References

  1. S. Chu, Y. Cui, N. Liu, The path towards sustainable energy, Nat. Mater., 16 (2017) 16–22.
  2. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488 (2012) 294–303.
  3. J. Fang, J. Zhu, Y. Shi, The responses of ecosystems to global warming, CSB, 63 (2018) 136–140.
  4. P.A. Ostergaard, N. Duic, Y. Noorollahi, H. Mikulcic, S. Kalogirou, Sustainable development using renewable energy technology, Renewable Energy, 146 (2020) 2430–2437.
  5. M. Graf, M. Lihter, D. Unuchek, A. Sarathy, J.-P. Leburton, A. Kis, A. Radenovic, Light-enhanced blue energy generation using MoS2 nanopores, Joule, 3 (2019) 1549–1564.
  6. G. Liu, T. Chen, J. Xu, K. Wang, Blue energy harvesting on nanostructured carbon materials, J. Mater. Chem. A, 6 (2018) 18357–18377.
  7. G. Nikolaidis, A. Karaolia, A. Matsikaris, A. Nikolaidis, M. Nicolaides, G.C. Georgiou, Blue energy potential analysis in the Mediterranean, Front. Energy Res., 7 (2019), doi: 10.3389/fenrg.2019.00062.
  8. A. Siria, M.-L. Bocquet, L. Bocquet, New avenues for the largescale harvesting of blue energy, Nat. Rev. Chem., 1 (2017) 0091, doi: 10.1038/s41570-017-0091.
  9. N.Y. Yip, M. Elimelech, Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis, Environ. Sci. Technol., 46 (2012) 5230–5239.
  10. O.A. Alvarez-Silva, A.F. Osorio, C. Winter, Practical global salinity gradient energy potential, Renewable Sustainable Energy Rev., 60 (2016) 1387–1395.
  11. Z. Li, Q. Han, Y. Qiu, D. Wang, Modulation of water transport in carbon nanotubes by local charges, Carbon, 202 (2023) 83–92.
  12. S. Jiang, T. Shi, Z. Tang, S. Xi, Cost-effective fabrication of inner-porous micro/nano carbon structures, J. Nanosci. Nanotechnol., 18 (2018) 2089–2095.
  13. S.Q. Wang, Z.L. Zhang, W.Y. Huo, X.H. Zhang, F. Fang, Z.H. Xie, J.Q. Jiang, Single-crystal-like black Zr-TiO2 nanotube array film: an efficient photocatalyst for fast reduction of Cr(VI), Chem. Eng. J., 403 (2021) 126331, doi: 10.1016/j.cej.2020.126331.
  14. S.Q. Wang, Z.L. Zhang, W.Y. Huo, X.H. Zhang, F. Fang, Z.H. Xie, J.Q. Jiang, Preferentially oriented Ag-TiO2 nanotube array film: an efficient visible-light-driven photocatalyst, J. Hazard. Mater., 399 (2020) 123016, doi: 10.1016/j.jhazmat.2020.123016.
  15. T.Z. Wang, L. Huang, J.X. Pei, X.J. Hu, H.F. Jiang, Efficient water desalination using Bernoulli effect, Desal. Water Treat., 272 (2022) 37–49.
  16. B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, 488 (2012) 313–319.
  17. G.Z. Ramon, B.J. Feinberg, E.M.V. Hoek, Membrane-based production of salinity-gradient power, Energy Environ. Sci., 4 (2011) 4423–4434.
  18. S.E. Skilhagen, Osmotic power - a new, renewable energy source, Desal. Water Treat., 15 (2010) 271–278.
  19. A. Siria, P. Poncharal, A.L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, L. Bocquet, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494 (2013) 455–458.
  20. J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, Highperformance ionic diode membrane for salinity gradient power generation, J. Am. Chem. Soc., 136 (2014) 12265–12272.
  21. L.X. Cao, F.L. Xiao, Y.P. Feng, W.W. Zhu, W.X. Geng, J.L. Yang, X.P. Chang, N. Li, W. Guo, L. Jiang, Anomalous channel‐length dependence in nanofluidic osmotic energy conversion, Adv. Funct. Mater., 27 (2017) 1604302, doi: 10.1002/adfm.201604302.
  22. H.-C. Yeh, C.-C. Chang, R.-J. Yang, Reverse electrodialysis in conical-shaped nanopores: salinity gradient-driven power generation, RSC Adv., 4 (2014) 2705–2714.
  23. G. Laucirica, A.G. Albesa, M. Etoimil-Molares, Shape matters: enhanced osmotic energy harvesting in bullet-shaped nanochannels, Nano Energy, 71 (2020) 104612, doi: 10.1016/j.nanoen.2020.104612.
  24. J. Phsu, T. Csu, P.H Peng, Unraveling the anomalous surface-charge-dependent osmotic power using a single funnel-shaped nanochannel, ACS Nano, 13 (2019) 13374–13381.
  25. S. Tseng, Y.M. Li, C.Y. Lin, Salinity gradient power: influences of temperature and nanopore size, Nanoscale, 8 (2016) 2350–2357.
  26. S.Y. Noskov, W. Im, B. Roux, Ion permeation through the alphahemolysin channel: theoretical studies based on Brownian dynamics and Poisson–Nernst–Plank electrodiffusion theory, Biophys. J., 87 (2004) 2299–2309.
  27. C.-Y. Lin, C. Combs, Y.-S. Su, L.-H. Yeh, Z.S. Siwy, Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high-performance osmotic power, J. Am. Chem. Soc., 141 (2019) 3691–3698.
  28. F. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li, L. Jiang, W. Guo, Simulation of osmotic energy conversion in nanoporous materials: a concise single-pore model, Mater. Chem. Front., 5 (2018) 1677–1682.
  29. R. Long, Z. Kuang, Z. Liu, W. Liu, Temperature regulated reverse electrodialysis in charged nanopores, J. Membr. Sci., 561 (2018) 1–9.
  30. L. Cao, Q. Wen, Y. Feng, D. Ji, H. Li, N. Li, L. Jiang, W. Guo, On the origin of ion selectivity in ultrathin nanopores: insights for membrane-scale osmotic energy conversion, Adv. Funct. Mater., 28 (2018) 1804189, doi: 10.1002/adfm.201804189.