References

  1. S. Longo, B.M. d’Antoni, M. Bongards, A. Chaparro, A. Cronrath, F. Fatone, J.M. Lema, M. Mauricio-Iglesias, A. Soares, A. Hospido, Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement, Appl. Energy, 179 (2016) 1251–1268.
  2. J. Mateo-Sagasta, L. Raschid-Sally, A. Thebo, Global Wastewater and Sludge Production, Treatment and Use, P. Drechsel, M. Qadir, D. Wichelns, Eds., Wastewater, Springer, Dordrecht, 2015, pp. 15–38.
    doi: 10.1007/978-94-017-9545-6_2
  3. Z. Jin, H. Gong, K. Wang, Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery, J. Hazard. Mater., 283 (2015) 824–831.
  4. D. Jiménez-Arias, S.-M. Sierra, F.J. García-Machado, A.L. García-García, A.A. Borges, J.C. Luis, Exploring the agricultural reutilisation of desalination reject brine from reverse osmosis technology, Desalination, 529 (2022) 115644, doi: 10.1016/j.desal.2022.115644.
  5. H. Zhuang, J. Guan, S.Y. Leu, Y. Wang, H. Wang, Carbon footprint analysis of chemical enhanced primary treatment and sludge incineration for sewage treatment in Hong Kong, J Clean Prod. 272 (2020) 122630, doi: 10.1016/j.jclepro.2020.122630.
  6. J. Xiong, S. Yu, Y. Hu, Y. Yang, X.C. Wang, Applying a dynamic membrane filtration (DMF)process for domestic wastewater preconcentration: organics recovery and bioenergy production potential analysis, Sci. Total Environ., 680 (2019) 35–43.
  7. S.K. Lateef, B.Z. Soh, K. Kimura, Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter, Bioresour. Technol., 150 (2013) 149–155.
  8. Z. Jin, H. Gong, H. Temmink, H. Nie, J. Wu, J. Zuo, K. Wang, Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery, Chem. Eng. J., 292 (2016) 130–138.
  9. T.A. Nascimento, F.R. Mejía, F. Fdz-Polanco, M. Peña Miranda, Improvement of municipal wastewater pretreatment by direct membrane filtration, Environ. Technol. (United Kingdom), 3820 (2017) 2562–2572.
  10. T.A. Nascimento, M.P. Miranda, Continuous municipal wastewater up-concentration by direct membrane filtration, considering the effect of intermittent gas scouring and threshold flux determination, J. Water Process Eng., 39 (2021) 101733, doi: 10.1016/j.jwpe.2020.101733.
  11. A.M. Ravazzini, A.F. van Nieuwenhuijzen, J.H.M.J. van der Graaf, Direct ultrafiltration of municipal wastewater: Comparison between filtration of raw sewage and primary clarifier effluent, Desalination, 178 (2005) 51–62.
  12. P.M. Melia, A.B. Cundy, S.P. Sohi, P.S. Hooda, R. Busquets, Trends in the recovery of phosphorus in bioavailable forms from wastewater, Chemosphere, 186 (2017) 381–395.
  13. F. Tang, H.-Y. Hu, L.-J. Sun, Y.-X. Sun, N. Shi, J.C. Crittenden, Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation, Water Res., 90 (2016) 329–336.
  14. Y. Li, L.N. Sim, J.S. Ho, T.H. Chong, B. Wu, Y. Liu, Integration of an anaerobic fluidized-bed membrane bioreactor (MBR) with zeolite adsorption and reverse osmosis (RO) for municipal wastewater reclamation: comparison with an anoxic-aerobic MBR coupled with RO, Chemosphere, 245 (2020) 125569, doi: 10.1016/j.chemosphere.2019.125569.
  15. Y.H. Wu, Z. Chen, X. Li, Y.H. Wang, B. Liu, G.Q. Chen, L.W. Luo, H.B. Wang, X. Tong, Y. Bai, Y.Q. Xu, N. Ikuno, C.F. Li, H.Y. Zhang, H.Y. Hu, Effect of ultraviolet disinfection on the fouling of reverse osmosis membranes for municipal wastewater reclamation, Water Res., 195 (2021) 116995, doi: 10.1016/j.watres.2021.116995.
  16. Z. Jin, F. Meng, H. Gong, C. Wang, K. Wang, Improved lowcarbon- consuming fouling control in long-term membranebased sewage pre-concentration: the role of enhanced coagulation process and air backflushing in sustainable sewage treatment, J. Membr. Sci., 529 (2017) 252–262.
  17. Y.x. Zhao, P. Li, R.h. Li, X.y. Li, Direct filtration for the treatment of the coagulated domestic sewage
    using flat-sheet ceramic membranes, Chemosphere, 223 (2019) 383–390.
  18. S. Hube, J. Wang, L.N. Sim, T.H. Chong, B. Wu, Direct membrane filtration of municipal wastewater: linking periodical physical cleaning with fouling mechanisms, Sep. Purif. Technol., 259 (2021) 118125, doi: 10.1016/j.seppur.2020.118125.
  19. T. Yu, L. Meng, Q.B. Zhao, Y. Shi, H.Y. Hu, Y. Lu, Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation, Water Res., 113 (2017) 1–10.
  20. Y.H. Cai, N. Galili, Y. Gelman, M. Herzberg, J. Gilron, Evaluating the impact of pretreatment processes on fouling of reverse osmosis membrane by secondary wastewater, J. Membr. Sci., 623 (2021) 119054, doi: 10.1016/j.memsci.2021.119054.
  21. J. Wu, Y. Zhang, J. Wang, X. Zheng, Y. Chen, Municipal wastewater reclamation and reuse using membrane-based technologies: a review, Desal. Water Treat., 224 (2021) 65–82.
  22. P. Xu, C. Bellona, J.E. Drewes, Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations, J. Membr. Sci., 353 (2010) 111–121.
  23. X. Tong, Y.H. Wu, Y.H. Wang, Y. Bai, X.H. Zhao, L.W. Luo, Y. Mao, N. Ikuno, H.Y. Hu, Simulating and predicting the flux change of reverse osmosis membranes over time during wastewater reclamation caused by organic fouling, Environ. Int., 140 (2020) 105744, doi: 10.1016/j.envint.2020.105744.
  24. H. Özgün, H. Sakar, M. Ağtaş, İ. Koyuncu, Investigation of pretreatment techniques to improve membrane performance in real textile wastewater treatment, Int. J. Environ. Sci. Technol., 20 (2023) 1539–1550.
  25. S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis membrane fouling and control strategies, Sci. Total Environ., 595 (2017) 567–583.
  26. A. Matin, T. Laoui, W. Falath, M. Farooque, Fouling control in reverse osmosis for water desalination and reuse: current practices and emerging environment-friendly technologies, Sci. Total Environ., 765 (2021) 142721, doi: 10.1016/j.scitotenv.2020.142721.
  27. T. Xiao, Z. Zhu, L. Li, J. Shi, Z. Li, X. Zuo, Membrane fouling and cleaning strategies in microfiltration/ultrafiltration and dynamic membrane, Sep. Purif. Technol., 318 (2023) 123977, doi: 10.1016/j.seppur.2023.123977.
  28. T.A. Nascimento, F. Fdz-Polanco, M. Peña, Membrane-based technologies for the up-concentration of municipal wastewater: a review of pretreatment intensification, Sep. Purif. Rev., 491 (2020) 1–19.
  29. APHA, Standard Methods for the Examination of Water and Wastewater Federation, Water Environmental American Public Health Association, Washington, DC, USA, 2017.
  30. V.T. Kuberkar, R.H. Davis, Modeling of fouling reduction by secondary membranes, J. Membr. Sci., 1681 (2000) 243–258.
  31. K. Noyan, B. Allı, D. Okutman Taş, S. Sözen, D. Orhon, Relationship between COD particle size distribution, COD fractionation and biodegradation characteristics in domestic sewage, J. Chem. Technol. Biotechnol., 928 (2017) 2142–2149.
  32. T. Siwiec, L. Reczek, M.M. Michel, B. Gut, P. Hawer-Strojek, J. Czajkowska, K. Jóźwiakowski, M. Gajewska, P. Bugajski, Correlations between organic pollution indicators in municipal wastewater, Arch. Environ. Prot., 44 (2018) 50–57.
  33. D. Dubber, N.F. Gray, Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 45 (2010) 1595–1600.
  34. J. Tauber, V. Parravicini, K. Svardal, J. Krampe, Quantifying methane emissions from anaerobic digesters, Water Sci. Technol., 809 (2019) 1654–1661.
  35. S. Hube, M. Eskafi, K.F. Hrafnkelsdóttir, B. Bjarnadóttir, M.Á. Bjarnadóttir, S. Axelsdóttir, B. Wu, Direct membrane filtration for wastewater treatment and resource recovery: a review, Sci. Total Environ., 710 (2020) 136375, doi: 10.1016/j.scitotenv.2019.136375.
  36. M. Kumar, M. Badruzzaman, S. Adham, J. Oppenheimer, Beneficial phosphate recovery from reverse osmosis (RO) concentrate of an integrated membrane system using polymeric ligand exchanger (PLE), Water Res., 41 (2007) 2211–2219.
  37. W. Wang, Q. Yue, K. Guo, F. Bu, X. Shen, B. Gao, Application of Al species in coagulation/ultrafiltration process: influence of cake layer on membrane fouling, J. Membr. Sci., 572 (2019) 161–170.
  38. E. Arkhangelsky, D. Kuzmenko, V. Gitis, Impact of chemical cleaning on properties and functioning of polyethersulfone membranes, J. Membr. Sci., 305 (2007) 176–184.
  39. S.S. Madaeni, S. Samieirad, Chemical cleaning of reverse osmosis membrane fouled by wastewater, Desalination, 257 (2010) 80–86.
  40. L.Y. Ng, A. Ahmad, A.W. Mohammad, Alteration of polyethersulphone membranes through UV-induced modification using various materials: a brief review, Arabian J. Chem., 10 (2017) S1821–S1834.
  41. M.Y. Ashfaq, M.A. Al-Ghouti, N. Zouari, Functionalization of reverse osmosis membrane with graphene oxide to reduce both membrane scaling and biofouling, Carbon, 166 (2020) 139500, doi: 10.1016/j.carbon.2020.05.017.
  42. H. Guo, X. Tang, G. Ganschow, G.V. Korshin, Differential ATRFTIR spectroscopy of membrane fouling: contributions of the substrate/fouling films and correlations with transmembrane pressure, Water Res., 161 (2019) 27–34.
  43. S. Saki, N. Uzal, Surface coating of polyamide reverse osmosis membranes with zwitterionic
    3-(3,4-dihydroxyphenyl)-Lalanine (L-DOPA) for forward osmosis, Water Environ. J., 34 (2020) 400–412.
  44. I.M. El-Azizi, R.G.J. Edyvean, Performance evaluation and fouling characterisation of two commercial SWRO membranes, Desal. Water Treat., 51 (2009) 34–41.
  45. O. Akin, F. Temelli, Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM, Desalination, 278 (2011) 387–396.
  46. G.D. Kang, C.J. Gao, W.D. Chen, X.M. Jie, Y.M. Cao, Q. Yuan, Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane, J. Membr. Sci., 300 (2007) 165–171.
  47. B. Malczewska, A. Żak, Structural changes and operational deterioration of the UF polyethersulfone (PES) membrane due to chemical cleaning, Sci. Rep.-UK, 9 (2019) 422, doi: 10.1038/s41598-018-36697-2.