References

  1. Z. Kang, X. Jia, Y. Zhang, X. Kang, M. Ge, D. Liu, C. Wang, Z. He, A review on application of biochar in the removal of pharmaceutical pollutants through adsorption and persulfatebased AOPs, Sustainability, 14 (2022) 10128, doi: 10.3390/su141610128.
  2. R. Akbarzadeh, A. Asadi, P.O. Oviroh, T.-C. Jen, One-pot synthesized visible light-driven BiOCl/AgCl/BiVO4 n-p heterojunction for photocatalytic degradation of pharmaceutical pollutants, Materials, 12 (2019) 2297, doi: 10.3390/ma12142297.
  3. W. Cheng, M. Yang, Y. Xie, B. Liang, Z. Fang, E.P. Tsang, Enhancement of mineralization of metronidazole by the electro-Fenton process with a Ce/SnO2–Sb coated titanium anode, Chem. Eng. J., 220 (2013) 214–220.
  4. L. Wang, D. Luo, J. Yang, C. Wang, Metal-organic frameworksderived catalysts for contaminant degradation in persulfatebased advanced oxidation processes, J. Cleaner Prod., 375 (2022) 134118, doi: 10.1016/j.jclepro.2022.134118.
  5. B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, A. Mirzaei, A. Azari, Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method, J. Photochem. Photobiol., A, 314 (2016) 178–188.
  6. C. Wang, R. Huang, R. Sun, J. Yang, M. Sillanpää, A review on persulfates activation by functional biochar for organic contaminants removal: synthesis, characterizations, radical determination, and mechanism, J. Environ. Chem. Eng., 9 (2021) 106267, doi: 10.1016/j.jece.2021.106267.
  7. Q. Wang, S. Tian, P. Ning, Ferrocene-catalyzed heterogeneous Fenton-like degradation of methylene blue: influence of initial solution pH, Ind. Eng. Chem. Res., 53 (2014) 6334–6340.
  8. R. Wang, X. Liu, R. Wu, B. Yu, H. Li, X. Zhang, J. Xie, S.-T. Yang, Fe3O4/SiO2/C nanocomposite
    as a high-performance Fenton-like catalyst in a neutral environment, RSC Adv., 6 (2016) 8594–8600.
  9. L. Wang, H. Jiang, H. Wang, P.L. Show, A. Ivanets, D. Luo, C. Wang, MXenes as heterogeneous Fenton-like catalysts for removal of organic pollutants: a review, J. Environ. Chem. Eng., 10 (2022) 108954, doi: 10.1016/j.jece.2022.108954.
  10. M. Cheng, C. Lai, Y. Liu, G. Zeng, D. Huang, C. Zhang, L. Qin, L. Hu, C. Zhou, W. Xiong, Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis, Coord. Chem. Rev., 368 (2018) 80–92.
  11. X. Li, K. Cui, Z. Guo, T. Yang, Y. Cao, Y. Xiang, H. Chen, M. Xi, Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods, Chem. Eng. J., 379 (2020) 122324, doi: 10.1016/j.cej.2019.122324.
  12. S. Xin, G. Liu, X. Ma, J. Gong, B. Ma, Q. Yan, Q. Chen, D. Ma, G. Zhang, M. Gao, Y. Xin, High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: economical synthesis, catalytic performance and mechanism, Appl. Catal., B, 280 (2021) 119386, doi: 10.1016/j.apcatb.2020.119386.
  13. X. Liu, Q. Zhang, B. Yu, R. Wu, J. Mai, R. Wang, L. Chen, S.-T. Yang, Preparation of Fe3O4/TiO2/C nanocomposites and their application in Fenton-like catalysis for dye decoloration, Catalysts, 6 (2016) 146, doi: 10.3390/catal6090146.
  14. H. Wang, T. Chen, D. Chen, X. Zou, M. Li, F. Huang, F. Sun, C. Wang, D. Shu, H. Liu, Sulfurized oolitic hematite as a heterogeneous Fenton-like catalyst for tetracycline antibiotic degradation, Appl. Catal., B, 260 (2020) 118203, doi: 10.1016/j.apcatb.2019.118203.
  15. R. Yang, Q. Peng, B. Yu, Y. Shen, H. Cong, Yolk-shell Fe3O4@ MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal, Sep. Purif. Technol., 267 (2021) 118620, doi: 10.1016/j.seppur.2021.118620.
  16. Z. Yang, P. Zhu, C. Yan, D. Wang, D. Fang, L. Zhou, Biosynthesized schwertmannite@biochar composite as a heterogeneous Fenton-like catalyst for the degradation of sulfanilamide antibiotics, Chemosphere, 266 (2021) 129175, doi: 10.1016/j.chemosphere.2020.129175.
  17. Y. Zhao, J.J. Tang, A. Motavalizadehkakhky, S. Kakooei, S.M. Sadeghzadeh, Synthesis and characterization of a novel CNT-FeNi3/DFNS/Cu(II) magnetic nanocomposite for the photocatalytic degradation of tetracycline in wastewater, RSC Adv., 9 (2019) 35022–35032.
  18. N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater, J. Cleaner Prod., 179 (2018) 42–54.
  19. S. Zarei, N. Farhadian, R. Akbarzadeh, M. Pirsaheb, A. Asadi, Z. Safaei, Fabrication of novel 2D
    Ag-TiO2/γ-Al2O3/chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate, Int. J. Biol. Macromol., 145 (2020) 926–935.
  20. M. Arumugam, M.Y. Choi, Recent progress on bismuth oxyiodide (BiOI) photocatalyst for environmental remediation, J. Ind. Eng. Chem., 81 (2020) 237–268.
  21. A. Asadi, N. Daglioglu, T. Hasani, N. Farhadian, Construction of Mg-doped ZnO/g-C3N4@ZIF-8
    multi-component catalyst with superior catalytic performance for the degradation of illicit drug under visible light, Colloids Surf., A, 650 (2022) 129536, doi: 10.1016/j.colsurfa.2022.129536.
  22. O.D. Arefieva, M.S. Vasilyeva, L.A. Zemnukhova, A.S. Timochkina, Heterogeneous photo-Fenton oxidation of lignin of rice husk alkaline hydrolysates using Fe-impregnated silica catalysts, Environ. Technol., 42 (2021) 2220–2228.
  23. A. Alizadeh, M. Fakhari, Z. Safaei, M.M. Khodeai, E. Repo, A. Asadi, Ionic liquid-decorated Fe3O4@SiO2 nanocomposite coated on talc sheets: an efficient adsorbent for methylene blue in aqueous solution, Inorg. Chem. Commun., 121 (2020) 108204, doi: 10.1016/j.inoche.2020.108204.
  24. W. Liu, J. Zhou, D. Liu, S. Liu, X. Liu, S. Xiao, Enhancing electronic transfer by magnetic iron materials and metalorganic framework via heterogeneous Fenton-like process and photocatalysis, Mater. Sci. Semicond. Process., 135 (2021) 106096, doi: 10.1016/j.mssp.2021.106096.
  25. M.A. Nasseri, S.M. Sadeghzadeh, A highly active FeNi3–SiO2 magnetic nanoparticles catalyst for the preparation of 4H-benzo[b]pyrans and spirooxindoles under mild conditions, J. Iran. Chem. Soc., 10 (2013) 1047–1056.
  26. M.H. Beyki, M. Shirkhodaie, F. Shemirani, Polyol route synthesis of a Fe3O4@CuS nanohybrid for fast preconcentration of gold ions, Anal. Methods, 8 (2016) 1351–1358.
  27. D.H. Carrales-Alvarado, R. Ocampo-Pérez, R. Leyva-Ramos, J. Rivera-Utrilla, Removal of the antibiotic metronidazole by adsorption on various carbon materials from aqueous phase, J. Colloid Interface Sci., 436 (2014) 276–285.
  28. J. Bolobajev, M. Trapido, N. Dulova, Application of different techniques for activation of H2O2/Fe3+ system:
    a comparative study, J. Adv. Oxid. Technol., 18 (2015) 347–352.
  29. P.M. Martins, H. Salazar, L. Aoudjit, R. Gonçalves, D. Zioui, A. Fidalgo-Marijuan, C.M. Costa, S. Ferdov,
    S. Lanceros-Mendez, Crystal morphology control of synthetic giniite for enhanced photo-Fenton activity against the emerging pollutant metronidazole, Chemosphere, 262 (2021) 128300,
    doi: 10.1016/j.chemosphere.2020.128300.
  30. A. Eslami, M.M. Amini, A.R. Yazdanbakhsh, A. Mohseni-Bandpei, A.A. Safari, A. Asadi, N,S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study, J. Chem. Technol. Biotechnol., 91 (2016) 2693–2704.
  31. F. Deng, F. Zhong, D. Lin, L. Zhao, Y. Liu, J. Huang, X. Luo, S. Luo, D.D. Dionysiou, One-step hydrothermal fabrication of visible-light-responsive AgInS2/SnIn4S8 heterojunction for highly-efficient photocatalytic treatment of organic pollutants and real pharmaceutical industry wastewater, Appl. Catal., B, 219 (2017) 163–172.
  32. S. Pan, T. Zhao, H. Liu, X. Li, M. Zhao, D. Yuan, T. Jiao, Q. Zhang, S. Tang, Enhancing ferric ion/sodium percarbonate Fenton-like reaction with tungsten disulfide cocatalyst for metronidazole decomposition over wide pH range, Chem. Eng. J., 452 (2023) 139245, doi: 10.1016/j.cej.2022.139245.
  33. S. Talwar, A.K. Verma, V.K. Sangal, Modeling and optimization of fixed mode dual effect (photocatalysis and photo-Fenton) assisted metronidazole degradation using ANN coupled with genetic algorithm, J. Environ. Manage., 250 (2019) 109428, doi: 10.1016/j.jenvman.2019.109428.
  34. Y. Zhang, J. Zhou, X. Chen, L. Wang, W. Cai, Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway, Chem. Eng. J., 369 (2019) 745–757.
  35. G. Fan, X. Zheng, J. Luo, H. Peng, H. Lin, M. Bao, L. Hong, J. Zhou, Rapid synthesis of Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light, Chem. Eng. J., 351 (2018) 782–790.
  36. M. Farzadkia, A. Esrafili, M.A. Baghapour, Y.D. Shahamat, N. Okhovat, Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process, Desal. Water Treat., 52 (2014) 4947–4952.
  37. S. Ni, Z. Fu, L. Li, M. Ma, Y. Liu, Step-scheme heterojunction g-C3N4/TiO2 for efficient photocatalytic degradation of tetracycline hydrochloride under UV light, Colloids Surf., A, 649 (2022) 129475, doi: 10.1016/j.colsurfa.2022.129475.
  38. G.H. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari, A.H. Mahvi, Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution, Int. J. Environ. Sci. Technol., 12 (2015) 603–616.
  39. S. Azimi, A. Nezamzadeh-Ejhieh, Enhanced activity of clinoptilolite-supported hybridized PbS–CdS semiconductors for the photocatalytic degradation of a mixture of tetracycline and cephalexin aqueous solution, J. Mol. Catal. A: Chem., 408 (2015) 152–160.
  40. Y. Zhou, S. Feng, X. Duan, W. Wu, Z. Ye, X. Dai, Y. Wang, X. Cao, Stable self-assembly Cu2O/ZIF-8 heterojunction as efficient visible light responsive photocatalyst for tetracycline degradation and mechanism insight, J. Solid State Chem., 305 (2022) 122628, doi: 10.1016/j.jssc.2021.122628.
  41. Y. Kuang, Q. Wang, Z. Chen, M. Megharaj, R. Naidu, Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles, J. Colloid Interface Sci., 410 (2013) 67–73.
  42. K.M. Reza, A. Kurny, F. Gulshan, Photocatalytic degradation of methylene blue by magnetite+H2O2+UV process, Int. J. Environ. Sci. Dev., 7 (2016) 325–329.
  43. D. Hamad, M. Mehrvar, R. Dhib, Experimental study of polyvinyl alcohol degradation in aqueous solution by UV/H2O2 process, Polym. Degrad. Stab., 103 (2014) 75–82.
  44. H.B. Ammar, M.B. Brahim, R. Abdelhédi, Y. Samet, Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide, J. Mol. Catal. A: Chem., 420 (2016) 222–227.
  45. H. Cai, T. Zhao, Z. Ma, J. Liu, Efficient removal of metronidazole by the photo-Fenton process with a magnetic Fe3O4@PBC composite, J. Environ. Eng., 146 (2020) 04020056, doi: 10.1061/(ASCE)EE.1943-7870.000173.
  46. M. Farzadkia, E. Bazrafshan, A. Esrafili, J.-K. Yang, M. Shirzad-Siboni, Photocatalytic degradation of metronidazole with illuminated TiO2 nanoparticles, J. Environ. Health Sci. Eng., 13 (2015) 35, doi: 10.1186/s40201-015-0194-y.
  47. A. Seidmohammadi, Y. Vaziri, A. Dargahi, H.Z. Nasab, Improved degradation of metronidazole in a heterogeneous photo-Fenton oxidation system with PAC/Fe3O4 magnetic catalyst: biodegradability, catalyst specifications, process optimization, and degradation pathway, Biomass Convers. Biorefin., 13 (2023) 9057–9073.