References
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy,
Nat. Mater., 16 (2017) 16–22.
- S. Chu, A. Majumdar, Opportunities and challenges for a
sustainable energy future, Nature, 488 (2012) 294–303.
- J. Fang, J. Zhu, Y. Shi, The responses of ecosystems to global
warming, CSB, 63 (2018) 136–140.
- P.A. Ostergaard, N. Duic, Y. Noorollahi, H. Mikulcic,
S. Kalogirou, Sustainable development using renewable
energy technology, Renewable Energy, 146 (2020) 2430–2437.
- M. Graf, M. Lihter, D. Unuchek, A. Sarathy, J.-P. Leburton,
A. Kis, A. Radenovic, Light-enhanced blue energy generation
using MoS2 nanopores, Joule, 3 (2019) 1549–1564.
- G. Liu, T. Chen, J. Xu, K. Wang, Blue energy harvesting on
nanostructured carbon materials, J. Mater. Chem. A, 6 (2018)
18357–18377.
- G. Nikolaidis, A. Karaolia, A. Matsikaris, A. Nikolaidis,
M. Nicolaides, G.C. Georgiou, Blue energy potential analysis
in the Mediterranean, Front. Energy Res., 7 (2019), doi: 10.3389/fenrg.2019.00062.
- A. Siria, M.-L. Bocquet, L. Bocquet, New avenues for the largescale
harvesting of blue energy, Nat. Rev. Chem., 1 (2017) 0091,
doi: 10.1038/s41570-017-0091.
- N.Y. Yip, M. Elimelech, Thermodynamic and energy efficiency
analysis of power generation from natural salinity gradients
by pressure retarded osmosis, Environ. Sci. Technol., 46 (2012)
5230–5239.
- O.A. Alvarez-Silva, A.F. Osorio, C. Winter, Practical global
salinity gradient energy potential, Renewable Sustainable
Energy Rev., 60 (2016) 1387–1395.
- Z. Li, Q. Han, Y. Qiu, D. Wang, Modulation of water transport
in carbon nanotubes by local charges, Carbon, 202 (2023)
83–92.
- S. Jiang, T. Shi, Z. Tang, S. Xi, Cost-effective fabrication of
inner-porous micro/nano carbon structures, J. Nanosci.
Nanotechnol., 18 (2018) 2089–2095.
- S.Q. Wang, Z.L. Zhang, W.Y. Huo, X.H. Zhang, F. Fang, Z.H. Xie,
J.Q. Jiang, Single-crystal-like black Zr-TiO2 nanotube array film:
an efficient photocatalyst for fast reduction of Cr(VI), Chem.
Eng. J., 403 (2021) 126331, doi: 10.1016/j.cej.2020.126331.
- S.Q. Wang, Z.L. Zhang, W.Y. Huo, X.H. Zhang, F. Fang, Z.H. Xie,
J.Q. Jiang, Preferentially oriented Ag-TiO2 nanotube array film:
an efficient visible-light-driven photocatalyst, J. Hazard. Mater.,
399 (2020) 123016, doi: 10.1016/j.jhazmat.2020.123016.
- T.Z. Wang, L. Huang, J.X. Pei, X.J. Hu, H.F. Jiang, Efficient
water desalination using Bernoulli effect, Desal. Water Treat.,
272 (2022) 37–49.
- B.E. Logan, M. Elimelech, Membrane-based processes for
sustainable power generation using water, Nature, 488 (2012)
313–319.
- G.Z. Ramon, B.J. Feinberg, E.M.V. Hoek, Membrane-based
production of salinity-gradient power, Energy Environ. Sci.,
4 (2011) 4423–4434.
- S.E. Skilhagen, Osmotic power - a new, renewable energy
source, Desal. Water Treat., 15 (2010) 271–278.
- A. Siria, P. Poncharal, A.L. Biance, R. Fulcrand, X. Blase,
S.T. Purcell, L. Bocquet, Giant osmotic energy conversion
measured in a single transmembrane boron nitride nanotube,
Nature, 494 (2013) 455–458.
- J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, Highperformance
ionic diode membrane for salinity gradient
power generation, J. Am. Chem. Soc., 136 (2014) 12265–12272.
- L.X. Cao, F.L. Xiao, Y.P. Feng, W.W. Zhu, W.X. Geng, J.L. Yang,
X.P. Chang, N. Li, W. Guo, L. Jiang, Anomalous channel‐length
dependence in nanofluidic osmotic energy conversion, Adv.
Funct. Mater., 27 (2017) 1604302, doi: 10.1002/adfm.201604302.
- H.-C. Yeh, C.-C. Chang, R.-J. Yang, Reverse electrodialysis in
conical-shaped nanopores: salinity gradient-driven power
generation, RSC Adv., 4 (2014) 2705–2714.
- G. Laucirica, A.G. Albesa, M. Etoimil-Molares, Shape matters:
enhanced osmotic energy harvesting in bullet-shaped
nanochannels, Nano Energy, 71 (2020) 104612, doi: 10.1016/j.nanoen.2020.104612.
- J. Phsu, T. Csu, P.H Peng, Unraveling the anomalous surface-charge-dependent osmotic power using a single funnel-shaped
nanochannel, ACS Nano, 13 (2019) 13374–13381.
- S. Tseng, Y.M. Li, C.Y. Lin, Salinity gradient power: influences of
temperature and nanopore size, Nanoscale, 8 (2016) 2350–2357.
- S.Y. Noskov, W. Im, B. Roux, Ion permeation through the alphahemolysin
channel: theoretical studies based on Brownian
dynamics and Poisson–Nernst–Plank electrodiffusion theory,
Biophys. J., 87 (2004) 2299–2309.
- C.-Y. Lin, C. Combs, Y.-S. Su, L.-H. Yeh, Z.S. Siwy, Rectification
of concentration polarization in mesopores leads to high
conductance ionic diodes and high-performance osmotic
power, J. Am. Chem. Soc., 141 (2019) 3691–3698.
- F. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li,
L. Jiang, W. Guo, Simulation of osmotic energy conversion
in nanoporous materials: a concise single-pore model, Mater.
Chem. Front., 5 (2018) 1677–1682.
- R. Long, Z. Kuang, Z. Liu, W. Liu, Temperature regulated
reverse electrodialysis in charged nanopores, J. Membr. Sci.,
561 (2018) 1–9.
- L. Cao, Q. Wen, Y. Feng, D. Ji, H. Li, N. Li, L. Jiang, W. Guo,
On the origin of ion selectivity in ultrathin nanopores: insights
for membrane-scale osmotic energy conversion, Adv. Funct.
Mater., 28 (2018) 1804189, doi: 10.1002/adfm.201804189.