References
- M. Zabochnicka, M. Krzywonos, Z. Romanowska-Duda,
S. Szufa, A. Darkalt, M. Mubashar, Algal biomass utilization
toward circular economy, Life (Basel), 12 (2022) 1480,
doi: 10.3390/life12101480.
- N. El-Hage Scialabba, Food Wastage Footprint, Full Cost
Accounting, Final Report, Food Agriculture Organization
of the United Nations, 2014.
- M. Zabochnicka-Świątek, T. Kamizela, M. Kowalczyk,
H.M. Kalaji, W. Bąba, Inexpensive and universal growth media
for biomass production of microalgae, Global Nest J., 21 (2019)
82–89.
- M.R. Kosseva, Food Industry Wastes: Assessment and
Recuperation of Commodities, Elsevier Ltd., Oxford, UK, 2020.
- F. Perera, Pollution from fossil-fuel combustion is the leading
environmental threat to global pediatric health and equity:
solutions exist, Int. J. Environ. Res. Public Health, 15 (2018) 16,
doi: 10.3390/ijerph15010016.
- D. Holzer, Examples of Non-Renewable Energy Sources, Home
Guides, SF Gate. Available at https://homeguides.sfgate.com/examples-nonrenewable-energy-sources-78740.html
- D. Tillman, The Combustion of Solid Fuels and Wastes,
Elsevier Inc., 2012.
- S. Achinas, V. Achinas, G.J.W. Euverink, A technological
overview of biogas production from biowaste, Engineering,
3 (2017) 299–307.
- A. Wellinger, J. Murphy, D. Baxter, The Biogas Handbook:
Science, Production and Applications, Woodhead, Cambridge,
United Kingdom, 2013.
- Y. Li, G. Xumeng, Advances in Bioenergy, Elsevier, 2016.
- S. Wasielewski, C.G. Morandi, K. Mouarkech, R. Minke,
H. Steinmetz, Impacts of blackwater co-digestion on biogas
production in the municipal wastewater treatment sector
using pilot-scale UASB and CSTR reactors, Desal. Water Treat.,
91 (2017) 121–128.
- H. Fisgativa, A. Tremier, P. Dabert, Characterizing the
variability of food waste quality: a need for efficient valorisation
through anaerobic digestion, Waste Manage., 50 (2016)
264–274.
- M. Rowan, G.C. Umenweke, E.I. Epelle, I.C. Afolabi, P.U. Okoye,
B. Gunes, J.A. Okolie, Anaerobic co-digestion of food waste and
agricultural residues: an overview of feedstock properties and
the impact of biochar addition, Digital Chem. Eng., 4 (2022)
100046, doi: 10.1016/j.dche.2022.100046.
- C. Zhang, R. Yang, M. Sun, S. Zhang, M. He, D.C.W. Tsang,
G. Luo, Wood waste biochar promoted anaerobic digestion
of food waste: focusing on the characteristics of biochar and
microbial community analysis, Biochar, 4 (2022) 62, doi: 10.1007/s42773-022-00187-6.
- C.E. Manyi-Loh, S.N. Mamphweli, E.L. Meyer, A.I. Okoh,
G. Makaka, M. Simon, Microbial anaerobic digestion (biodigesters)
as an approach to the decontamination of animal
wastes in pollution control and the generation of renewable
energy, Int. J. Environ. Res. Public Health, 10 (2013) 4390–4417.
- Y. Ren, M. Yu, C. Wu, Q. Wang, M. Gao, Q. Huang, Y. Liu,
A comprehensive review on food waste anaerobic digestion:
research updates and tendencies, Bioresour. Technol., 247 (2017)
1069–1076.
- M. Dudek, K. Świechowski, P. Manczarski, J.A. Koziel,
A. Białowiec, The effect of biochar addition on the biogas
production kinetics from the anaerobic digestion of Brewers’
spent grain, Energies, 12 (2019) 1518, doi: 10.3390/en12081518.
- J. Cai, P. He, Y. Wang, L. Shao, F. Lu, Effects and optimization
of the use of biochar in anaerobic digestion of food wastes,
Waste Manage. Res., 34 (2016) 409–416.
- M. Fagbohungbe, B. Herbert, L. Hurst, N.C. Ibeto, H. Li,
S. Usmani, K. Semple, The challenges of anaerobic digestion
and the role of biochar in optimizing anaerobic digestion,
Waste Manage., 61 (2017) 236–249.
- B. Vaish, V. Srivastava, U.K. Singh, S.K. Gupta, P.S. Chauhan,
R. Kothari, R.P. Singh, Explicating the fertilizer potential of
anaerobic digestate: effect on soil nutrient profile and growth of
Solanum melongena L., Environ. Technol. Innovation, 27 (2022)
102471, doi: 10.1016/j.eti.2022.102471.
- N. Scarlat, J.-F. Dallemand, F. Fahl, Biogas: developments and
perspectives in Europe, Renewable Energy, 129 (2018) 457–472.
- ISO 11734:1995 International Standard Water Quality-
Evaluation of the “Ultimate” Anaerobic Biodegradability
of Organic Compounds in Digested Sludge – Method by
Measurement of the Biogas Production.
- M. Lesteur, V. Bellon-Maurel, C. Gonzalez, E. Latrille,
J.M. Roger, G. Junqua, J.P. Steyer, Alternative methods for
determining anaerobic biodegradability: a review, Process
Biochem., 45 (2010) 431–440.
- P. Buffiere, D. Loisel, N. Bernet, J.-P. Delgenes, Towards
new indicators for the prediction of solid waste anaerobic
digestion properties, Water Sci. Technol., 53 (2006) 233–241.
- G. Esposito, L. Frunzo, F. Liotta, A. Panico, F. Pirozzi, Biomethane
potential tests to measure the biogas production
from the digestion and co-digestion of complex organic
substrates, Open Environ. Eng. J., 5 (2012) 1–8.
- D. Deublein, A. Steinhauser, Biogas From Waste and Renewable
Resources: An Introduction, Wiley-Vch,
e-Book, 2008.
- M. Shofie, W. Qiao, Q. Li, K. Takayanagi, Y. Li, Comprehensive
monitoring and management of a long-term thermophilic
CSTR treating coffee grounds, coffee liquid, milk waste, and
municipal sludge, Bioresour. Technol., 192 (2015) 202–211.
- N. Sunyoto, M. Zhu, Z. Zhang, D. Zhang, Effect of biochar
addition on hydrogen and methane production in two-phase
anaerobic digestion of aqueous carbohydrates food waste,
Bioresour. Technol., 219 (2016) 29–36.
- D. Wang, J. Ai, F. Shen, G. Yang, Y. Zhang, S. Deng, J. Zhang,
Y. Zeng, C. Song, Improving anaerobic digestion of easyacidification
substrates by promoting buffering capacity using
biochar derived from vermicompost, Bioresour. Technol.,
227 (2017) 286–296.
- J. Mumme, F. Srocke, K. Heeg, M. Werner, Use of biochars in
anaerobic digestion, Bioresour. Technol., 164 (2014) 189–197.
- J. Bień, T. Kamizela, M. Kowalczyk, A. Grosser, N. Zwierz,
M. Zabochnicka-Świątek, The effectiveness of acid fermentation
of sonicated primary sludge, J. Residuals Sci. Technol.,
12 (2015) 1–8.
- M. Zabochnicka-Świątek, Utilization of Chlorella vulgaris and
sediments after N-NH4 removal containing clinoptilolite for
sorption of heavy metals from wastewater, Rocznik Ochrona
Srodowiska, 15 (2013) 324–347.
- M. Zabochnicka, Industrial wastewater as a growth medium
for microalgal biomass for a sustainable circular bioeconomy,
Appl. Sci., 12 (2022) 10299, doi: 10.3390/app122010299.