References

  1. A. Mosa, A. El-Ghamry, P. Trüby, M. Omar, B. Gao, A. Elnaggar, Y. Li, Chemo-mechanical modification of cottonwood for Pb2+ removal from aqueous solutions: sorption mechanisms and potential application as biofilter in drip-irrigation, Chemosphere, 161 (2016) 1–9.
  2. X. Garcia, D. Pargament, Reusing wastewater to cope with water scarcity: economic, social and environmental considerations for decision-making, Resour. Conserv. Recycl., 101 (2015) 154–166.
  3. R. Xiao, S. Wang, R. Li, J.J. Wang, Z. Zhang, Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China, Ecotoxicol. Environ. Saf., 141 (2017) 17–24.
  4. R.F. Mikesell, The World Copper Industry: Structure and Economic Analysis, RFF Press, New York, USA, 2013.
  5. O. Ademuyiwa, R. Agarwal, R. Chandra, J.R. Behari, Effects of sub-chronic low-level lead exposure on the homeostasis of copper and zinc in rat tissues, J. Trace Elem. Med. Biol., 24 (2010) 207–211.
  6. W. Cerpa, L. Varela-Nallar, A.E. Reyes, A.N. Minniti, N.C. Inestrosa, Is there a role for copper in neurodegenerative diseases?, Mol. Aspects Med., 26 (2005) 405–420.
  7. S. Rivera-Mancía, I. Pérez-Neri, C. Ríos, L. Tristán-López, L. Rivera-Espinosa, S. Montes, The transition metals copper and iron in neurodegenerative diseases, Chem. Biol. Interact., 186 (2010) 184–199.
  8. A. Kaya, C. Onac, H.K. Alpoguz, A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant DC electric current, J. Hazard. Mater., 317 (2016) 1–7.
  9. J.A. Korak, R. Huggins, M. Arias-Paic, Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal, Water Res., 118 (2017) 141–151.
  10. U. Habiba, T.A. Siddique, T.C. Joo, A. Salleh, B.C. Ang, A.M. Afifi, Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) by flocculation/adsorption, Carbohydr. Polym., 157 (2017) 1568–1576.
  11. B. Fraser, M. Pritzker, R. Legge, Development of liquid membrane pertraction for the removal and recovery of chromium from aqueous effluents, Sep. Sci. Technol., 29 (1994) 2097–2116.
  12. A.S. Abyaneh, M.H. Fazaelipoor, Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation, J. Environ. Manage., 165 (2016) 184–187.
  13. Y. Deng, X. Li, F. Ni, Q. Liu, Y. Yang, M. Wang, T. Ao, W. Chen, Synthesis of magnesium modified biochar for removing copper, lead and cadmium in single and binary systems from aqueous solutions: adsorption mechanism, Water, 13 (2021) 599, doi: 10.3390/w13050599.
  14. Z. Ding, X. Hu, Y. Wan, S. Wang, B. Gao, Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests, J. Ind. Eng. Chem., 33 (2016) 239–245.
  15. J.-L. Gong, X.-Y. Wang, G.-M. Zeng, L. Chen, J.-H. Deng, X.-R. Zhang, Q.-Y. Niu, Copper(II) removal by pectin–iron oxide magnetic nanocomposite adsorbent, Chem. Eng. J., 185 (2012) 100–107.
  16. R. Mohadi, N.R. Palapa, T. Taher, P.M.S.B.N. Siregar, N. Juleanti, A. Wijaya, A. Lesbani, Removal of Cr(VI) from aqueous solution by biochar derived from rice husk, Commun. Sci. Technol., 6 (2021) 11–17.
  17. E.-B. Son, K.-M. Poo, J.-S. Chang, K.-J. Chae, Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass, Sci. Total Environ., 615 (2018) 161–168.
  18. R. Xiao, J.J. Wang, R. Li, J. Park, Y. Meng, B. Zhou, S. Pensky, Z. Zhang, Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite, Chemosphere, 208 (2018) 408–416.
  19. Y. Zhang, N. Liu, Y. Yang, J. Li, S. Wang, J. Lv, R. Tang, Novel carbothermal synthesis of Fe, N co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal, Colloids Surf., A, 600 (2020) 124926, doi: 10.1016/j.colsurfa.2020.124926.
  20. J. Yan, X. Zuo, S. Yang, R. Chen, T. Cai, D. Ding, Evaluation of potassium ferrate activated biochar for the simultaneous adsorption of copper and sulfadiazine: competitive versus synergistic, J. Hazard. Mater., 424 (2022) 127435, doi: 10.1016/j.jhazmat.2021.127435.
  21. L. Zhou, Y. Huang, W. Qiu, Z. Sun, Z. Liu, Z. Song, Adsorption properties of nano-MnO2–biochar composites for copper in aqueous solution, Molecules, 22 (2017) 173, doi: 10.3390/molecules22010173.
  22. H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang, Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood, Bioresour. Technol., 197 (2015) 356–362.
  23. K.-W. Jung, S.Y. Lee, Y.J. Lee, Facile one-pot hydrothermal synthesis of cubic spinel-type manganese ferrite/biochar composites for environmental remediation of heavy metals from aqueous solutions, Bioresour. Technol., 261 (2018) 1–9.
  24. C. Aguilar, R. Garcı́a, G. Soto-Garrido, R. Arriagada, Catalytic wet air oxidation of aqueous ammonia with activated carbon, Appl. Catal., B, 46 (2003) 229–237.
  25. U. Kamran, S.-J. Park, MnO2-decorated biochar composites of coconut shell and rice husk: an efficient lithium ions adsorptiondesorption performance in aqueous media, Chemosphere, 260 (2020) 127500, doi: 10.1016/j.chemosphere.2020.127500.
  26. X.-J. Liu, M.-F. Li, S.K. Singh, Manganese-modified lignin biochar as adsorbent for removal of methylene blue, J. Mater. Res. Technol., 12 (2021) 1434–1445.
  27. D. Mohan, K. Abhishek, A. Sarswat, M. Patel, P. Singh, C.U. Pittman Jr., Biochar production and applications in soil fertility and carbon sequestration–a sustainable solution to crop-residue burning in India, RSC Adv., 8 (2018) 508–520.
  28. T. Chen, R. Liu, N.R. Scott, Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover—biochar, syngas and bio-oil, Fuel Process. Technol., 142 (2016) 124–134.
  29. X. Xu, X. Hu, Z. Ding, Y. Chen, Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars, Chemosphere, 189 (2017) 76–85.
  30. X. Zhang, Y. Qian, Y. Zhu, K. Tang, Synthesis of Mn2O3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance, Nanoscale, 6 (2014) 1725–1731.
  31. T. Zhou, Z. Cao, X. Tai, L. Yu, J. Ouyang, Y. Li, J. Lu, Hierarchical Co(OH)2 dendrite enriched with oxygen vacancies for promoted electrocatalytic oxygen evolution reaction, Polymers, 14 (2022) 1510, doi: 10.3390/polym14081510.
  32. R. Shokrani-Havigh, Y. Azizian-Kalandaragh, Preparation of cobalt hydroxide and cobalt oxide nanostructures using ultrasonic waves and investigation of their optical and structural properties, J. Optoelectron. Adv. Mater., 19 (2017) 283–288.
  33. F.V. Molefe, L.F. Koao, B.F. Dejene, H.C. Swart, Phase formation of hexagonal wurtzite ZnO through decomposition of Zn(OH)2 at various growth temperatures using CBD method, Opt. Mater., 46 (2015) 292–298.
  34. P. Liu, W. Cai, J. Chen, Z. Yang, J. Zhou, Z. Cai, J. Fan, Onepot hydrothermal preparation of manganese-doped carbon microspheres for effective deep removal of hexavalent chromium from wastewater, J. Colloid Interface Sci., 599 (2021) 427–435.
  35. J. Lin, L. Wang, Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon, Front. Environ. Sci. Eng. China, 3 (2009) 320–324.
  36. Z. Yin, Y. Liu, S. Liu, L. Jiang, X. Tan, G. Zeng, M. Li, S. Liu, S. Tian, Y. Fang, Activated magnetic biochar by one-step synthesis: enhanced adsorption and coadsorption for 17β-estradiol and copper, Sci. Total Environ., 639 (2018) 1530–1542.
  37. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater., 186 (2011) 458–465.
  38. C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thue, L.D. Prola, M. Puchana-Rosero, F.M. Machado, F.A. Pavan, G. Dotto, Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents, J. Hazard. Mater., 289 (2015) 18–27.
  39. Y.-S. Ho, G. McKay, Application of kinetic models to the sorption of copper(II) on to peat, Adsorpt. Sci. Technol., 20 (2002) 797–815.
  40. É.C. Lima, M.A. Adebayo, F.M. Machado, Kinetic and Equilibrium Models of Adsorption, C. Bergmann, F. Machado, Eds., Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Carbon Nanostructures, Springer, Cham, 2015, pp. 33–69. doi: 10.1007/978-3-319-18875-1_3
  41. B.S. Marques, T.S. Frantz, T.R. Sant’Anna Cadaval Jr., L.A. de Almeida Pinto, G.L. Dotto, Adsorption of a textile dye onto piaçava fibers: kinetic, equilibrium, thermodynamics, and application in simulated effluents, Environ. Sci. Pollut. Res., 26 (2019) 28584–28592.
  42. Q. Chen, J. Zheng, L. Zheng, Z. Dang, L. Zhang, Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations, Chem. Eng. J., 350 (2018) 1000–1009.
  43. K.-W. Jung, S.Y. Lee, J.-W. Choi, Y.J. Lee, A facile onepot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: adsorption behavior and mechanisms for the removal of copper(II) from aqueous media, Chem. Eng. J., 369 (2019) 529–541.
  44. K. Narasimharao, L.P. Lingamdinne, S. Al-Thabaiti, M. Mokhtar, A. Alsheshri, S.Y. Alfaifi, Y.-Y. Chang, J.R. Koduru, Synthesis and characterization of hexagonal Mg–Fe layered double hydroxide/grapheme oxide nanocomposite for efficient adsorptive removal of cadmium ion from aqueous solutions: isotherm, kinetic, thermodynamic and mechanism, J. Water Process Eng., 47 (2022) 102746, doi: 10.1016/j.jwpe.2022.102746.
  45. C. Bhan, J. Singh, Y.C. Sharma, J.R. Koduru, Synthesis of lanthanum-modified clay soil-based adsorbent for the fluoride removal from an aqueous solution and groundwater through batch and column process: mechanism and kinetics, Environ. Earth Sci., 81 (2022) 253, doi: 10.1007/s12665-022-10377-x.
  46. Y. Bulut, Z. Tez, Adsorption studies on ground shells of hazelnut and almond, J. Hazard. Mater., 149 (2007) 35–41.
  47. A. Özer, D. Özer, The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters, Process Biochem., 39 (2004) 2183–2191.
  48. M.I. Panayotova, Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite, Waste Manage., 21 (2001) 671–676.
  49. M. Shafiee, M.A. Abedi, S. Abbasizadeh, R.K. Sheshdeh, S.E. Mousavi, S. Shohani, Effect of zeolite hydroxyl active site distribution on adsorption of Pb(II) and Ni(II) pollutants from water system by polymeric nanofibers, Sep. Sci. Technol., 55 (2020) 1994–2011.
  50. Z. Aksu, İ.A. İşoğlu, Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp, Process Biochem., 40 (2005) 3031–3044.
  51. K. Singh, K. Sarma, A simple and feasible approach to decorating MWCNT with Fe3O4 and ZnS and their use as a magnetically separable photocatalyst in the degradation of Cr(VI) in wastewater, Environ. Nanotechnol. Monit. Manage., 6 (2016) 206–213.
  52. M.M. Tehrani, S. Abbasizadeh, A. Alamdari, S.E. Mousavi, Prediction of simultaneous sorption of copper(II), cobalt(II) and zinc(II) contaminants from water systems by a novel multi-functionalized zirconia nanofiber, Desal. Water Treat., 62 (2017) 403–417.
  53. A. Murugesan, T. Vidhyadevi, S.D. Kirupha, L. Ravikumar, S. Sivanesan, Removal of chromium(VI) from aqueous solution using chemically modified corncorb‐activated carbon: equilibrium and kinetic studies, Environ. Prog. Sustainable Energy, 32 (2013) 673–680.
  54. C. Yu, M. Wang, X. Dong, Z. Shi, X. Zhang, Q. Lin, Removal of Cu(II) from aqueous solution using Fe3O4–alginate modified biochar microspheres, RSC Adv., 7 (2017) 53135–53144.
  55. P. Lin, H. Liu, H. Yin, M. Zhu, H. Luo, Z. Dang, Remediation performance and mechanisms of Cu and Cd contaminated water and soil using Mn/Al-layered double oxide-loaded biochar, J. Environ. Sci., 125 (2023) 593–602.