References

  1. P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Therm. Sci. 48 (2009) 290–302.
  2. K. Sefiane, R. Bennacer, Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates, Adv. Colloid Interface Sci., 147–148 (2009) 263–271.
  3. A.R. Gorjaei, M. Soltani, M. Bahiraei, F.M. Kashkooli, CFD simulation of nanofluid forced convection inside a three-dimensional annulus by two-phase mixture approach: heat transfer and entropy generation analyses, Int. J. Mech. Sci., 146–147 (2018) 396–404.
  4. G.A. Lazarus, V. Nandigana, K.G. Senthil, M.L. Dhasan, Experimental study on forced convective heat transfer with low volume fraction of CuO/water nanofluid, Energies 2 (2009) 97–119.
  5. R.-H. Chen, T.X. Phuoc, D. Martello, Effects of nanoparticles on nanofluid droplet evaporation, Int. J. Heat Mass Transfer, 53 (2010) 3677–3682.
  6. S. Siddiqa, N. Begum, M.A. Hossain, R.S.R. Gorla, A.A.A.A. Al-Rashed, Two-phase natural convection dusty nanofluid flow, Int. J. Heat Mass Transfer, 118 (2018) 66–74.
  7. M.A. Sheremet, D.S. Cimpean, I. Pop, Free convection in a partially heated wavy porous cavity filled with a nanofluid under the effects of Brownian diffusion and thermophoresis, Appl. Therm. Eng., 113 (2017) 413–418.
  8. A. Askounis, K. Sefiane, V. Koutsos, M.E.R. Shanahan, The effect of evaporation kinetics on nanoparticle structuring within contact line deposits of volatile drops, Colloids Surf., A, 441 (2014) 855–866.
  9. L. Perrin, A. Pajor-Swierzy, S. Magdassi, A. Kamyshny, F. Ortega, R.G. Rubio, Evaporation of nanosuspensions on substrates with different hydrophobicity, ACS Appl. Mater. Interfaces, 10 (2018) 3082–3093.
  10. W.-M. Yan, Effects of film evaporation on laminar mixed convection heat and mass transfer in a vertical channel, Int. J. Heat Mass Transfer, 12 (1992) 3419–3429.
  11. X.G. Huang, Y.H. Yang, P. Hu, Experimental study of falling film evaporation in large scale rectangular channel, Ann. Nucl. Energy, 76 (2015) 237–242.
  12. H. Wei, T. Davood, L. Amin, P. Farzad, K. Arash, A. Masoud, Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube, Int. Commun. Heat Mass Transfer, 110 (2020) 104440, doi: 10.1016/j.icheatmasstransfer.2019.104440.
  13. A. Nasr, A.A. Alzahrani, Liquid nanofilms’ evaporation inside a heat exchanger by mixed convection, Coatings, 12 (2022) 1564, doi: 10.3390/coatings12101564.
  14. M. Najim, M. Feddaoui, A.N. Alla, A. Charef, Computational study of evaporating nanofluids film along a vertical channel by the two-phase model, Int. J. Mech. Sci., 151 (2019) 858–867.
  15. A. Nasr, A.S. Al-Ghamdi, Liquid nanofilms’ condensation inside a heat exchanger by mixed convection, Appl. Sci., 12 (2022) 11190, doi: 10.3390/app122111190.
  16. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5 (2003) 167–171.
  17. H.W. Chiam, W.H. Azmi, N.A. Usri, R. Mamat, N.M. Adam, Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture, Exp. Therm. Fluid Sci., 81 (2017) 420–429.
  18. Dr. Neeraj Chavda, J.R. Patel, H.H. Patel, A.P. Parmar, Effect of nanofluid on heat transfer characteristics of double pipe heat exchanger: Part: I: effect of aluminum oxide nanofluid, Int. J. Res. Eng. Technol., 3 (2014) 42–52.
  19. J. Albadr, S. Tayal, M. Alasadi, Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations, Case Stud. Therm. Eng., 1 (2013) 38–44.
  20. M. Molana, A comprehensive review on the nanofluids application in the tubular heat exchangers, Am. J. Heat Mass Transfer, 3 (2016) 352–381.
  21. Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43 (2000) 3701–3707.
  22. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79 (2001) 2252–2254.
  23. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125 (2003) 567–574.
  24. P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45 (2002) 855–863.
  25. X.Q. Wang, A.S. Mujumdar, A review on nanofluids—part I: theoretical and numerical investigations, Braz. J. Chem. Eng., 24 (2007) 613–630.
  26. S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, D.A. Siginer, H.P. Wang, Eds., Developments and Applications of Non-Newtonian Flows, ASME, New York, Vol. 66, 1995, pp. 99–105.
  27. J.W. Palen, Q. Wang, J.C. Chen, Falling film evaporation of binary mixtures, AlChE J., 40 (1994) 207–214.
  28. H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20 (1952) 571, doi: 10.1063/1.1700493.
  29. J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, Clarendon Press, New York, NY, USA, 1881.
  30. A. Altaweel, Synthesis of Copper Oxide Nanostructures by Pressure Microwave Post-Discharge Microwave Atmospheric, Ph.D. Thesis, University of Lorraine, 2014.
  31. A.A. Ali Cherif, A. Daif, Numerical study of heat and mass transfer between two vertical flat plates in the presence of a binary liquid film flowing on one of the heated plates, Int. J. Heat Mass Transfer, 42 (1999) 2399–2418.