References

  1. R. Kruć-Fijałkowska, K. Dragon, D. Drożdżyński, J. Górski, Seasonal variation of pesticides in surface water and drinking water wells in the annual cycle in western Poland, and potential health risk assessment, Sci. Rep., 12 (2022) 3317, doi: 10.1038/s41598-022-07385-z.
  2. F. Menger, G. Boström, O. Jonsson, L. Ahrens, K. Wiberg, J. Kreuger, P. Gago-Ferrero, Identification of pesticide transformation products in surface water using suspect screening combined with national monitoring data, Environ. Sci. Technol., 55 (2021) 10343–10353, doi: 10.1021/acs.est.1c00466.
  3. M. Syafrudin, R.A. Kristanti, A. Yuniarto, T. Hadibarata, J. Rhee, W.A. Alonazi, T.S. Algarni, A.H. Almarri,
    A.M. Al-Mohaimeed, Pesticides in drinking water: a review, Int. J. Environ. Res. Public Health, 18 (2021) 468, doi: 10.3390/ijerph18020468.
  4. M. Neumann, R. Schulz, K. Schäfer, W. Müller, W. Mannheller, M. Liess, The importance of entry routes as point and nonpoint sources of pesticides in small streams, Water Res., 36 (2002) 835–842,
    doi: 10.1016/S0043-1354(01)00310-4.
  5. F.A. Swartjes, M. Van der Aa, Measures to reduce pesticides leaching into groundwater-based drinking water resources: an appeal to national and local governments, water boards and farmers, Sci. Total Environ., 699 (2020) 134186, doi: 10.1016/j.scitotenv.2019.134186.
  6. S.Z. Zaidon, Y.B. Ho, Z. Hashim, N. Saari, S.M. Praveena, Pesticides contamination and analytical methods of determination in environmental matrices in Malaysia and their potential human health effects – a review, Malaysian J. Med. Health Sci., 14 (2018) 80–88.
  7. S. Kumar, A.K. Sharma, S.S. Rawat, D.K. Jain, S. Ghosh, Use of pesticides in agriculture and livestock animals and its impact on the environment of India, Asian J. Environ. Sci., 8 (2013) 51–57.
  8. Directive 98/83/EC of the European Parliament and the Council of 3 November 1998 on the Quality of Water Intended for Human Consumption, Off. J. Eur. Union L330:32–54.
  9. Directive 2020/2184 of the European Parliament and the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Available at https://eur-lex.europa. eu/legal-content/PL/TXT/?uri=celex%3A32020L2184
  10. G. Buttiglieri, M. Peschka, T. Frömel, J. Müller, F. Malpei, P. Seel, T.P. Knepper, Environmental occurrence and degradation of the herbicide n-chloridazon, Water Res., 43 (2009) 2865–2873, doi: 10.1016/j.watres.2009.03.035.
  11. R.J. Steen, A.C. Hogenboom, P.E. Leonards, R.A. Peerboom, W.P. Cofino, U.A. Brinkman, Ultra-trace-level determination of polar pesticides and their transformation products in surface and estuarine water samples using column liquid chromatography-electrospray tandem mass spectrometry, J. Chromatogr. A, 857 (1999) 157–166, doi: 10.1016/S0021-9673(99) 00772-4.
  12. R. Barra, M. Vighi, A. Di Guardo, Prediction of the surface water input of chloridazon and chlorpyrifos from an agricultural watershed in Chile, Chemosphere, 30 (1995) 485–500.
  13. R. Carafa, J. Wollgast, E. Canuti, J. Ligthart, S. Dueri, G. Hanke, S.J. Eisenreich, P. Viaroli, J.M. Zaldívar, Seasonal variations of selected herbicides and related metabolites in water, sediment, seaweed and clams in the Sacca di Goro coastal lagoon (Northern Adriatic), Chemosphere, 69 (2007) 1625–1637.
  14. E. Herrero-Hernández, M.S. Rodríguez-Cruz, E. Pose-Juan, S. Sánchez-González, M.S. Andrades,
    M.J. Sánchez-Martín, Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain), Sci. Total Environ., 609 (2017) 161–171.
  15. R. Loos, G. Locoro, S. Comero, S. Contini, D. Schwesig, F. Werres, P. Balsaa, O. Gans, S. Weiss, L. Blaha, M. Bolchi, B. Manfred Gawlik, Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water, Water Res., 44 (2010) 4115–4126.
  16. F. Yan, S. Kumar, K. Spyrou, A. Syari’ati, O. De Luca, E. Thomou, E. Moretón Alfonsín, D. Gournis, P. Rudolf, Highly efficient remediation of chloridazon and its metabolites: the case of graphene oxide nanoplatelets, ACS EST Water, 1 (2021) 157–166.
  17. M.M. Socías-Viciana, J. Tévar de Fez, M.D. Ureña-Amate, E. González-Pradas, M. Fernández-Pérez,
    F. Flores-Céspedes, Removal of chloridazon by natural and ammonium kerolite samples, Appl. Surf. Sci., 252 (2006) 6053–6057.
  18. J. Chabera, A. Stara, J. Kubec, M. Buric, E. Zuskova, A. Kouba, J. Velisek, The effect of chronic exposure to chloridazon and its degradation product chloridazon-desphenyl on signal crayfish Pacifastacus leniusculus, Ecotoxicol. Environ. Saf., 208 (2021) 111645, doi: 10.1016/j.ecoenv.2020.111645.
  19. T. Reemtsma, L. Alder, U. Banasiak, A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography–mass spectrometry, J. Chromatogr. A, 1271 (2013) 95–104.
  20. S. Hintze, G. Glauser, D. Hunkeler, Influence of surface water – groundwater interactions on the spatial distribution of pesticide metabolites in groundwater, Sci. Total Environ., 733 (2020) 139109, doi: 10.1016/j.scitotenv.2020.139109.
  21. H.B. Ulu, N. Değermenci, F.B. Dilek, Removal of chloridazon pesticide from waters by Fenton and
    photo-Fenton processes, Desal. Water Treat., 194 (2020) 429–438.
  22. Y. Wang, Y. Liu, Y. Zhang, H. Sun, Y. Zhang, W. Li, Comparison of direct UV photolysis and advanced oxidation technologies in the degradation efficiencies and kinetics of six typical organic pesticides, Desal. Water Treat., 282 (2023) 189–211.
  23. D. Holc, A. Pruss, M. Komorowska-Kaufman, The possibility of using UV absorbance measurements to interpret the results of organic matter removal in the biofiltration process, Annu. Set Environ. Prot., 20 (2018) 326–341.
  24. D. Holc, B. Mądrecka-Witkowska, M. Komorowska-Kaufman, E. Szeląg-Wasielewskia, A. Pruss, Z. Cybulski, The application of different methods for microbial development assessment in pilot scale drinking water biofilters, Arch. Environ. Prot., 47 (2021) 37–49.
  25. K. Ignatowicz-Owsieniuk, Application of biological and physical methods for removal of pesticide contaminants from water, Annu. Set Environ. Prot., 4 (2002) 229–240 (in Polish).
  26. D.R. Simpson, Biofilm processes in biologically active carbon water purification, Water Res., 42 (2008) 2839–2848.
  27. P.R. dos Santos, L.A. Daniel, A review: organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment, Int. J. Environ. Sci. Technol., 17 (2019) 591–606.
  28. B. Xi, I.J.T. Dinkla, G. Muyzer, Microbial ecology of biofiltration used for producing safe drinking water, Appl. Microbiol. Biotechnol., 106 (2022) 4813–4829.