Wilke, D. Schoenfelder,
Nephrophan–Eine neue dialysemembranen, Z. Urol. Nephrol.,
62 (1969) 285–292.
- T. Richter, S. Keipert, In vitro permeation studies comparing
bovine nasal mucosa, porcine cornea and artificial membrane:
androstenedione in microemulsions and their components,
Eur. J. Pharm. Biopharm., 58 (2004) 137–143.
- Th. F. Vandamme, Microemulsions as ocular drug delivery
systems: recent developments and future challenges, Prog.
Retin. Eye Res., 21 (2002) 15–34.
- O. Kedem, S.R. Caplan, Degree of coupling and its relation to
efficiency of energy conversion, Trans. Faraday Soc., 61 (1965)
1897–1911.
- S. Bason, O. Kedem, V. Freger, Determination of concentrationdependent
transport coefficients in nanofiltration: experimental
evaluation of coefficients, J. Membr. Sci., 310 (2008)
326–204.
- I. Ślęzak-Prochazka, K.M. Batko, A. Ślęzak, evaluation of
transport properties and energy conversion of bacterial
cellulose membrane using Peusner network thermodynamics,
Entropy, 25 (2023) 3, doi: 10.3390/e25010003.
- K. Dworecki, Interferometric investigation of near-membrane
diffusion layers, J. Biol. Phys., 21 (1995) 37–49.
- K. Dworecki, S. Wąsik, A. Ślęzak, Temporal and spatial
structure of the concentration boundary layers in a membrane
system, Physica A, 326 (2003) 360–369.
- K. Dworecki, A. Ślęzak, M. Drabik, B. Ornal-Wąsik, S. Wąsik,
Determination of the membrane permeability coefficient under
concentration polarisation conditions, Desalination, 198 (2006)
326–334.