References

  1. M. Zabochnicka, M. Krzywonos, Z. Romanowska-Duda, S. Szufa, A. Darkalt, M. Mubashar, Algal biomass utilization toward circular economy, Life (Basel), 12 (2022) 1480, doi: 10.3390/life12101480.
  2. N. El-Hage Scialabba, Food Wastage Footprint, Full Cost Accounting, Final Report, Food Agriculture Organization of the United Nations, 2014.
  3. M. Zabochnicka-Świątek, T. Kamizela, M. Kowalczyk, H.M. Kalaji, W. Bąba, Inexpensive and universal growth media for biomass production of microalgae, Global Nest J., 21 (2019) 82–89.
  4. M.R. Kosseva, Food Industry Wastes: Assessment and Recuperation of Commodities, Elsevier Ltd., Oxford, UK, 2020.
  5. F. Perera, Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist, Int. J. Environ. Res. Public Health, 15 (2018) 16, doi: 10.3390/ijerph15010016.
  6. D. Holzer, Examples of Non-Renewable Energy Sources, Home Guides, SF Gate. Available at https://homeguides.sfgate.com/examples-nonrenewable-energy-sources-78740.html
  7. D. Tillman, The Combustion of Solid Fuels and Wastes, Elsevier Inc., 2012.
  8. S. Achinas, V. Achinas, G.J.W. Euverink, A technological overview of biogas production from biowaste, Engineering, 3 (2017) 299–307.
  9. A. Wellinger, J. Murphy, D. Baxter, The Biogas Handbook: Science, Production and Applications, Woodhead, Cambridge, United Kingdom, 2013.
  10. Y. Li, G. Xumeng, Advances in Bioenergy, Elsevier, 2016.
  11. S. Wasielewski, C.G. Morandi, K. Mouarkech, R. Minke, H. Steinmetz, Impacts of blackwater co-digestion on biogas production in the municipal wastewater treatment sector using pilot-scale UASB and CSTR reactors, Desal. Water Treat., 91 (2017) 121–128.
  12. H. Fisgativa, A. Tremier, P. Dabert, Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion, Waste Manage., 50 (2016) 264–274.
  13. M. Rowan, G.C. Umenweke, E.I. Epelle, I.C. Afolabi, P.U. Okoye, B. Gunes, J.A. Okolie, Anaerobic co-digestion of food waste and agricultural residues: an overview of feedstock properties and the impact of biochar addition, Digital Chem. Eng., 4 (2022) 100046, doi: 10.1016/j.dche.2022.100046.
  14. C. Zhang, R. Yang, M. Sun, S. Zhang, M. He, D.C.W. Tsang, G. Luo, Wood waste biochar promoted anaerobic digestion of food waste: focusing on the characteristics of biochar and microbial community analysis, Biochar, 4 (2022) 62, doi: 10.1007/s42773-022-00187-6.
  15. C.E. Manyi-Loh, S.N. Mamphweli, E.L. Meyer, A.I. Okoh, G. Makaka, M. Simon, Microbial anaerobic digestion (biodigesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy, Int. J. Environ. Res. Public Health, 10 (2013) 4390–4417.
  16. Y. Ren, M. Yu, C. Wu, Q. Wang, M. Gao, Q. Huang, Y. Liu, A comprehensive review on food waste anaerobic digestion: research updates and tendencies, Bioresour. Technol., 247 (2017) 1069–1076.
  17. M. Dudek, K. Świechowski, P. Manczarski, J.A. Koziel, A. Białowiec, The effect of biochar addition on the biogas production kinetics from the anaerobic digestion of Brewers’ spent grain, Energies, 12 (2019) 1518, doi: 10.3390/en12081518.
  18. J. Cai, P. He, Y. Wang, L. Shao, F. Lu, Effects and optimization of the use of biochar in anaerobic digestion of food wastes, Waste Manage. Res., 34 (2016) 409–416.
  19. M. Fagbohungbe, B. Herbert, L. Hurst, N.C. Ibeto, H. Li, S. Usmani, K. Semple, The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion, Waste Manage., 61 (2017) 236–249.
  20. B. Vaish, V. Srivastava, U.K. Singh, S.K. Gupta, P.S. Chauhan, R. Kothari, R.P. Singh, Explicating the fertilizer potential of anaerobic digestate: effect on soil nutrient profile and growth of Solanum melongena L., Environ. Technol. Innovation, 27 (2022) 102471, doi: 10.1016/j.eti.2022.102471.
  21. N. Scarlat, J.-F. Dallemand, F. Fahl, Biogas: developments and perspectives in Europe, Renewable Energy, 129 (2018) 457–472.
  22. ISO 11734:1995 International Standard Water Quality- Evaluation of the “Ultimate” Anaerobic Biodegradability of Organic Compounds in Digested Sludge – Method by Measurement of the Biogas Production.
  23. M. Lesteur, V. Bellon-Maurel, C. Gonzalez, E. Latrille, J.M. Roger, G. Junqua, J.P. Steyer, Alternative methods for determining anaerobic biodegradability: a review, Process Biochem., 45 (2010) 431–440.
  24. P. Buffiere, D. Loisel, N. Bernet, J.-P. Delgenes, Towards new indicators for the prediction of solid waste anaerobic digestion properties, Water Sci. Technol., 53 (2006) 233–241.
  25. G. Esposito, L. Frunzo, F. Liotta, A. Panico, F. Pirozzi, Biomethane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates, Open Environ. Eng. J., 5 (2012) 1–8.
  26. D. Deublein, A. Steinhauser, Biogas From Waste and Renewable Resources: An Introduction, Wiley-Vch,
    e-Book, 2008.
  27. M. Shofie, W. Qiao, Q. Li, K. Takayanagi, Y. Li, Comprehensive monitoring and management of a long-term thermophilic CSTR treating coffee grounds, coffee liquid, milk waste, and municipal sludge, Bioresour. Technol., 192 (2015) 202–211.
  28. N. Sunyoto, M. Zhu, Z. Zhang, D. Zhang, Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste, Bioresour. Technol., 219 (2016) 29–36.
  29. D. Wang, J. Ai, F. Shen, G. Yang, Y. Zhang, S. Deng, J. Zhang, Y. Zeng, C. Song, Improving anaerobic digestion of easyacidification substrates by promoting buffering capacity using biochar derived from vermicompost, Bioresour. Technol., 227 (2017) 286–296.
  30. J. Mumme, F. Srocke, K. Heeg, M. Werner, Use of biochars in anaerobic digestion, Bioresour. Technol., 164 (2014) 189–197.
  31. J. Bień, T. Kamizela, M. Kowalczyk, A. Grosser, N. Zwierz, M. Zabochnicka-Świątek, The effectiveness of acid fermentation of sonicated primary sludge, J. Residuals Sci. Technol., 12 (2015) 1–8.
  32. M. Zabochnicka-Świątek, Utilization of Chlorella vulgaris and sediments after N-NH4 removal containing clinoptilolite for sorption of heavy metals from wastewater, Rocznik Ochrona Srodowiska, 15 (2013) 324–347.
  33. M. Zabochnicka, Industrial wastewater as a growth medium for microalgal biomass for a sustainable circular bioeconomy, Appl. Sci., 12 (2022) 10299, doi: 10.3390/app122010299.