References
- A.C. Chrysostomou, B. Vrancken, G. Koumbaris,
G. Themistokleous, A. Aristokleous, C. Masia, C. Eleftheriou,
C. Iοannou, D.C. Stylianou, M. Ioannides, P. Petrou, V. Georgiou,
A. Hatziyianni, P. Lemey, A.-M. Vandamme, P.P. Patsalis,
L.G. Kostrikis, A comprehensive molecular epidemiological
analysis of SARS-CoV-2 infection in Cyprus from April 2020 to
January 2021: evidence of a highly polyphyletic and evolving
epidemic, Viruses, 13 (2021) 1098, doi: 10.3390/v13061098.
- World Health Organization, “WHO Coronavirus (COVID-19)
Dashboard”. Available at https://covid19.who.int/
- V. Thakur, R.K. Ratho, OMICRON (B.1.1.529): a new SARSCoV-2 variant of concern mounting worldwide fear, J. Med.
Virol., 94 (2022) 1821–1824.
- S. Dharmaraj, V. Ashokkumar, S. Hariharan, A. Manibharathi,
P.L. Show, C.T. Chong, Chawalit Ngamcharussrivichai b g,
The COVID-19 pandemic face mask waste: a blooming threat
to the marine environment, Chemosphere, 272 (2021) 129601,
doi: 10.1016/j.chemosphere.2021.129601.
- C. Nannou, A. Ofrydopoulou, E. Evgenidou, D. Heath, E. Heath,
D. Lambropoulou, Antiviral drugs in aquatic environment and
wastewater treatment plants: a review on occurrence, fate,
removal and ecotoxicity, Sci. Total Environ., 699 (2020) 134322,
doi: 10.1016/j.scitotenv.2019.134322.
- J. Wang, J. Shen, D. Ye, X. Yan, Y. Zhang, W. Yang, X. Li,
J. Wang, L. Zhang, L. Pan, Disinfection technology of hospital
wastes and wastewater: suggestions for disinfection strategy
during coronavirus disease 2019 (COVID-19) pandemic in
China, Environ. Pollut., 262 (2020) 114665, doi: 10.1016/j.envpol.2020.114665.
- W. Gwenzi, R. Selvasembian, N.-A.O. Offiong, A. El Din
Mahmoud, E. Sanganyado, J. Mal, COVID-19 drugs in aquatic
systems: a review, Environ. Chem. Lett., 20 (2022) 1275–1294.
- S. Jain, P. Kumar, R.K. Vyas, P. Pandit, A.K. Dalai, Occurrence
and removal of antiviral drugs in environment:
a review, Water
Air Soil Pollut., 224 (2013) 1410, doi: 10.1007/s11270-012-1410-3.
- S.A. Mahgoub, Microbial Hazards in Treated Wastewater:
Challenges and Opportunities for Their Reusing in Egypt,
A. Negm, Eds., Unconventional Water Resources and Agriculture
in Egypt, The Handbook of Environmental Chemistry,
Vol. 75, Springer, Cham, 2018. doi: 10.1007/698_2018_314
- D. O’Flynn, J. Lawler, A. Yusuf, A. Parle-McDermott, D. Harold,
T. McCloughlin, L. Holland, F. Regan, B. White,
A review
of pharmaceutical occurrence and pathways in the aquatic
environment in the context of a changing climate and the
COVID-19 pandemic, Anal. Methods, 13 (2021) 575–594.
- S. Ncube, L.M. Madikizela, L. Chimuka, M.M. Nindi,
Environmental fate and ecotoxicological effects of
antiretrovirals: a current global status and future perspectives,
Water Res., 145 (2018) 231–247.
- S. Mohammadi, G. Moussavi, K. Kiyanmehr, S. Shekoohiyan,
M. Heidari, K. Naddafi, S. Giannakis, Degradation of the
antiviral remdesivir by a novel, continuous-flow, helical-baffle
incorporating VUV/UVC photoreactor: performance assessment
and enhancement by inorganic peroxides, Sep. Purif. Technol.,
298 (2022) 121665, doi: 10.1016/j.seppur.2022.121665.
- C. Prasse, M.P. Schlüsener, R. Schulz, T.A. Ternes, Antiviral
drugs in wastewater and surface waters: a new pharmaceutical
class of environmental relevance, Environ. Sci. Technol.,
44 (2010) 1728–1735.
- F. Ju, K. Beck, X. Yin, A. Maccagnan, C.S. McArdell, H.P. Singer,
D.R. Johnson, T. Zhang, H. Bürgmann, Wastewater treatment
plant resistomes are shaped by bacterial composition,
genetic exchange, and upregulated expression in the effluent
microbiomes, ISME J., 13 (2019) 346–360.
- H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de
Oliveira Bezerra, R. Bergamasco, Surface water pollution by
pharmaceuticals and an alternative of removal by low-cost
adsorbents: a review, Chemosphere, 222 (2019) 766–780.
- T. Mackuľak, S. Černanský, M. Fehér, L. Birošová, M. Gál,
Pharmaceuticals, drugs, and resistant microorganisms
— environmental impact on population health, Curr. Opin.
Environ. Sci. Health, 9 (2019) 40–48.
- N. Quinete, R.A. Hauser-Davis, Drinking water pollutants
may affect the immune system: concerns regarding COVID-
19 health effects, Environ. Sci. Pollut. Res. Int., 28 (2021)
1235–1246.
- B. Eryildiz, B. Yavuzturk Gul, I. Koyuncu, A sustainable
approach for the removal methods and analytical determination
methods of antiviral drugs from water/wastewater: a
review, J. Water Process Eng., 49 (2022) 103036, doi: 10.1016/j.jwpe.2022.103036.
- C.A. Morales-Paredes, J.M. Rodríguez-Díaz, N. Boluda-Botella,
Pharmaceutical compounds used in the
COVID-19 pandemic:
a review of their presence in water and treatment techniques
for their elimination, Sci. Total Environ., 814 (2022) 152691,
doi: 10.1016/j.scitotenv.2021.152691.
- Cotruvo Joe, Pharmaceuticals in Drinking-Water, World
Health Organization, France, 2012.
- T. aus der Beek, F.-A. Weber, A. Bergmann, S. Hickmann, I.
Ebert, A. Hein, A. Küster, Pharmaceuticals in the environment —
global occurrences and perspectives, Environ. Toxicol. Chem.,
35 (2016) 823–835.
- R. Elkayam, A. Aharoni, D. Vaizel-Ohayon, O. Sued, Y. Katz,
I. Negev, R.B.M. Marano, E. Cytryn, L. Shtrasler, O. Lev, Viral
and microbial pathogens, indicator microorganisms, microbial
source tracking indicators, and antibiotic resistance genes in a
confined managed effluent recharge system, J. Environ. Eng.,
144 (2018) 05017011, doi: 10.1061/(ASCE)EE.1943-7870.0001334.
- A. El Din Mahmoud, M. Franke, M. Stelter, P. Braeutigam,
Mechanochemical versus chemical routes for graphitic
precursors and their performance in micropollutants removal
in water, Powder Technol., 366 (2020) 629–640.
- S. Bairagi, S. Wazed Ali, Conventional and Advanced
Technologies for Wastewater Treatment, Shahid-ul-Islam,
Ed., Environmental Nanotechnology for Water Purification,
Wiley Online Library, 2020, pp. 33–56.
- I. Zinicovscaia, Conventional Methods of Wastewater
Treatment, I. Zinicovscaia, L. Cepoi, Eds., Cyanobacteria
for Bioremediation of Wastewaters, Springer, Cham, 2016.
doi: 10.1007/978-3-319-26751-7_3
- R.R. Zepon Tarpani, A. Azapagic, Life cycle environmental
impacts of advanced wastewater treatment techniques for
removal of pharmaceuticals and personal care products
(PPCPs), J. Environ. Manage., 215 (2018) 258–272.
- J.H. Beigel, K.M. Tomashek, L.E. Dodd, A.K. Mehta,
B.S. Zingman, A.C. Kalil, E. Hohmann, H.Y. Chu,
A. Luetkemeyer, S. Kline, D.L. de Castilla, R.W. Finberg,
K. Dierberg, V. Tapson, L. Hsieh, T.F. Patterson, R. Paredes,
D.A. Sweeney, W.R. Short, G. Touloumi, D.C. Lye, N. Ohmagari,
M.-d. Oh, G.M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer,
M.G. Kortepeter, R.L. Atmar, C. Buddy Creech, J. Lundgren,
A.G. Babiker, S. Pett, J.D. Neaton, T.H. Burgess, T. Bonnett,
M. Green, M. Makowski, A. Osinusi, S. Nayak, H. Clifford
Lane, Remdesivir for the treatment of COVID-19—final report,
N. Engl. J. Med., 383 (2020) 1813–1826.
- F. Grundeis, K. Ansems, K. Dahms, V. Thieme, M.-I. Metzendorf,
N. Skoetz, C. Benstoem, A. Mikolajewska, M. Griesel, F. Fichtner,
M. Stegemann, Authors’ declarations of interest, Remdesivir
for the treatment of COVID-19, Cochrane Database Syst. Rev.,
1 (2021), doi: 10.1002/14651858.CD014962.pub2.
- A.K. Singh, A. Singh, R. Singh, A. Misra, Molnupiravir in
COVID-19: a systematic review of literature, Diabetes Metab.
Syndr., 15 (2021) 102329, doi: 10.1016/j.dsx.2021.102329.
- M. Imran, M. Kumar Arora, S.M.B. Asdaq, S.A. Khan, S.I. Alaqel,
M.K. Alshammari, M.M. Alshehri, A.S. Alshrari, A.M. Ali,
A.M. Al-shammeri, B.D. Alhazmi, A.A. Harshan, Md. Tauquir
Alam, Abida, Discovery, development, and patent trends on
molnupiravir: a prospective oral treatment for COVID-19,
Molecules, 26 (2021) 5795, doi: 10.3390/molecules26195795.
- K. Westendorf, S. Žentelis, L. Wang, D. Foster, P. Vaillancourt,
M. Wiggin, E. Lovett, R. van der Lee, J. Hendle, A. Pustilnik,
J. Michael Sauder, L. Kraft, Y. Hwang, R.W. Siegel,
J. Chen, B.A. Heinz, R.E. Higgs, N.L. Kallewaard, K. Jepson,
R. Goya, M.A. Smith, D.W. Collins, D. Pellacani, P. Xiang, V. de
Puyraimond, M. Ricicova, L. Devorkin, C. Pritchard, A. O’Neill,
K. Dalal, P. Panwar, H. Dhupar, F.A. Garces, C.A. Cohen,
J.M. Dye, K.E. Huie, C.V. Badger, D. Kobasa, J. Audet, J.J. Freitas,
S. Hassanali, I. Hughes, L. Munoz, H.C. Palma, B. Ramamurthy,
R.W. Cross, T.W. Geisbert, V. Menachery, K. Lokugamage, V.
Borisevich, I. Lanz, L. Anderson, P. Sipahimalani, K.S. Corbett,
E.S. Yang, Y. Zhang, W. Shi, T. Zhou, M. Choe, J. Misasi, P.D.
Kwong, N.J. Sullivan, B.S. Graham, T.L. Fernandez, C.L. Hansen,
E. Falconer, J.R. Mascola, B.E. Jones, B.C. Barnhart, LY-CoV1404
(bebtelovimab) potently neutralizes SARS-CoV-2 variants,
Cell Rep., 39 (2022) 110812, doi: 10.1016/j.celrep.2022.110812.
- E.-L. Wu, R.N. Kumar, W. Justin Moore, G.T. Hall,
I. Vysniauskaite, K.-Y.A. Kim, M.P. Angarone, V. Stosor,
M.G. Ison, A. Frink, C.J. Achenbach, K.L. Gates, Disparities
in COVID-19 monoclonal antibody delivery:
a retrospective
cohort study, J. Gen. Intern. Med., 37 (2022) 2505–2513.
- B. Halford, The path to Paxlovid, ACS Cent. Sci., 8 (2022)
405–407.
- S. Chaplin, Paxlovid: antiviral combination for the treatment
of COVID-19, Prescriber, 33 (2022) 31–33.
- U. Agrawal, R. Raju, Z.F. Udwadia, Favipiravir: a new and
emerging antiviral option in COVID-19, Med. J. Armed Forces
India, 76 (2020) 370–376.
- S. Joshi, J. Parkar, A. Ansari, A. Vora, D. Talwar, M. Tiwaskar,
S. Patil, H. Barkate, Role of favipiravir in the treatment of
COVID-19, Int. J. Infect. Dis., 102 (2021) 501–508.
- H. Li, N. Xiong, C. Li, Y. Gong, L. Liu, H. Yang, X. Tan, N. Jiang,
Q. Zong, J. Wang, Z. Lu, X. Yin, Efficacy of ribavirin and
interferon-α therapy for hospitalized patients with COVID-
19: a multicenter, retrospective cohort study, Int. J. Infect. Dis.,
104 (2021) 641–648.
- S. Tong, Y. Su, Y. Yu, C. Wu, J. Chen, S. Wang, J. Jiang, Ribavirin
therapy for severe COVID-19: a retrospective cohort study,
Int. J. Antimicrob. Agents, 56 (2020) 106114, doi: 10.1016/j.
ijantimicag.2020.106114.
- S. Abd-Elsalam, R.A. Noor, R. Badawi, M. Khalaf, E.S. Esmail,
S. Soliman, M.S. Abd El Ghafar, M. Elbahnasawy, E.F. Moustafa,
S.M. Hassany, M.A. Medhat, H. Karam-Allah Ramadan,
M.A.S. Eldeen, M. Alboraie, A. Cordie, G. Esmat, Clinical study
evaluating the efficacy of ivermectin in COVID-19 treatment:
a randomized controlled study, J. Med. Virol., 93 (2021)
5833–5838.
- F. Heidary, R. Gharebaghi, Ivermectin: a systematic review
from antiviral effects to COVID-19 complementary regimen,
The J. Antibiot. (Tokyo), 73 (2020) 593–602.
- P.W. Horby, M. Mafham, J.L. Bell, L. Linsell, N. Staplin,
J.R. Emberson, A. Palfreeman, J. Raw, E. Elmahi, B. Prudon,
C. Green, S. Carley, D. Chadwick, M. Davies, M.P. Wise,
J. Kenneth Baillie, L.C. Chappell, S.N. Faust, T. Jaki, K. Jeffery,
W.S. Lim, A. Montgomery, K. Rowan, E. Juszczak, R. Haynes, M.J.
Landray, Lopinavir-ritonavir in patients admitted to hospital
with COVID-19 (RECOVERY): a randomised, controlled, openlabel,
platform trial, LANCET, 396 (2020) 1345–1352.
- A. Vitiello, F. Ferrara, Remdesivir versus ritonavir/lopinavir
in COVID-19 patients, Ir. J. Med. Sci., 190 (2021) 1249–1250.
- M.J. Ali, M. Hanif, M.A. Haider, M.U. Ahmed, F.N.U. Sundas,
A. Hirani, I.A. Khan, K. Anis, A.H. Karim, Treatment options
for COVID-19: a review, Front Med (Lausanne), 7 (2022) 480,
doi: 10.3389/fmed.2020.00480.
- X. Li, Y. Wang, P. Agostinis, A. Rabson, G. Melino, E. Carafoli,
Y. Shi, E. Sun, Is hydroxychloroquine beneficial for COVID-
19 patients?, Cell Death Dis., 11 (2020) 512, doi: 10.1038/s41419-020-2721-8.
- R.P. Nippes, P.D. Macruz, G.N. da Silva, M.H. Neves Olsen
Scaliante, A critical review on environmental presence of
pharmaceutical drugs tested for the COVID-19 treatment,
Process Saf. Environ. Prot., 152 (2021) 568–582.
- A. Cortegiani, G. Ingoglia, M. Ippolito, A. Giarratano, S. Einav,
A systematic review on the efficacy and safety of chloroquine
for the treatment of COVID-19, J. Crit. Care, 57 (2020) 279–283.
- A. Pani, M. Lauriola, A. Romandini, F. Scaglione,
Macrolides and viral infections: focus on azithromycin in
COVID-19 pathology, Int. J. Antimicrob. Agents, 56 (2020)
106053, doi: 10.1016/j.ijantimicag.2020.106053.
- D. Echeverría-Esnal, C. Martin-Ontiyuelo, M.E. Navarrete-Rouco, M. De-Antonio Cuscó, O. Ferrández, J.P. Horcajada,
S. Grau, Azithromycin in the treatment of COVID-19: a review,
Expert Rev. Anti-Infect. Ther., 19 (2021) 147–163.
- X. Zhang, Y. Zhang, W. Qiao, J. Zhang, Z. Qi, Baricitinib, a drug
with potential effect to prevent SARS-CoV-2 from entering
target cells and control cytokine storm induced by COVID-
19, Int. Immunopharmacol., 86 (2020) 106749, doi: 10.1016/j.intimp.2020.106749.
- M. Saber-Ayad, S. Hammoudeh, E. Abu-Gharbieh, R. Hamoudi,
H. Tarazi, T.H. Al-Tel, Q. Hamid, Current status of baricitinib
as a repurposed therapy for COVID-19, Pharmaceuticals
(Basel), 14 (2021) 680, doi: 10.3390/ph14070680.
- J. Beran, M. Špajdel, J. Slíva, Inosine pranobex deserves
attention as a potential immunomodulator to achieve early
alteration of the COVID-19 disease course, Viruses, 13 (2021)
2246, doi: 10.3390/v13112246.
- M.H. Ahmed and A. Hassan, Dexamethasone for the treatment
of coronavirus disease (COVID-19): a review, SN Compr.
Clin. Med., 2 (2020) 2637–2646.
- O.A. Abafe, J. Späth, J. Fick, S. Jansson, C. Buckley, A. Stark,
B. Pietruschka, B.S. Martincigh, LC-MS/MS determination
of antiretroviral drugs in influents and effluents from
wastewater treatment plants in KwaZulu-Natal, South Africa,
Chemosphere, 200 (2018) 660–670.
- T.G. Kebede, M.B. Seroto, R.C. Chokwe, S. Dube, M.M. Nindi,
Adsorption of antiretroviral (ARVs) and related drugs from
environmental wastewaters using nanofibers, J. Environ.
Chem. Eng., 8 (2020) 104049, doi: 10.1016/j.jece.2020.104049.
- H. Babas, G. Kaichouh, M. Khachani, M.E. Karbane, A. Chakir,
A. Guenbour, A. Bellaouchou, I. Warad, A. Zarrouk, Equilibrium
and kinetic studies for removal of antiviral sofosbuvir
from aqueous solution by adsorption on expanded perlite:
experimental, modelling and optimization, Surf. Interfaces,
23 (2021) 100962, doi: 10.1016/j.surfin.2021.100962.
- K. Kuroda, C. Li, K. Dhangar, M. Kumar, Predicted occurrence,
ecotoxicological risk and environmentally acquired resistance
of antiviral drugs associated with COVID-19 in environmental
waters, Sci. Total Environ., 776 (2021) 145740, doi: 10.1016/j.scitotenv.2021.145740.
- M. Kumar, K. Kuroda, K. Dhangar, P. Mazumder, C. Sonne,
J. Rinklebe, M. Kitajima, Potential emergence of antiviralresistant
pandemic viruses via environmental drug exposure of
animal reservoirs, Environ. Sci. Technol., 54 (2020) 8503–8505.
- L. Charuaud, E. Jardé, A. Jaffrézic, M. Liotaud, Q. Goyat,
F. Mercier, B. Le Bot, Veterinary pharmaceutical residues in
water resources and tap water in an intensive husbandry area
in France, Sci. Total Environ., 664 (2019) 605–615.
- D.M. de Araújo, E.V. Dos Santos, C.A. Martínez-Huitle, A. De
Battisti, Achieving electrochemical-sustainable-based solutions
for monitoring and treating hydroxychloroquine in real water
matrix, Appl. Sci., 12 (2022) 699, doi: 10.3390/app12020699.
- P. Biswas, M.M. Hasan, D. Dey, A.C. Dos Santos Costa,
S.A. Polash, S. Bibi, N. Ferdous, Md. Abu Kaium, M.D. Hasanur
Rahman, F.K. Jeet, S. Papadakos, K. Islam, Md. Sahab
Uddin, Candidate antiviral drugs for COVID-19 and their
environmental implications: a comprehensive analysis,
Environ. Sci. Pollut. Res., 28 (2021) 59570–59593.
- S.L.J. Hepditch, O. Birceanu, M.P. Wilkie, A toxic unit and
additive index approach to understanding the interactions of 2
piscicides, 3-trifluoromethyl-4-nitrophenol and niclosamide, in
rainbow trout, Environ. Toxicol. Chem., 40 (2021) 1419–1430.
- PubChem, Compound Summary: Favipiravir, 2021.
- L.M. Acree, Toxicity and Drug Testing, InTechOpen, Kenya,
2012.
- J.-T. Li, Y.-D. Zhang, X.-R. Song, R.-J. Li, W.-L. Yang, M. Tian,
S.-F. Zhang, G.-H. Cao, L.-L. Song, Y.-M. Chen,
C.-H. Liu, The
mechanism and effects of remdesivir-induced developmental
toxicity in zebrafish: blood flow dysfunction and behavioral
alterations, J. Appl. Toxicol., 42 (2022) 1688–1700.
- P.M. Groffman, J.S. Baron, T. Blett, A.J. Gold, I. Goodman,
L.H. Gunderson, B.M. Levinson, M.A. Palmer,
H.W. Paerl,
G.D. Peterson, N. LeRoy Poff, D.W. Rejeski, J.F. Reynolds,
M.G. Turner, K.C. Weathers, J. Wiens, Ecological thresholds:
the key to successful environmental management or an
important concept with no practical application, Ecosystems,
9 (2006) 1–13, doi: 10.1007/s10021-003-0142-z.
- D.O. Migus, P. Dobos, Effect of ribavirin on the replication
of infectious pancreatic necrosis virus in fish cell cultures,
J. Gen. Virol., 47 (1980) 47–57.
- B. Eryildiz, H. Ozgun, M.E. Ersahin, I. Koyuncu, Antiviral
drugs against influenza: treatment methods, environmental risk
assessment and analytical determination, J. Environ. Manage.,
318 (2022) 115523, doi: 10.1016/j.jenvman.2022.115523.
- J.O. Daodu, F.A. Babasola, O. Oderinde, A. Olatunde, O.O. James,
Prospective impacts of COVID-19 related therapeutic drugs
used in Nigeria on the aquatic environment: a review, Niger. Q.
J. Hosp. Med., 32 (2022) 39–46.
- M. Navrátilová, L.R. Stuchlíková, L. Skálová, B. Szotáková,
L. Langhansová, R. Podlipná, Pharmaceuticals in environment:
the effect of ivermectin on ribwort plantain (Plantago
lanceolata L.), Environ. Sci. Pollut. Res., 27 (2020) 31202–31210.
- T.P. Sheahan, A.C. Sims, R.L. Graham, V.D. Menachery,
L.E. Gralinski, J.B. Case, S.R. Leist, K. Pyrc, J.Y. Feng,
I. Trantcheva, R. Bannister, Y. Park, D. Babusis, M.O. Clarke,
R.L. Mackman, J.E. Spahn, C.A. Palmiotti, D. Siegel, A.S. Ray,
T. Cihlar, R. Jordan, M.R. Denison, Ralph S Baric 6, Broadspectrum
antiviral GS-5734 inhibits both epidemic and
zoonotic coronaviruses, Sci. Transl. Med., 9 (2017) eaal3653,
doi: 10.1126/scitranslmed.aal3653.
- EMEA, European Medicines Agency, 2023.
- S. Domingo-Echaburu, M. Irazola, A. Prieto, B. Rocano, A. Lopez
de Torre-Querejazu, A. Quintana, G. Orive, U. Lertxundi, Drugs
used during the COVID-19 first wave in Vitoria-Gasteiz (Spain)
and their presence in the environment, Sci. Total Environ.,
820 (2022) 153122, doi: 10.1016/j.scitotenv.2022.153122.
- Lopinavir-Janusinfo.se, 2020.
- National Institute of Health: NIH, Ivermectin, 2022.
- X. Zhang, Y. Song, X. Ci, N. An, Y. Ju, H. Li, X. Wang, C. Han,
J. Cui, X. Deng, Ivermectin inhibits LPS-induced production of
inflammatory cytokines and improves LPS-induced survival
in mice, Inflamm. Res., 57 (2008) 524–529.
- N. Schweitzer, G. Fink, T.A. Ternes, K. Duis, Effects of
ivermectin-spiked cattle dung on a water–sediment system
with the aquatic invertebrates Daphnia magna and Chironomus
riparius, Aquat. Toxicol., 97 (2010) 304–313.
- N. Essid, M. Allouche, M. Lazzem, A.H. Harrath, L. Mansour,
S. Alwasel, E. Mahmoudi, H. Beyrem, F. Boufahja, Ecotoxic
response of nematodes to ivermectin, a potential anti-COVID-19 drug treatment, Mar. Pollut. Bull., 157 (2020) 111375,
doi: 10.1016/j.marpolbul.2020.111375.
- J.O. Olatunde, A. Chimezie, B. Tolulope, T.T. Aminat,
Determination of pharmaceutical compounds in surface
and underground water by solid phase extraction-liquid
chromatography, J. Environ. Chem. Ecotoxicol., 6 (2014) 20–26.
- S. Midassi, A. Bedoui, N. Bensalah, Efficient degradation of
chloroquine drug by electro-Fenton oxidation: effects of operating
conditions and degradation mechanism, Chemosphere,
260 (2020) 127558, doi: 10.1016/j.chemosphere.2020.127558.
- A.S. Coelho, C.E.P. Chagas, R.M. de Pádua, G.A. Pianetti,
C. Fernandes, A comprehensive stability-indicating HPLC
method for determination of chloroquine in active pharmaceutical
ingredient and tablets: identification of oxidation
impurities, J. Pharm. Biomed. Anal., 145 (2017) 248–254.
- V. Gosu, B.R. Gurjar, T.C. Zhang, R.Y. Surampalli, Oxidative
degradation of quinoline using nanoscale
zero-valent iron
supported by granular activated carbon, J. Environ. Eng.,
142 (2016) 04015047, doi: 10.1061/(ASCE)EE.1943-7870.0000981.
- X.-Z. Niu, E.G. Moore, J.-P. Croué, Excited triplet state
interactions of fluoroquinolone norfloxacin with natural organic
matter: a laser spectroscopy study, Environ. Sci. Technol.,
52 (2018) 10426–10432.
- O.M. Shibin, S. Yesodharan, Green Technology for Water
Purification: Investigations on Solar Photocatalysis for the
Mineralization of Pesticide Pollutants in Water, Ph.D. Diss.,
Cochin University of Science and Technology, 2018.
- A. Hassani, A. Khataee, Carbon Nanomaterials for Removal
of Pharmaceuticals from Wastewater, Nanomaterials for
Water Treatment and Remediation, Taylor & Francis Group,
CRC Press, 2022, pp. 333–360.
- S.F. Ahmed, M. Mofijur, S. Nuzhat, A.T. Chowdhury,
N. Rafa, Md. Alhaz Uddin, A. Inayat, T.M.I. Mahlia, H.C.
Ong, W.Y. Chia, P.L. Show, Recent developments in physical,
biological, chemical, and hybrid treatment techniques for
removing emerging contaminants from wastewater, J. Hazard.
Mater., 416 (2021) 125912, doi: 10.1016/j.jhazmat.2021.125912.