References

  1. A.C. Chrysostomou, B. Vrancken, G. Koumbaris, G. Themistokleous, A. Aristokleous, C. Masia, C. Eleftheriou, C. Iοannou, D.C. Stylianou, M. Ioannides, P. Petrou, V. Georgiou, A. Hatziyianni, P. Lemey, A.-M. Vandamme, P.P. Patsalis, L.G. Kostrikis, A comprehensive molecular epidemiological analysis of SARS-CoV-2 infection in Cyprus from April 2020 to January 2021: evidence of a highly polyphyletic and evolving epidemic, Viruses, 13 (2021) 1098, doi: 10.3390/v13061098.
  2. World Health Organization, “WHO Coronavirus (COVID-19) Dashboard”. Available at https://covid19.who.int/
  3. V. Thakur, R.K. Ratho, OMICRON (B.1.1.529): a new SARSCoV-2 variant of concern mounting worldwide fear, J. Med. Virol., 94 (2022) 1821–1824.
  4. S. Dharmaraj, V. Ashokkumar, S. Hariharan, A. Manibharathi, P.L. Show, C.T. Chong, Chawalit Ngamcharussrivichai b g, The COVID-19 pandemic face mask waste: a blooming threat to the marine environment, Chemosphere, 272 (2021) 129601, doi: 10.1016/j.chemosphere.2021.129601.
  5. C. Nannou, A. Ofrydopoulou, E. Evgenidou, D. Heath, E. Heath, D. Lambropoulou, Antiviral drugs in aquatic environment and wastewater treatment plants: a review on occurrence, fate, removal and ecotoxicity, Sci. Total Environ., 699 (2020) 134322, doi: 10.1016/j.scitotenv.2019.134322.
  6. J. Wang, J. Shen, D. Ye, X. Yan, Y. Zhang, W. Yang, X. Li, J. Wang, L. Zhang, L. Pan, Disinfection technology of hospital wastes and wastewater: suggestions for disinfection strategy during coronavirus disease 2019 (COVID-19) pandemic in China, Environ. Pollut., 262 (2020) 114665, doi: 10.1016/j.envpol.2020.114665.
  7. W. Gwenzi, R. Selvasembian, N.-A.O. Offiong, A. El Din Mahmoud, E. Sanganyado, J. Mal, COVID-19 drugs in aquatic systems: a review, Environ. Chem. Lett., 20 (2022) 1275–1294.
  8. S. Jain, P. Kumar, R.K. Vyas, P. Pandit, A.K. Dalai, Occurrence and removal of antiviral drugs in environment:
    a review, Water Air Soil Pollut., 224 (2013) 1410, doi: 10.1007/s11270-012-1410-3.
  9. S.A. Mahgoub, Microbial Hazards in Treated Wastewater: Challenges and Opportunities for Their Reusing in Egypt, A. Negm, Eds., Unconventional Water Resources and Agriculture in Egypt, The Handbook of Environmental Chemistry, Vol. 75, Springer, Cham, 2018. doi: 10.1007/698_2018_314
  10. D. O’Flynn, J. Lawler, A. Yusuf, A. Parle-McDermott, D. Harold, T. McCloughlin, L. Holland, F. Regan, B. White,
    A review of pharmaceutical occurrence and pathways in the aquatic environment in the context of a changing climate and the COVID-19 pandemic, Anal. Methods, 13 (2021) 575–594.
  11. S. Ncube, L.M. Madikizela, L. Chimuka, M.M. Nindi, Environmental fate and ecotoxicological effects of antiretrovirals: a current global status and future perspectives, Water Res., 145 (2018) 231–247.
  12. S. Mohammadi, G. Moussavi, K. Kiyanmehr, S. Shekoohiyan, M. Heidari, K. Naddafi, S. Giannakis, Degradation of the antiviral remdesivir by a novel, continuous-flow, helical-baffle incorporating VUV/UVC photoreactor: performance assessment and enhancement by inorganic peroxides, Sep. Purif. Technol., 298 (2022) 121665, doi: 10.1016/j.seppur.2022.121665.
  13. C. Prasse, M.P. Schlüsener, R. Schulz, T.A. Ternes, Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance, Environ. Sci. Technol., 44 (2010) 1728–1735.
  14. F. Ju, K. Beck, X. Yin, A. Maccagnan, C.S. McArdell, H.P. Singer, D.R. Johnson, T. Zhang, H. Bürgmann, Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes, ISME J., 13 (2019) 346–360.
  15. H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco, Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review, Chemosphere, 222 (2019) 766–780.
  16. T. Mackuľak, S. Černanský, M. Fehér, L. Birošová, M. Gál, Pharmaceuticals, drugs, and resistant microorganisms — environmental impact on population health, Curr. Opin. Environ. Sci. Health, 9 (2019) 40–48.
  17. N. Quinete, R.A. Hauser-Davis, Drinking water pollutants may affect the immune system: concerns regarding COVID- 19 health effects, Environ. Sci. Pollut. Res. Int., 28 (2021) 1235–1246.
  18. B. Eryildiz, B. Yavuzturk Gul, I. Koyuncu, A sustainable approach for the removal methods and analytical determination methods of antiviral drugs from water/wastewater: a review, J. Water Process Eng., 49 (2022) 103036, doi: 10.1016/j.jwpe.2022.103036.
  19. C.A. Morales-Paredes, J.M. Rodríguez-Díaz, N. Boluda-Botella, Pharmaceutical compounds used in the
    COVID-19 pandemic: a review of their presence in water and treatment techniques for their elimination, Sci. Total Environ., 814 (2022) 152691, doi: 10.1016/j.scitotenv.2021.152691.
  20. Cotruvo Joe, Pharmaceuticals in Drinking-Water, World Health Organization, France, 2012.
  21. T. aus der Beek, F.-A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Pharmaceuticals in the environment — global occurrences and perspectives, Environ. Toxicol. Chem., 35 (2016) 823–835.
  22. R. Elkayam, A. Aharoni, D. Vaizel-Ohayon, O. Sued, Y. Katz, I. Negev, R.B.M. Marano, E. Cytryn, L. Shtrasler, O. Lev, Viral and microbial pathogens, indicator microorganisms, microbial source tracking indicators, and antibiotic resistance genes in a confined managed effluent recharge system, J. Environ. Eng., 144 (2018) 05017011, doi: 10.1061/(ASCE)EE.1943-7870.0001334.
  23. A. El Din Mahmoud, M. Franke, M. Stelter, P. Braeutigam, Mechanochemical versus chemical routes for graphitic precursors and their performance in micropollutants removal in water, Powder Technol., 366 (2020) 629–640.
  24. S. Bairagi, S. Wazed Ali, Conventional and Advanced Technologies for Wastewater Treatment, Shahid-ul-Islam, Ed., Environmental Nanotechnology for Water Purification, Wiley Online Library, 2020, pp. 33–56.
  25. I. Zinicovscaia, Conventional Methods of Wastewater Treatment, I. Zinicovscaia, L. Cepoi, Eds., Cyanobacteria for Bioremediation of Wastewaters, Springer, Cham, 2016. doi: 10.1007/978-3-319-26751-7_3
  26. R.R. Zepon Tarpani, A. Azapagic, Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs), J. Environ. Manage., 215 (2018) 258–272.
  27. J.H. Beigel, K.M. Tomashek, L.E. Dodd, A.K. Mehta, B.S. Zingman, A.C. Kalil, E. Hohmann, H.Y. Chu, A. Luetkemeyer, S. Kline, D.L. de Castilla, R.W. Finberg, K. Dierberg, V. Tapson, L. Hsieh, T.F. Patterson, R. Paredes, D.A. Sweeney, W.R. Short, G. Touloumi, D.C. Lye, N. Ohmagari, M.-d. Oh, G.M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer, M.G. Kortepeter, R.L. Atmar, C. Buddy Creech, J. Lundgren, A.G. Babiker, S. Pett, J.D. Neaton, T.H. Burgess, T. Bonnett, M. Green, M. Makowski, A. Osinusi, S. Nayak, H. Clifford Lane, Remdesivir for the treatment of COVID-19—final report, N. Engl. J. Med., 383 (2020) 1813–1826.
  28. F. Grundeis, K. Ansems, K. Dahms, V. Thieme, M.-I. Metzendorf, N. Skoetz, C. Benstoem, A. Mikolajewska, M. Griesel, F. Fichtner, M. Stegemann, Authors’ declarations of interest, Remdesivir for the treatment of COVID-19, Cochrane Database Syst. Rev., 1 (2021), doi: 10.1002/14651858.CD014962.pub2.
  29. A.K. Singh, A. Singh, R. Singh, A. Misra, Molnupiravir in COVID-19: a systematic review of literature, Diabetes Metab. Syndr., 15 (2021) 102329, doi: 10.1016/j.dsx.2021.102329.
  30. M. Imran, M. Kumar Arora, S.M.B. Asdaq, S.A. Khan, S.I. Alaqel, M.K. Alshammari, M.M. Alshehri, A.S. Alshrari, A.M. Ali, A.M. Al-shammeri, B.D. Alhazmi, A.A. Harshan, Md. Tauquir Alam, Abida, Discovery, development, and patent trends on molnupiravir: a prospective oral treatment for COVID-19, Molecules, 26 (2021) 5795, doi: 10.3390/molecules26195795.
  31. K. Westendorf, S. Žentelis, L. Wang, D. Foster, P. Vaillancourt, M. Wiggin, E. Lovett, R. van der Lee, J. Hendle, A. Pustilnik, J. Michael Sauder, L. Kraft, Y. Hwang, R.W. Siegel, J. Chen, B.A. Heinz, R.E. Higgs, N.L. Kallewaard, K. Jepson, R. Goya, M.A. Smith, D.W. Collins, D. Pellacani, P. Xiang, V. de Puyraimond, M. Ricicova, L. Devorkin, C. Pritchard, A. O’Neill, K. Dalal, P. Panwar, H. Dhupar, F.A. Garces, C.A. Cohen, J.M. Dye, K.E. Huie, C.V. Badger, D. Kobasa, J. Audet, J.J. Freitas, S. Hassanali, I. Hughes, L. Munoz, H.C. Palma, B. Ramamurthy, R.W. Cross, T.W. Geisbert, V. Menachery, K. Lokugamage, V. Borisevich, I. Lanz, L. Anderson, P. Sipahimalani, K.S. Corbett, E.S. Yang, Y. Zhang, W. Shi, T. Zhou, M. Choe, J. Misasi, P.D. Kwong, N.J. Sullivan, B.S. Graham, T.L. Fernandez, C.L. Hansen, E. Falconer, J.R. Mascola, B.E. Jones, B.C. Barnhart, LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants, Cell Rep., 39 (2022) 110812, doi: 10.1016/j.celrep.2022.110812.
  32. E.-L. Wu, R.N. Kumar, W. Justin Moore, G.T. Hall, I. Vysniauskaite, K.-Y.A. Kim, M.P. Angarone, V. Stosor, M.G. Ison, A. Frink, C.J. Achenbach, K.L. Gates, Disparities in COVID-19 monoclonal antibody delivery:
    a retrospective cohort study, J. Gen. Intern. Med., 37 (2022) 2505–2513.
  33. B. Halford, The path to Paxlovid, ACS Cent. Sci., 8 (2022) 405–407.
  34. S. Chaplin, Paxlovid: antiviral combination for the treatment of COVID-19, Prescriber, 33 (2022) 31–33.
  35. U. Agrawal, R. Raju, Z.F. Udwadia, Favipiravir: a new and emerging antiviral option in COVID-19, Med. J. Armed Forces India, 76 (2020) 370–376.
  36. S. Joshi, J. Parkar, A. Ansari, A. Vora, D. Talwar, M. Tiwaskar, S. Patil, H. Barkate, Role of favipiravir in the treatment of COVID-19, Int. J. Infect. Dis., 102 (2021) 501–508.
  37. H. Li, N. Xiong, C. Li, Y. Gong, L. Liu, H. Yang, X. Tan, N. Jiang, Q. Zong, J. Wang, Z. Lu, X. Yin, Efficacy of ribavirin and interferon-α therapy for hospitalized patients with COVID- 19: a multicenter, retrospective cohort study, Int. J. Infect. Dis., 104 (2021) 641–648.
  38. S. Tong, Y. Su, Y. Yu, C. Wu, J. Chen, S. Wang, J. Jiang, Ribavirin therapy for severe COVID-19: a retrospective cohort study, Int. J. Antimicrob. Agents, 56 (2020) 106114, doi: 10.1016/j. ijantimicag.2020.106114.
  39. S. Abd-Elsalam, R.A. Noor, R. Badawi, M. Khalaf, E.S. Esmail, S. Soliman, M.S. Abd El Ghafar, M. Elbahnasawy, E.F. Moustafa, S.M. Hassany, M.A. Medhat, H. Karam-Allah Ramadan, M.A.S. Eldeen, M. Alboraie, A. Cordie, G. Esmat, Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: a randomized controlled study, J. Med. Virol., 93 (2021) 5833–5838.
  40. F. Heidary, R. Gharebaghi, Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen, The J. Antibiot. (Tokyo), 73 (2020) 593–602.
  41. P.W. Horby, M. Mafham, J.L. Bell, L. Linsell, N. Staplin, J.R. Emberson, A. Palfreeman, J. Raw, E. Elmahi, B. Prudon, C. Green, S. Carley, D. Chadwick, M. Davies, M.P. Wise, J. Kenneth Baillie, L.C. Chappell, S.N. Faust, T. Jaki, K. Jeffery, W.S. Lim, A. Montgomery, K. Rowan, E. Juszczak, R. Haynes, M.J. Landray, Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, openlabel, platform trial, LANCET, 396 (2020) 1345–1352.
  42. A. Vitiello, F. Ferrara, Remdesivir versus ritonavir/lopinavir in COVID-19 patients, Ir. J. Med. Sci., 190 (2021) 1249–1250.
  43. M.J. Ali, M. Hanif, M.A. Haider, M.U. Ahmed, F.N.U. Sundas, A. Hirani, I.A. Khan, K. Anis, A.H. Karim, Treatment options for COVID-19: a review, Front Med (Lausanne), 7 (2022) 480, doi: 10.3389/fmed.2020.00480.
  44. X. Li, Y. Wang, P. Agostinis, A. Rabson, G. Melino, E. Carafoli, Y. Shi, E. Sun, Is hydroxychloroquine beneficial for COVID- 19 patients?, Cell Death Dis., 11 (2020) 512, doi: 10.1038/s41419-020-2721-8.
  45. R.P. Nippes, P.D. Macruz, G.N. da Silva, M.H. Neves Olsen Scaliante, A critical review on environmental presence of pharmaceutical drugs tested for the COVID-19 treatment, Process Saf. Environ. Prot., 152 (2021) 568–582.
  46. A. Cortegiani, G. Ingoglia, M. Ippolito, A. Giarratano, S. Einav, A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19, J. Crit. Care, 57 (2020) 279–283.
  47. A. Pani, M. Lauriola, A. Romandini, F. Scaglione, Macrolides and viral infections: focus on azithromycin in COVID-19 pathology, Int. J. Antimicrob. Agents, 56 (2020) 106053, doi: 10.1016/j.ijantimicag.2020.106053.
  48. D. Echeverría-Esnal, C. Martin-Ontiyuelo, M.E. Navarrete-Rouco, M. De-Antonio Cuscó, O. Ferrández, J.P. Horcajada, S. Grau, Azithromycin in the treatment of COVID-19: a review, Expert Rev. Anti-Infect. Ther., 19 (2021) 147–163.
  49. X. Zhang, Y. Zhang, W. Qiao, J. Zhang, Z. Qi, Baricitinib, a drug with potential effect to prevent SARS-CoV-2 from entering target cells and control cytokine storm induced by COVID- 19, Int. Immunopharmacol., 86 (2020) 106749, doi: 10.1016/j.intimp.2020.106749.
  50. M. Saber-Ayad, S. Hammoudeh, E. Abu-Gharbieh, R. Hamoudi, H. Tarazi, T.H. Al-Tel, Q. Hamid, Current status of baricitinib as a repurposed therapy for COVID-19, Pharmaceuticals (Basel), 14 (2021) 680, doi: 10.3390/ph14070680.
  51. J. Beran, M. Špajdel, J. Slíva, Inosine pranobex deserves attention as a potential immunomodulator to achieve early alteration of the COVID-19 disease course, Viruses, 13 (2021) 2246, doi: 10.3390/v13112246.
  52. M.H. Ahmed and A. Hassan, Dexamethasone for the treatment of coronavirus disease (COVID-19): a review, SN Compr. Clin. Med., 2 (2020) 2637–2646.
  53. O.A. Abafe, J. Späth, J. Fick, S. Jansson, C. Buckley, A. Stark, B. Pietruschka, B.S. Martincigh, LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa, Chemosphere, 200 (2018) 660–670.
  54. T.G. Kebede, M.B. Seroto, R.C. Chokwe, S. Dube, M.M. Nindi, Adsorption of antiretroviral (ARVs) and related drugs from environmental wastewaters using nanofibers, J. Environ. Chem. Eng., 8 (2020) 104049, doi: 10.1016/j.jece.2020.104049.
  55. H. Babas, G. Kaichouh, M. Khachani, M.E. Karbane, A. Chakir, A. Guenbour, A. Bellaouchou, I. Warad, A. Zarrouk, Equilibrium and kinetic studies for removal of antiviral sofosbuvir from aqueous solution by adsorption on expanded perlite: experimental, modelling and optimization, Surf. Interfaces, 23 (2021) 100962, doi: 10.1016/j.surfin.2021.100962.
  56. K. Kuroda, C. Li, K. Dhangar, M. Kumar, Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters, Sci. Total Environ., 776 (2021) 145740, doi: 10.1016/j.scitotenv.2021.145740.
  57. M. Kumar, K. Kuroda, K. Dhangar, P. Mazumder, C. Sonne, J. Rinklebe, M. Kitajima, Potential emergence of antiviralresistant pandemic viruses via environmental drug exposure of animal reservoirs, Environ. Sci. Technol., 54 (2020) 8503–8505.
  58. L. Charuaud, E. Jardé, A. Jaffrézic, M. Liotaud, Q. Goyat, F. Mercier, B. Le Bot, Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France, Sci. Total Environ., 664 (2019) 605–615.
  59. D.M. de Araújo, E.V. Dos Santos, C.A. Martínez-Huitle, A. De Battisti, Achieving electrochemical-sustainable-based solutions for monitoring and treating hydroxychloroquine in real water matrix, Appl. Sci., 12 (2022) 699, doi: 10.3390/app12020699.
  60. P. Biswas, M.M. Hasan, D. Dey, A.C. Dos Santos Costa, S.A. Polash, S. Bibi, N. Ferdous, Md. Abu Kaium, M.D. Hasanur Rahman, F.K. Jeet, S. Papadakos, K. Islam, Md. Sahab Uddin, Candidate antiviral drugs for COVID-19 and their environmental implications: a comprehensive analysis, Environ. Sci. Pollut. Res., 28 (2021) 59570–59593.
  61. S.L.J. Hepditch, O. Birceanu, M.P. Wilkie, A toxic unit and additive index approach to understanding the interactions of 2 piscicides, 3-trifluoromethyl-4-nitrophenol and niclosamide, in rainbow trout, Environ. Toxicol. Chem., 40 (2021) 1419–1430.
  62. PubChem, Compound Summary: Favipiravir, 2021.
  63. L.M. Acree, Toxicity and Drug Testing, InTechOpen, Kenya, 2012.
  64. J.-T. Li, Y.-D. Zhang, X.-R. Song, R.-J. Li, W.-L. Yang, M. Tian, S.-F. Zhang, G.-H. Cao, L.-L. Song, Y.-M. Chen,
    C.-H. Liu, The mechanism and effects of remdesivir-induced developmental toxicity in zebrafish: blood flow dysfunction and behavioral alterations, J. Appl. Toxicol., 42 (2022) 1688–1700.
  65. P.M. Groffman, J.S. Baron, T. Blett, A.J. Gold, I. Goodman, L.H. Gunderson, B.M. Levinson, M.A. Palmer,
    H.W. Paerl, G.D. Peterson, N. LeRoy Poff, D.W. Rejeski, J.F. Reynolds, M.G. Turner, K.C. Weathers, J. Wiens, Ecological thresholds: the key to successful environmental management or an important concept with no practical application, Ecosystems, 9 (2006) 1–13, doi: 10.1007/s10021-003-0142-z.
  66. D.O. Migus, P. Dobos, Effect of ribavirin on the replication of infectious pancreatic necrosis virus in fish cell cultures, J. Gen. Virol., 47 (1980) 47–57.
  67. B. Eryildiz, H. Ozgun, M.E. Ersahin, I. Koyuncu, Antiviral drugs against influenza: treatment methods, environmental risk assessment and analytical determination, J. Environ. Manage., 318 (2022) 115523, doi: 10.1016/j.jenvman.2022.115523.
  68. J.O. Daodu, F.A. Babasola, O. Oderinde, A. Olatunde, O.O. James, Prospective impacts of COVID-19 related therapeutic drugs used in Nigeria on the aquatic environment: a review, Niger. Q. J. Hosp. Med., 32 (2022) 39–46.
  69. M. Navrátilová, L.R. Stuchlíková, L. Skálová, B. Szotáková, L. Langhansová, R. Podlipná, Pharmaceuticals in environment: the effect of ivermectin on ribwort plantain (Plantago lanceolata L.), Environ. Sci. Pollut. Res., 27 (2020) 31202–31210.
  70. T.P. Sheahan, A.C. Sims, R.L. Graham, V.D. Menachery, L.E. Gralinski, J.B. Case, S.R. Leist, K. Pyrc, J.Y. Feng, I. Trantcheva, R. Bannister, Y. Park, D. Babusis, M.O. Clarke, R.L. Mackman, J.E. Spahn, C.A. Palmiotti, D. Siegel, A.S. Ray, T. Cihlar, R. Jordan, M.R. Denison, Ralph S Baric 6, Broadspectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses, Sci. Transl. Med., 9 (2017) eaal3653, doi: 10.1126/scitranslmed.aal3653.
  71. EMEA, European Medicines Agency, 2023.
  72. S. Domingo-Echaburu, M. Irazola, A. Prieto, B. Rocano, A. Lopez de Torre-Querejazu, A. Quintana, G. Orive, U. Lertxundi, Drugs used during the COVID-19 first wave in Vitoria-Gasteiz (Spain) and their presence in the environment, Sci. Total Environ., 820 (2022) 153122, doi: 10.1016/j.scitotenv.2022.153122.
  73. Lopinavir-Janusinfo.se, 2020.
  74. National Institute of Health: NIH, Ivermectin, 2022.
  75. X. Zhang, Y. Song, X. Ci, N. An, Y. Ju, H. Li, X. Wang, C. Han, J. Cui, X. Deng, Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflamm. Res., 57 (2008) 524–529.
  76. N. Schweitzer, G. Fink, T.A. Ternes, K. Duis, Effects of ivermectin-spiked cattle dung on a water–sediment system with the aquatic invertebrates Daphnia magna and Chironomus riparius, Aquat. Toxicol., 97 (2010) 304–313.
  77. N. Essid, M. Allouche, M. Lazzem, A.H. Harrath, L. Mansour, S. Alwasel, E. Mahmoudi, H. Beyrem, F. Boufahja, Ecotoxic response of nematodes to ivermectin, a potential anti-COVID-19 drug treatment, Mar. Pollut. Bull., 157 (2020) 111375, doi: 10.1016/j.marpolbul.2020.111375.
  78. J.O. Olatunde, A. Chimezie, B. Tolulope, T.T. Aminat, Determination of pharmaceutical compounds in surface and underground water by solid phase extraction-liquid chromatography, J. Environ. Chem. Ecotoxicol., 6 (2014) 20–26.
  79. S. Midassi, A. Bedoui, N. Bensalah, Efficient degradation of chloroquine drug by electro-Fenton oxidation: effects of operating conditions and degradation mechanism, Chemosphere, 260 (2020) 127558, doi: 10.1016/j.chemosphere.2020.127558.
  80. A.S. Coelho, C.E.P. Chagas, R.M. de Pádua, G.A. Pianetti, C. Fernandes, A comprehensive stability-indicating HPLC method for determination of chloroquine in active pharmaceutical ingredient and tablets: identification of oxidation impurities, J. Pharm. Biomed. Anal., 145 (2017) 248–254.
  81. V. Gosu, B.R. Gurjar, T.C. Zhang, R.Y. Surampalli, Oxidative degradation of quinoline using nanoscale
    zero-valent iron supported by granular activated carbon, J. Environ. Eng., 142 (2016) 04015047, doi: 10.1061/(ASCE)EE.1943-7870.0000981.
  82. X.-Z. Niu, E.G. Moore, J.-P. Croué, Excited triplet state interactions of fluoroquinolone norfloxacin with natural organic matter: a laser spectroscopy study, Environ. Sci. Technol., 52 (2018) 10426–10432.
  83. O.M. Shibin, S. Yesodharan, Green Technology for Water Purification: Investigations on Solar Photocatalysis for the Mineralization of Pesticide Pollutants in Water, Ph.D. Diss., Cochin University of Science and Technology, 2018.
  84. A. Hassani, A. Khataee, Carbon Nanomaterials for Removal of Pharmaceuticals from Wastewater, Nanomaterials for Water Treatment and Remediation, Taylor & Francis Group, CRC Press, 2022, pp. 333–360.
  85. S.F. Ahmed, M. Mofijur, S. Nuzhat, A.T. Chowdhury, N. Rafa, Md. Alhaz Uddin, A. Inayat, T.M.I. Mahlia, H.C. Ong, W.Y. Chia, P.L. Show, Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater, J. Hazard. Mater., 416 (2021) 125912, doi: 10.1016/j.jhazmat.2021.125912.