References

  1. P.H. Nielsen, A.T. Mielczarek, C. Kragelund, J.L. Nielsen, A.M. Saunders, Y. Kong, A.A. Hansen, J. Vollertsen,
    A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants, Water Res., 44 (2010) 5070–5088.
  2. P.H. Nielsen, C. Kragelund, R.J. Seviour, J.L. Nielsen, Identity and ecophysiology of filamentous bacteria in activated sludge, FEMS Microbiol. Rev., 33 (2009) 969–998.
  3. R. Marques, J. Santos, H. Nguyen, G. Carvalho, J.P. Noronha, P.H. Nielsen, M.A.M. Reis, A. Oehmen, Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal, Water Res., 122 (2017) 159–171.
  4. Z. Kondrotaite, L.C. Valk, F. Petriglieri, C. Singleton, M. Nierychlo, M.K.D. Dueholm, P.H. Nielsen, Diversity and ecophysiology of the genus OLB8 and other abundant uncultured Saprospiraceae genera in global wastewater treatment systems, Front. Microbiol., 13 (2022) 917553, doi: 10.3389/fmicb.2022.917553.
  5. P.H. Nielsen, S.J. McIlroy, M. Albertsen, M. Nierychlo, Re-evaluating the microbiology of the enhanced biological phosphorus removal process, Curr. Opin. Biotechnol., 57 (2019) 111–118.
  6. S.J. McIlroy, A. Starnawska, P. Starnawski, A.M. Saunders, M. Nierychlo, P.H. Nielsen, J.L. Nielsen, Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems, Environ. Microbiol., 18 (2016) 50–64.
  7. H. Daims, E.V. Lebedeva, P. Pjevac, P. Han, C. Herbold, M. Albertsen, N. Jehmlich, M. Palatinszky, J. Vierheilig, A. Bulaev, R.H. Kirkegaard, M. von Bergen, T. Rattei, B. Bendinger, P.H. Nielsen, M. Wagner, Complete nitrification by Nitrospira bacteria, Nature, 528 (2015) 504–509.
  8. S. Ge, S. Wang, X. Yang, S. Qiu, B. Li, Y. Peng, Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review, Chemosphere, 140 (2015) 85–98.
  9. L. Wu, D. Ning, B. Zhang, Y. Li, P. Zhang, X. Shan, Q. Zhang, M.R. Brown, Z. Li, J.D. van Nostrand, F. Ling, N. Xiao, Y. Zhang, J. Vierheilig, G.F. Wells, Y. Yang, Y. Deng, Q. Tu, A. Wang, T. Zhang, Z. He, J. Keller, P.H. Nielsen,
    P.J.J. Alvarez, C.S. Criddle, M. Wagner, J.M. Tiedje, Q. He, T.P. Curtis, D.A. Stahl, L. Alvarez-Cohen, B.E. Rittmann, X. Wen, J. Zhou, Global diversity and biogeography of bacterial communities in wastewater treatment plants, Nat. Microbiol., 4 (2019) 1183–1195.
  10. M.K.D. Dueholm, M. Nierychlo, K.S. Andersen, V. Rudkjøbing, S. Knutsson, MiDAS Global Consortium, M. Albertsen, P.H. Nielsen, MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants, Nat. Commun., 13 (2022) 1908, doi: 10.1038/s41467-022-29438-7.
  11. G. Dottorini, T.Y. Michaelsen, S. Kucheryavskiy, K.S. Andersen, J.M. Kristensen, M. Peces, D.S. Wagner, M. Nierychlo, P.H. Nielsen, Mass-immigration determines the assembly of activated sludge microbial communities, Proc. Natl. Acad. Sci. U.S.A., 118 (2021) e2021589118, doi: 10.1073/pnas.2021589118.
  12. Y.Y. Law, R.H. Kirkegaard, A.A. Cokro, X. Liu, K. Arumugam, C. Xie, M.S. Bjerregaard, D.I. Drautz-Moses, P.H. Nielsen, S. Wuertz, R.B.H. Williams, Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions, Sci. Rep., 6 (2016) 25719, doi: 10.1038/srep25719.
  13. F. Petriglieri, C.M. Singleton, Z. Kondrotaite, M.K.D. Dueholm, E.A. McDaniel, K.D. McMahon, P.H. Nielsen, Reevaluation of the phylogenetic diversity and global distribution of the genus Candidatus Accumulibacter, mSystems, 7 (2022) e0001622, doi: 10.1128/msystems.00016-22.
  14. A. Oehmen, P.C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L.L. Blackall, M.A.M. Reis, Advances in enhanced biological phosphorus removal: from micro to macro scale, Water Res., 41 (2007) 2271–2300.
  15. H.T. Nguyen, V.Q. Le, A.A. Hansen, J.L. Nielsen, P.H. Nielsen, High diversity and abundance of putative polyphosphateaccumulating Tetrasphaera-related bacteria in activated sludge systems, FEMS Microbiol. Ecol., 76 (2011) 256–267.
  16. A. Muszyński, M. Załęska-Radziwiłł, Polyphosphate accumulating organisms in treatment plants with different wastewater composition, Archit. Civ. Eng. Environ., 8 (2015) 99–105.
  17. G. Qiu, R. Zuniga-Montanez, Y. Law, S.S. Thi, T.Q.N. Nguyen, K. Eganathan, X. Liu, P.H. Nielsen, R.B.H. Williams, S. Wuertz, Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources, Water Res., 149 (2019) 496–510.
  18. C.M. Singleton, F. Petriglieri, K. Wasmund, M. Nierychlo, Z. Kondrotaite, J.F. Petersen, M. Peces, M.S. Dueholm, M. Wagner, P.H. Nielsen, The novel genus, Candidatus Phosphoribacter, previously identified as Tetrasphaera, is the dominant polyphosphate accumulating lineage in EBPR wastewater treatment plants worldwide, ISME J., 16 (2022) 1605–1616.
  19. H.T. Nguyen, J.L. Nielsen, P.H. Nielsen, Candidatus Halomonas phosphatis, a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants, Environ. Microbiol., 14 (2012) 2826–2837.
  20. F. Petriglieri, C. Singleton, M. Peces, J.F. Petersen, M. Nierychlo, P.H. Nielsen, Candidatus Dechloromonas phosphoritropha and Ca. D. phosphorivorans, novel polyphosphate accumulating organisms abundant in wastewater treatment systems, ISME J., 15 (2021) 3605–3614.
  21. S.J. McIlroy, T. Nittami, E. Kanai, J. Fukuda, A.M. Saunders, P.H. Nielsen, Re-appraisal of the phylogeny and fluorescence in situ hybridization probes for the analysis of the Competibacteraceae in wastewater treatment systems, Environ. Microbiol. Rep., 7 (2015) 166–174.
  22. I. Bessarab, A.M. Maszenan, M.A.S. Haryono, K. Arumugam, N.M.M.T. Saw, R.J. Seviour, R.B.H. Williams, Comparative genomics of members of the genus Defluviicoccus with insights into their ecophysiological importance, Front. Microbiol., 13 (2022) 834906, doi: 10.3389/fmicb.2022.834906.
  23. A.M. Maszenan, I. Bessarab, R.B.H. Williams, S. Petrovski, R.J. Seviour, The phylogeny, ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants, Water Res., 221 (2022) 118729, doi: 10.1016/j.watres.2022.118729.
  24. T. Nittami, S. McIlroy, E.M. Seviour, S. Schroeder, R.J. Seviour, Candidatus Monilibacter spp., common bulking filaments in activated sludge, are members of cluster III Defluviicoccus, Syst. Appl. Microbiol., 32 (2009) 480–489.
  25. S.J. McIlroy, C.A. Onetto, B. McIlroy, F.-A. Herbst, M.S. Dueholm, R.H. Kirkegaard, E. Fernando, S.M. Karst, M. Nierychlo, J.M. Kristensen, K.L. Eales, P.R. Grbin, R. Wimmer, P.H. Nielsen, Genomic and in situ analyses reveal the Micropruina spp. as abundant fermentative glycogen accumulating organisms in enhanced biological phosphorus removal systems, Front. Microbiol., 9 (2018) 1004, doi: 10.3389/fmicb.2018.01004.
  26. M. Albertsen, S.J. McIlroy, M. Stokholm-Bjerregaard, S.M. Karst, P.H. Nielsen, Candidatus Propionivibrio aalborgensis: a novel glycogen accumulating organism abundant in fullscale enhanced biological phosphorus removal plants, Front. Microbiol., 7 (2016) 1033, 10.3389/fmicb.2016.01033.
  27. R.L. Meyer, A.M. Saunders, R.J. Zeng, J. Keller, L.L. Blackall, Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms, FEMS Microbiol. Ecol., 45 (2003) 253–261.
  28. R. Lemaire, Z. Yuan, L.L. Blackall, G.R. Crocetti, Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system, Environ. Microbiol., 10 (2008) 354–363.
  29. T.W. Seviour, L.K. Lambert, M. Pijuan, Z. Yuan, Selectively inducing the synthesis of a key structural exopolysaccharide in aerobic granules by enriching for Candidatus Competibacter phosphatis, Appl. Microbiol. Biotechnol., 92 (2011) 1297–1305.
  30. D.G. Weissbrodt, T.R. Neu, U. Kuhlicke, Y. Rappaz, C. Holliger, Assessment of bacterial and structural dynamics in aerobic granular biofilms, Front. Microbiol., 4 (2013) 175, doi: 10.3389/fmicb.2013.00175.
  31. L. Jahn, K. Svardal, J. Krampe, Comparison of aerobic granulation in SBR and continuous-flow plants, J. Environ. Manage., 231 (2019) 953–961.
  32. D. Xu, J. Li, J. Liu, X. Qu, H. Ma, Advances in continuous flow aerobic granular sludge: a review, Process Saf. Environ. Prot., 163 (2022) 27–35.
  33. D.J. Lee, Y.Y. Chen, K.Y. Show, C.G. Whiteley, J.H. Tay, Advances in aerobic granule formation and granule stability in the course of storage and reactor operation, Biotechnol. Adv., 28 (2010) 919–934.
  34. Q. Zhang, J. Hu, D-J. Lee, Aerobic granular processes: current research trends, Bioresour. Technol., 210 (2016) 74–80.
  35. S. Bengtsson, M. de Blois, B.-M. Wilén, D. Gustavsson, Treatment of municipal wastewater with aerobic granular sludge, Crit. Rev. Env. Sci. Technol., 48 (2018) 119–166.
  36. M.-K.H. Winkler, C. Meunier, O. Henriet, J. Mahillon, M.E. Suárez-Ojeda, G. Del Moro, M. De Sanctis, C. Di Iaconi, D.G. Weissbrodt, An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater, Chem. Eng. J., 336 (2018) 489–502.
  37. F. Cai, L. Lei, Y. Li, Y. Chen, A review of aerobic granular sludge (AGS) treating recalcitrant wastewater: refractory organics removal mechanism, application and prospect, Sci. Total Environ., 782 (2021) 146852, doi: 10.1016/j.scitotenv.2021.146852.
  38. Y. Lv, C. Wan, D.-J. Lee, X. Liu, J.-H. Tay, Microbial communities of aerobic granules: granulation mechanisms, Bioresour. Technol., 169 (2014) 344–351.
  39. S.A. Zahra, N. Abdullah, K. Iwamoto, A. Yuzir, S.E. Mohamad, Alginate-like exopolysaccharides in aerobic granular sludge: a review, Mater. Today Proc., 65 (2022) 3046–3053.
  40. S.L.S. Rollemberg, A.F. dos Santos, T.J.T. Ferreira, P.I.M. Firmino, A.B. dos Santos, Evaluation of the production of alginate-like exopolysaccharides (ALE) and tryptophan in aerobic granular sludge systems, Bioprocess Biosyst. Eng., 44 (2021) 259–270.
  41. C.M. Schambeck, B.S. Magnus, L.C.R. de Souza, W.R.M. Leite, N. Derlon, L.B. Guimarães, R.H.R. da Costa, Biopolymers recovery: dynamics and characterization of alginate-like exopolymers in an aerobic granular sludge system treating municipal wastewater without sludge inoculum, J. Environ. Manage., 263 (2020) 110394, doi: 10.1016/j.jenvman.2020.110394.
  42. K. Affek, A. Muszyński, M. Załęska-Radziwiłł, N. Doskocz, A. Ziętkowska, M. Widomski, Evaluation of ecotoxicity and inactivation of bacteria during ozonation of treated wastewater, Desal. Water Treat., 192 (2020) 176–184.
  43. A. Muszyński, M. Załęska-Radziwiłł, N. Doskocz, Factors affecting Accumulibacter population structure in full- and laboratory-scale biological reactors with nutrients removal, Water Sci. Technol., 77 (2018) 2794–2802.
  44. M.C. van Loosdrecht, P.H. Nielsen, C.M. López-Vázquez, D. Brdjanovic (eds.), Experimental Methods in Wastewater Treatment, IWA Publishing, London, 2016.
  45. C.M. López-Vázquez, C.M. Hooijmans, D. Brdjanovic, H.J. Gijzen, M.C. van Loosdrecht, A practical method for quantification of phosphorus- and glycogen-accumulating organism populations in activated sludge systems, Water Environ. Res., 79 (2007) 2487–2498.
  46. D. Greuter, A. Loy, M. Horn, T. Rattei, ProbeBase: an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016, Nucleic Acids Res., 44 (2016) D586–D589.
  47. J.J. Flowers, S. He, S. Yilmaz, D.R. Noguera, K.D. McMahon, Denitrification capabilities of two biological phosphorus removal sludges dominated by different Candidatus Accumulibacter clades, Environ. Microbiol. Rep., 1 (2009) 583–588.
  48. A. Muszyński, P. Marcinowski, J. Maksymiec, K. Beskowska, E. Kalwarczyk, J. Bogacki, Cosmetic wastewater treatment with combined light/Fe0/H2O2 process coupled with activated sludge, J. Hazard. Mater., 378 (2019) 120732, doi: 10.1016/j.jhazmat.2019.06.009.
  49. T.J. Collins, ImageJ for microscopy, Biotechniques, 43 (2007) 25–30.
  50. J.L. Zilles, C.H. Hung, D.R. Noguera, Presence of Rhodocyclus in a full-scale wastewater treatment plant and their participation in enhanced biological phosphorus removal, Water Sci. Technol., 46 (2002) 123–128.
  51. A. Muszyński, A. Miłobędzka, The effects of carbon/phosphorus ratio on polyphosphate and glycogen-accumulating organisms in aerobic granular sludge, Int. J. Environ. Sci. Technol., 12 (2015) 3053–3060.
  52. L.S. Clescerl, A.E. Greenberg, A.D. Eaton, Eds., Standard Methods for the Examination of Water and Wastewater, 20th ed. APHA/AWWA/WEF, Washington D.C., USA, 1999.
  53. M.K. de Kreuk, M.C.M. van Loosdrecht, Selection of slow growing organisms as a means for improving aerobic granular sludge stability, Water Sci. Technol., 49 (2004) 9–17.
  54. Z. Li, Q. Meng, C. Wan, C. Zhang, X. Tan, X. Liu, Aggregation performance and adhesion behavior of microbes in response to feast/famine condition: rapid granulation of aerobic granular sludge, Environ. Res., 208 (2022) 112780, doi: 10.1016/j. envres.2022.112780.
  55. T. Rocktäschel, C. Klarmann, B. Helmreich, J. Ochoa, P. Boisson, K.H. Sorensen, H. Horn, Comparison of two different anaerobic feeding strategies to establish a stable aerobic granulated sludge bed, Water Res., 47 (2013) 6423–6431.
  56. S. Kosar, O Isik., Y. Akdag, H. Gulhan, I. Koyuncu, H. Ozgun, M.E. Ersahin, Impact of seed sludge characteristics on granulation and performance of aerobic granular sludge process, J. Cleaner Prod., 363 (2022) 132424, doi: 10.1016/j. jclepro.2022.132424.
  57. T.P. Curtis, I.M. Head, D.W. Graham, Theoretical ecology for engineering biology, Environ. Sci. Technol., 37 (2003) 64A–70A.
  58. A. Muszyński, M. Łebkowska, A. Tabernacka, A. Miłobędzka, From macro to lab-scale: changes in bacterial community led to deterioration of EBPR in lab reactor, Cent. Eur. J. Biol., 8 (2013) 130–142.
  59. A. Muszyński, A. Tabernacka, A. Miłobędzka, Long-term dynamics of the microbial community in a full-scale wastewater treatment plant, Int. Biodeterior. Biodegrad., 100 (2015) 44–51.
  60. M. Schmid, A. Thill, U. Purkhold, M. Walcher, J.Y. Bottero, P. Ginestet, P.H. Nielsen, S. Wuertz, M. Wagner, Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis, Water Res., 37 (2003) 2043–2052.
  61. M. Beer, H.M. Stratton, P.C. Griffiths, R.J. Seviour, Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia?, J. Appl. Microbiol., 100 (2006) 233–243.
  62. M.-T. Wong, T. Mino, R.J. Seviour, M. Onuki, W.-T. Liu, In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorus removal plants in Japan, Water Res., 39 (2005) 2901–2914.
  63. P.H. Nielsen, A.M. Saunders, A.A. Hansen, P. Larsen, J.L. Nielsen Microbial communities involved in enhanced biological phosphorus removal from wastewater – a model system in environmental biotechnology, Curr. Opin. Biotechnol., 23 (2012) 452–459.
  64. A.T. Mielczarek, C. Kragelund, P.S. Eriksen, P.H. Nielsen, Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal, Water Res., 46 (2012) 3781–3795.
  65. A. Miłobędzka, A. Muszyński, Population dynamics of filamentous bacteria identified in polish full-scale wastewater treatment plants with nutrients removal, Water Sci. Technol., 71 (2015) 675–684.
  66. M. Nierychlo, A. Milobedzka, F. Petriglieri, B. McIlroy, P.H. Nielsen, S.J. McIlroy, The morphology and metabolic potential of the Chloroflexi in full-scale activated sludge wastewater treatment plants, FEMS Microbiol. Ecol., 95 (2019) fiy228, doi: 10.1093/femsec/fiy228.
  67. D.S. Wágner, M. Peces, M. Nierychlo, A.T. Mielczarek, D. Thornberg, P.H. Nielsen, Seasonal microbial community dynamics complicates the evaluation of filamentous bulking mitigation strategies in full-scale WRRFs, Water Res., 216 (2022) 118340, doi: 10.1016/j.watres.2022.118340.
  68. L.B.M. Speirs, D.T.F. Rice, S. Petrovski, R.J. Seviour, The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge, Front. Microbiol., 10 (2019) 2015, doi: 10.3389/ fmicb.2019.02015.
  69. R.J. Seviour, C. Kragelund, Y. Kong, K.L. Eales, J.L. Nielsen, P.H. Nielsen, Ecophysiology of the Actinobacteria in activated sludge systems, Antonie van Leeuwenhoek, 94 (2008) 21–33.
  70. J. Cao, T. Zhang, Y. Wu, Y. Sun, Y. Zhang, B. Huang, B. Fu, E. Yang, Q. Zhang, J. Luo, Correlations of nitrogen removal and core functional genera in full-scale wastewater treatment plants: influences of different treatment processes and influent characteristics, Bioresour. Technol., 297 (2020) 122455, doi: 10.1016/j.biortech.2019.122455.
  71. A.J. Li, S.F. Yang, X.Y. Li, J.D. Gu, Microbial population dynamics during aerobic sludge granulation at different organic loading rates, Water Res., 42 (2008) 3552–3560.
  72. Y.Q. Liu, B. Moy, Y.H Kong., J.H. Tay, Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment, Enzyme Microb. Technol., 46 (2010) 520–525.
  73. Z. Liang, W. Li, S Yang., P. Du, Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge, Chemosphere, 81 (2010) 626–632.
  74. Y.G. Zhao, J. Huang, H. Zhao, H. Yang, Microbial community and N removal of aerobic granular sludge at high COD and N loading rates, Bioresour. Technol., 143 (2013) 439–446.
  75. D.G. Weissbrodt, S. Lochmatter, S. Ebrahimi, P. Rossi, J. Maillard, C. Holliger, Bacterial selection during the formation of early-stage aerobic granules in wastewater treatment systems operated under wash-out dynamics, Front Microbiol., 3 (2012) 332, doi: 10.3389/fmicb.2012.00332.
  76. W.D. Tian, C. Ma, Y.M. Lin, L. Welles, C. López-Vázquez, M.C.M. van Loosdrecht, Enrichment and characterization of a psychrophilic Candidatus Accumulibacter phosphatis culture, Int. Biodeterior. Biodegrad., 124 (2017) 267–275.
  77. J.T. Zou, F.F. Yu, J.Y. Pan, B.J. Pan, S.Y. Wu., M.J. Qian, J. Li, Rapid start-up of an aerobic granular sludge system for nitrogen and phosphorus removal through seeding chitosanbased sludge aggregates, Sci. Total Environ., 762 (2021) 144171, doi: 10.1016/j.scitotenv.2020.144171.
  78. P. Asvapathanagul, B.H. Olson, P.B. Gedalanga, A. Hashemi, Z. Huang, J. La, Identification and quantification of Thiothrix eikelboomii using qPCR for early detection of bulking incidents in a full-scale water reclamation plant, Appl. Microbiol. Biotechnol., 99 (2015) 4045–4057.
  79. T. Nittami, T. Shoji, Y. Koshiba, M. Noguchi, M. Oshiki, M. Kuroda, T. Kindaichi, J. Fukuda, F. Kurisu, Investigation of prospective factors that control Kouleothrix (Type 1851) filamentous bacterial abundance and their correlation with sludge settleability in full-scale wastewater treatment plants, Process Saf. Environ. Prot., 124 (2019) 137–142.