References
- A. Mosa, A. El-Ghamry, P. Trüby, M. Omar, B. Gao, A. Elnaggar,
Y. Li, Chemo-mechanical modification of cottonwood for
Pb2+ removal from aqueous solutions: sorption mechanisms
and potential application as biofilter in drip-irrigation,
Chemosphere, 161 (2016) 1–9.
- X. Garcia, D. Pargament, Reusing wastewater to cope with water
scarcity: economic, social and environmental considerations for
decision-making, Resour. Conserv. Recycl., 101 (2015) 154–166.
- R. Xiao, S. Wang, R. Li, J.J. Wang, Z. Zhang, Soil heavy metal
contamination and health risks associated with artisanal
gold mining in Tongguan, Shaanxi, China, Ecotoxicol.
Environ. Saf., 141 (2017) 17–24.
- R.F. Mikesell, The World Copper Industry: Structure and
Economic Analysis, RFF Press, New York, USA, 2013.
- O. Ademuyiwa, R. Agarwal, R. Chandra, J.R. Behari, Effects
of sub-chronic low-level lead exposure on the homeostasis
of copper and zinc in rat tissues, J. Trace Elem. Med. Biol.,
24 (2010) 207–211.
- W. Cerpa, L. Varela-Nallar, A.E. Reyes, A.N. Minniti,
N.C. Inestrosa, Is there a role for copper in neurodegenerative
diseases?, Mol. Aspects Med., 26 (2005) 405–420.
- S. Rivera-Mancía, I. Pérez-Neri, C. Ríos, L. Tristán-López,
L. Rivera-Espinosa, S. Montes, The transition metals copper
and iron in neurodegenerative diseases, Chem. Biol. Interact.,
186 (2010) 184–199.
- A. Kaya, C. Onac, H.K. Alpoguz, A novel electro-driven
membrane for removal of chromium ions using polymer
inclusion membrane under constant DC electric current,
J. Hazard. Mater., 317 (2016) 1–7.
- J.A. Korak, R. Huggins, M. Arias-Paic, Regeneration of
pilot-scale ion exchange columns for hexavalent chromium
removal, Water Res., 118 (2017) 141–151.
- U. Habiba, T.A. Siddique, T.C. Joo, A. Salleh, B.C. Ang,
A.M. Afifi, Synthesis of chitosan/polyvinyl alcohol/zeolite
composite for removal of methyl orange, Congo red and
chromium(VI) by flocculation/adsorption, Carbohydr. Polym.,
157 (2017) 1568–1576.
- B. Fraser, M. Pritzker, R. Legge, Development of liquid
membrane pertraction for the removal and recovery of
chromium from aqueous effluents, Sep. Sci. Technol.,
29 (1994) 2097–2116.
- A.S. Abyaneh, M.H. Fazaelipoor, Evaluation of rhamnolipid
(RL) as a biosurfactant for the removal of chromium from
aqueous solutions by precipitate flotation, J. Environ. Manage.,
165 (2016) 184–187.
- Y. Deng, X. Li, F. Ni, Q. Liu, Y. Yang, M. Wang, T. Ao, W. Chen,
Synthesis of magnesium modified biochar for removing
copper, lead and cadmium in single and binary systems
from aqueous solutions: adsorption mechanism, Water,
13 (2021) 599, doi: 10.3390/w13050599.
- Z. Ding, X. Hu, Y. Wan, S. Wang, B. Gao, Removal of lead,
copper, cadmium, zinc, and nickel from aqueous solutions by
alkali-modified biochar: batch and column tests, J. Ind. Eng.
Chem., 33 (2016) 239–245.
- J.-L. Gong, X.-Y. Wang, G.-M. Zeng, L. Chen, J.-H. Deng,
X.-R. Zhang, Q.-Y. Niu, Copper(II) removal by pectin–iron
oxide magnetic nanocomposite adsorbent, Chem. Eng. J.,
185 (2012) 100–107.
- R. Mohadi, N.R. Palapa, T. Taher, P.M.S.B.N. Siregar, N. Juleanti,
A. Wijaya, A. Lesbani, Removal of Cr(VI) from aqueous
solution by biochar derived from rice husk, Commun. Sci.
Technol., 6 (2021) 11–17.
- E.-B. Son, K.-M. Poo, J.-S. Chang, K.-J. Chae, Heavy metal
removal from aqueous solutions using engineered magnetic
biochars derived from waste marine macro-algal biomass,
Sci. Total Environ., 615 (2018) 161–168.
- R. Xiao, J.J. Wang, R. Li, J. Park, Y. Meng, B. Zhou, S. Pensky,
Z. Zhang, Enhanced sorption of hexavalent chromium [Cr(VI)]
from aqueous solutions by diluted sulfuric acid-assisted
MgO-coated biochar composite, Chemosphere, 208 (2018)
408–416.
- Y. Zhang, N. Liu, Y. Yang, J. Li, S. Wang, J. Lv, R. Tang, Novel
carbothermal synthesis of Fe, N co-doped oak wood biochar
(Fe/N-OB) for fast and effective Cr(VI) removal, Colloids Surf.,
A, 600 (2020) 124926, doi: 10.1016/j.colsurfa.2020.124926.
- J. Yan, X. Zuo, S. Yang, R. Chen, T. Cai, D. Ding, Evaluation
of potassium ferrate activated biochar for the simultaneous
adsorption of copper and sulfadiazine: competitive versus
synergistic, J. Hazard. Mater., 424 (2022) 127435, doi: 10.1016/j.jhazmat.2021.127435.
- L. Zhou, Y. Huang, W. Qiu, Z. Sun, Z. Liu, Z. Song, Adsorption
properties of nano-MnO2–biochar composites for copper
in aqueous solution, Molecules, 22 (2017) 173, doi: 10.3390/molecules22010173.
- H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang, Removal
of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar
derived from KMnO4 treated hickory wood, Bioresour. Technol.,
197 (2015) 356–362.
- K.-W. Jung, S.Y. Lee, Y.J. Lee, Facile one-pot hydrothermal
synthesis of cubic spinel-type manganese ferrite/biochar
composites for environmental remediation of heavy metals
from aqueous solutions, Bioresour. Technol., 261 (2018) 1–9.
- C. Aguilar, R. Garcı́a, G. Soto-Garrido, R. Arriagada, Catalytic
wet air oxidation of aqueous ammonia with activated
carbon, Appl. Catal., B, 46 (2003) 229–237.
- U. Kamran, S.-J. Park, MnO2-decorated biochar composites of
coconut shell and rice husk: an efficient lithium ions adsorptiondesorption
performance in aqueous media, Chemosphere,
260 (2020) 127500, doi: 10.1016/j.chemosphere.2020.127500.
- X.-J. Liu, M.-F. Li, S.K. Singh, Manganese-modified lignin
biochar as adsorbent for removal of methylene blue,
J. Mater. Res. Technol., 12 (2021) 1434–1445.
- D. Mohan, K. Abhishek, A. Sarswat, M. Patel, P. Singh,
C.U. Pittman Jr., Biochar production and applications in soil
fertility and carbon sequestration–a sustainable solution to
crop-residue burning in India, RSC Adv., 8 (2018) 508–520.
- T. Chen, R. Liu, N.R. Scott, Characterization of energy carriers
obtained from the pyrolysis of white ash, switchgrass and
corn stover—biochar, syngas and bio-oil, Fuel Process.
Technol., 142 (2016) 124–134.
- X. Xu, X. Hu, Z. Ding, Y. Chen, Effects of copyrolysis of sludge
with calcium carbonate and calcium hydrogen phosphate
on chemical stability of carbon and release of toxic elements
in the resultant biochars, Chemosphere, 189 (2017) 76–85.
- X. Zhang, Y. Qian, Y. Zhu, K. Tang, Synthesis of Mn2O3
nanomaterials with controllable porosity and thickness for
enhanced lithium-ion batteries performance, Nanoscale,
6 (2014) 1725–1731.
- T. Zhou, Z. Cao, X. Tai, L. Yu, J. Ouyang, Y. Li, J. Lu,
Hierarchical Co(OH)2 dendrite enriched with oxygen vacancies
for promoted electrocatalytic oxygen evolution reaction,
Polymers, 14 (2022) 1510, doi: 10.3390/polym14081510.
- R. Shokrani-Havigh, Y. Azizian-Kalandaragh, Preparation of
cobalt hydroxide and cobalt oxide nanostructures using ultrasonic
waves and investigation of their optical and structural
properties, J. Optoelectron. Adv. Mater., 19 (2017) 283–288.
- F.V. Molefe, L.F. Koao, B.F. Dejene, H.C. Swart, Phase formation
of hexagonal wurtzite ZnO through decomposition of
Zn(OH)2 at various growth temperatures using CBD method,
Opt. Mater., 46 (2015) 292–298.
- P. Liu, W. Cai, J. Chen, Z. Yang, J. Zhou, Z. Cai, J. Fan, Onepot
hydrothermal preparation of manganese-doped carbon
microspheres for effective deep removal of hexavalent
chromium from wastewater, J. Colloid Interface Sci., 599 (2021)
427–435.
- J. Lin, L. Wang, Comparison between linear and non-linear
forms of pseudo-first-order and pseudo-second-order
adsorption kinetic models for the removal of methylene blue
by activated carbon, Front. Environ. Sci. Eng. China, 3 (2009)
320–324.
- Z. Yin, Y. Liu, S. Liu, L. Jiang, X. Tan, G. Zeng, M. Li, S. Liu, S. Tian,
Y. Fang, Activated magnetic biochar by one-step synthesis:
enhanced adsorption and coadsorption for 17β-estradiol
and copper, Sci. Total Environ., 639 (2018) 1530–1542.
- H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and
thermodynamics of cadmium ion removal by adsorption onto
nano zerovalent iron particles, J. Hazard. Mater., 186 (2011)
458–465.
- C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thue,
L.D. Prola, M. Puchana-Rosero, F.M. Machado, F.A. Pavan,
G. Dotto, Microwave-assisted activated carbon from cocoa
shell as adsorbent for removal of sodium diclofenac and
nimesulide from aqueous effluents, J. Hazard. Mater., 289 (2015)
18–27.
- Y.-S. Ho, G. McKay, Application of kinetic models to the
sorption of copper(II) on to peat, Adsorpt. Sci. Technol.,
20 (2002) 797–815.
- É.C. Lima, M.A. Adebayo, F.M. Machado, Kinetic and
Equilibrium Models of Adsorption, C. Bergmann, F. Machado,
Eds., Carbon Nanomaterials as Adsorbents for Environmental
and Biological Applications, Carbon Nanostructures,
Springer, Cham, 2015, pp. 33–69. doi: 10.1007/978-3-319-18875-1_3
- B.S. Marques, T.S. Frantz, T.R. Sant’Anna Cadaval Jr., L.A. de
Almeida Pinto, G.L. Dotto, Adsorption of a textile dye onto
piaçava fibers: kinetic, equilibrium, thermodynamics, and
application in simulated effluents, Environ. Sci. Pollut. Res.,
26 (2019) 28584–28592.
- Q. Chen, J. Zheng, L. Zheng, Z. Dang, L. Zhang, Classical
theory and electron-scale view of exceptional Cd(II) adsorption
onto mesoporous cellulose biochar via experimental
analysis coupled with DFT calculations, Chem. Eng. J.,
350 (2018) 1000–1009.
- K.-W. Jung, S.Y. Lee, J.-W. Choi, Y.J. Lee, A facile onepot
hydrothermal synthesis of hydroxyapatite/biochar
nanocomposites: adsorption behavior and mechanisms for
the removal of copper(II) from aqueous media, Chem. Eng. J.,
369 (2019) 529–541.
- K. Narasimharao, L.P. Lingamdinne, S. Al-Thabaiti,
M. Mokhtar, A. Alsheshri, S.Y. Alfaifi, Y.-Y. Chang, J.R. Koduru,
Synthesis and characterization of hexagonal Mg–Fe layered
double hydroxide/grapheme oxide nanocomposite for efficient
adsorptive removal of cadmium ion from aqueous solutions:
isotherm, kinetic, thermodynamic and mechanism, J. Water
Process Eng., 47 (2022) 102746, doi: 10.1016/j.jwpe.2022.102746.
- C. Bhan, J. Singh, Y.C. Sharma, J.R. Koduru, Synthesis of
lanthanum-modified clay soil-based adsorbent for the fluoride
removal from an aqueous solution and groundwater through
batch and column process: mechanism and kinetics, Environ.
Earth Sci., 81 (2022) 253, doi: 10.1007/s12665-022-10377-x.
- Y. Bulut, Z. Tez, Adsorption studies on ground shells of hazelnut
and almond, J. Hazard. Mater., 149 (2007) 35–41.
- A. Özer, D. Özer, The adsorption of copper(II) ions on
to dehydrated wheat bran (DWB): determination of the
equilibrium and thermodynamic parameters, Process Biochem.,
39 (2004) 2183–2191.
- M.I. Panayotova, Kinetics and thermodynamics of copper ions
removal from wastewater by use of zeolite, Waste Manage.,
21 (2001) 671–676.
- M. Shafiee, M.A. Abedi, S. Abbasizadeh, R.K. Sheshdeh,
S.E. Mousavi, S. Shohani, Effect of zeolite hydroxyl active
site distribution on adsorption of Pb(II) and Ni(II) pollutants
from water system by polymeric nanofibers, Sep. Sci. Technol.,
55 (2020) 1994–2011.
- Z. Aksu, İ.A. İşoğlu, Removal of copper(II) ions from aqueous
solution by biosorption onto agricultural waste sugar beet
pulp, Process Biochem., 40 (2005) 3031–3044.
- K. Singh, K. Sarma, A simple and feasible approach to
decorating MWCNT with Fe3O4 and ZnS and their use as a
magnetically separable photocatalyst in the degradation of
Cr(VI) in wastewater, Environ. Nanotechnol. Monit. Manage.,
6 (2016) 206–213.
- M.M. Tehrani, S. Abbasizadeh, A. Alamdari, S.E. Mousavi,
Prediction of simultaneous sorption of copper(II), cobalt(II)
and zinc(II) contaminants from water systems by a novel
multi-functionalized zirconia nanofiber, Desal. Water Treat.,
62 (2017) 403–417.
- A. Murugesan, T. Vidhyadevi, S.D. Kirupha, L. Ravikumar, S.
Sivanesan, Removal of chromium(VI) from aqueous solution
using chemically modified corncorb‐activated carbon:
equilibrium and kinetic studies, Environ. Prog. Sustainable
Energy, 32 (2013) 673–680.
- C. Yu, M. Wang, X. Dong, Z. Shi, X. Zhang, Q. Lin, Removal
of Cu(II) from aqueous solution using Fe3O4–alginate modified
biochar microspheres, RSC Adv., 7 (2017) 53135–53144.
- P. Lin, H. Liu, H. Yin, M. Zhu, H. Luo, Z. Dang, Remediation
performance and mechanisms of Cu and Cd contaminated
water and soil using Mn/Al-layered double oxide-loaded
biochar, J. Environ. Sci., 125 (2023) 593–602.