References
- E. Kirsten, M. Jiri, S. Karl, A review of water reuse and recycling,
with reference to Canadian practice and potential: 1. Incentives
and implementation, Water Qual. Res. J. Can., 39 (2004) 1–12.
- S.D.N. Freeman, O.J. Morin, Recent developments in
membrane water reuse projects, Desalination, 103 (1995) 19–30.
- P. Jing, Z. Wang, Analysis of influencing factors of groundwater
nitrate nitrogen driven by sewage reuse, IOP Conf. Ser.:
Earth Environ. Sci., 766 (2021) 12–24.
- C.-W. Liu, Y. Sung, B.-C. Chen, H.-Y. Lai, Effects of nitrogen
fertilizers on the growth and nitrate content of lettuce (Lactuca
sativa L.), Int. J. Environ. Res. Public Health, 11 (2014) 4427–4440.
- T.L. Ng, W. Eheart, X. Cai, J.B. Braden, G.F. Czapar, Agronomic
and stream nitrate load responses to incentives for bioenergy
crop cultivation and reductions of carbon emissions and
fertilizer use, J. Water Resour. Plann. Manage., 140 (2014)
112–120.
- K. Wu, Y. Li, T. Liu, N. Zhang, M. Wang, S. Yang, W. Wang,
P. Jin, Evaluation of the adsorption of ammonium-nitrogen and
phosphate on a granular composite adsorbent derived from
zeolite, Environ. Sci. Pollut. Res., 26 (2019) 17632–17643.
- H. Li, Y. Li, J. Guo, Y. Song, Y. Hou, C. Lu, Y. Han, X. Shen,
B. Liu, Effect of calcinated pyrite on simultaneous ammonia,
nitrate and phosphorus removal in the BAF system and the
Fe2+ regulatory mechanisms: electron transfer and biofilm
properties, Environ. Res., 194 (2021) 110708, doi: 10.1016/j.envres.2021.110708.
- Y. Li, J. Guo, H. Li, Y. Song, Z. Chen, C. Lu, Y. Han, Y. Hou, Effect
of dissolved oxygen on simultaneous removal of ammonia,
nitrate and phosphorus via biological aerated filter with sulfur
and pyrite as composite fillers, Bioresour. Technol., 296 (2020)
122340, doi: 10.1016/j.biortech.2019.122340.
- D.M. Mahapatra, G.S. Murthy, Long term evaluation of a pilot
scale multimodal algal bioprocess for treatment of municipal
wastewater, J. Cleaner Prod., 311 (2021) 127690, doi: 10.1016/j.jclepro.2021.127690.
- Y. Zhang, G.B. Douglas, L. Pu, Q. Zhao, Y. Tang, W. Xu,
B. Luo, W. Hong, L. Cui, Z. Ye, Zero-valent iron-facilitated
reduction of nitrate: chemical kinetics and reaction pathways,
Sci. Total Environ., 598 (2017) 1140–1150, doi: 10.1016/j.scitotenv.2017.04.071
- L. El Hanache, B. Lebeau, H. Nouali, J. Toufaily, T. Hamieh,
T. Jean Daou, Performance of surfactant-modified *BEA-type
zeolite nanosponges for the removal of nitrate in contaminated
water: effect of the external surface, J. Hazard. Mater.,
364 (2019) 206–217.
- K.S. Haugen, M.J. Semmens, P.J. Novak, A novel in situ
technology for the treatment of nitrate contaminated
groundwater, Water Res., 36 (2002) 3497–3506.
- Y. Yurekli, Determination of adsorption characteristics of
synthetic NaX nanoparticles, J. Hazard. Mater., 378 (2019)
120743, doi: 10.1016/j.jhazmat.2019.120743.
- C. Qin, R. Wang, W. Ma, Characteristics of calcium adsorption
by Ca-selectivity zeolite in fixed-pH and in a range of pH,
Chem. Eng. J., 156 (2010) 540–545.
- X. Liu, R. Wang, Effective removal of hydrogen sulfide using
4A molecular sieve zeolite synthesized from attapulgite,
J. Hazard. Mater., 326 (2017) 157–164.
- M. Pérez-Page, J. Makel, K. Guan, S. Zhang, J. Tringe,
R.H.R. Castro, P. Stroeve, Gas adsorption properties of
ZSM-5 zeolites heated to extreme temperatures, Ceram. Int.,
42 (2016) 15423–15431.
- R. Yan, S. Lin, Y. Li, W. Liu, Y. Mi, C. Tang, L. Wang, P. Wu,
H. Peng, Novel shielding and synergy effects of Mn-Ce
oxides confined in mesoporous zeolite for low temperature
selective catalytic reduction of NOx with enhanced SO2/H2O
tolerance, J. Hazard. Mater., 396 (2020) 122592, doi: 10.1016/j.jhazmat.2020.122592.
- Y. Nomura, S. Fukahori, T. Fujiwara, Removal of sulfamonomethoxine
and its transformation by-products from fresh
aquaculture wastewater by a rotating advanced oxidation
contactor equipped with zeolite/TiO2 composite sheets,
Process Saf. Environ. Prot., 134 (2020) 161–168.
- J. Wang, W. Jin, H. Guo, X. Wang, J. Liu, Experimental study
on ammonia nitrogen adsorption performance of zeolite
powder, Chem. Eng. Trans., 46 (2015) 79–84.
- L. Lin, Z. Lei, L. Wang, X. Liu, Y. Zhang, C. Wan, D.-J. Lee,
J.H. Tay, Adsorption mechanisms of high-levels of ammonium
onto natural and NaCl-modified zeolites, Sep. Purif. Technol.,
103 (2013) 15–20.
- X. Guo, X. Cui, H. Li, B. Xiong, Purifying effect of biocharzeolite
constructed wetlands on arsenic-containing biogas
slurry in large-scale pig farms, J. Cleaner Prod., 279 (2021)
123579, doi: 10.1016/j.jclepro.2020.123579.
- R.S. Bowman, Applications of surfactant-modified zeolites
to environmental remediation, Microporous Mesoporous
Mater., 61 (2003) 43–56.
- J.-I. Lee, J.-K. Kang, J.-S. Oh, S.-C. Yoo, C.-G. Lee, E.H. Jho,
S.-J. Park, New insight to the use of oyster shell for removing
phosphorus from aqueous solutions and fertilizing rice
growth, J. Cleaner Prod., 328 (2021) 129536, doi: 10.1016/j.jclepro.2021.129536.
- C. Wang, D. Ren, G. Harle, Q. Qin, L. Guo, T. Zheng,
X. Yin, J. Du, Y. Zhao, Ammonia removal in selective catalytic
oxidation: influence of catalyst structure on the nitrogen
selectivity, J. Hazard. Mater., 416 (2021) 125782, doi: 10.1016/j.jhazmat.2021.125782.
- D. Wang, Z. Qi, Z. Xing, F. Lei, Control of chloride ion corrosion
by MgAlOx/MgAlFeOx in the process of chloride deicing,
Environ. Sci. Pollut. Res. Int., 29 (2022) 9269–9281.
- APHA Association, Standard Methods for the Examination
of Water and Wastewater, American Public Health
Association (APHA), USA, 2005.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- P. He, Y. Zhang, X. Zhang, H. Chen, Diverse zeolites derived
from a circulating fluidized bed fly ash based geopolymer for
the adsorption of lead ions from wastewater, J. Cleaner Prod.,
312 (2021) 127769, doi: 10.1016/j.jclepro.2021.127769.
- G. Blanchard, M. Maunaye, G. Martin, Removal of heavy
metals from waters by means of natural zeolites, Water Res.,
18 (1984) 1501–1507.
- H. Hazar, R. Tekdogan, H. Sevinc, Determination of the
effects of oxygen-enriched air with the help of zeolites on
the exhaust emission and performance of a diesel engine,
Energy, 236 (2021) 121455, doi: 10.1016/j.energy.2021.121455.
- C. Wan, S. Ding, C. Zhang, X. Tan, W. Zou, X. Liu, X. Yang,
Simultaneous recovery of nitrogen and phosphorus from
sludge fermentation liquid by zeolite adsorption: mechanism
and application, Sep. Purif. Technol., 180 (2017) 1–12.
- Z. Razavi, N. Mirghaffari, A. Akbar Alemrajabi, F. Davar,
M. Soleimani, Adsorption and photocatalytic removal of SO2
using natural and synthetic zeolites-supported TiO2 in a solar
parabolic trough collector, J. Cleaner Prod., 310 (2021) 127376,
doi: 10.1016/j.jclepro.2021.127376.
- F. Espejel Ayala, Y. Reyes-Vidal, J. Bacame-Valenzuela, J. Pérez-
García, A. Hernández Palomares, Natural and Synthetic
Zeolites for the Removal of Heavy Metals and Metalloids
Generated in the Mining Industry, M.P. Shah, S.R. Couto,
V. Kumar, Eds., New Trends in Removal of Heavy Metals from
Industrial Wastewater, Elsevier, Amsterdam, 2021, pp. 631–648.
- J. Szerement, A. Szatanik-Kloc, R. Jarosz, T. Bajda, M. Mierzwa-
Hersztek, Contemporary applications of natural and synthetic
zeolites from fly ash in agriculture and environmental
protection, J. Cleaner Prod., 311 (2021) 127461, doi: 10.1016/j.jclepro.2021.127461.
- M.M. Mohamed, W.A. Bayoumy, M. Khairy, M.A. Mousa,
Synthesis of micro–mesoporous TiO2 materials assembled
via cationic surfactants: morphology, thermal stability and
surface acidity characteristics, Microporous Mesoporous
Mater., 103 (2007) 174–183.
- C. Zhang, B. Zhou, Z. Li, Study on simultaneous degradation
of nitrogen and phosphorus in wastewater from sludge
dewatering removal by mixing sodium and lanthanum
modified zeolite, IOP Conf. Ser.: Earth Environ. Sci., 601 (2020)
012019, doi: 10.1088/1755-1315/601/1/012019.
- H. Zhu, L. Li, W. Chen, Y. Tong, X. Wang, Controllable synthesis
of coral-like hierarchical porous magnesium hydroxide
with various surface area and pore volume for lead and
cadmium ion adsorption, J. Hazard. Mater., 416 (2021) 125922,
doi: 10.1016/j.jhazmat.2021.125922.
- N. Widiastuti, H. Wu, H.M. Ang, D. Zhang, Removal
of ammonium from greywater using natural zeolite,
Desalination, 277 (2011) 15–23.
- N. Merilaita, T. Vastamäki, A. Ismailov, E. Levänen,
M. Järveläinen, Stereolithography as a manufacturing method
for a hierarchically porous ZSM-5 zeolite structure with
adsorption capabilities, Ceram. Int., 47 (2021) 10742–10748.
- L. Xu, T. Jiang, P. Yu, Q. Zhao, Experimental study on the
effect of combined modified aluminum and magnesium
and phosphorus removal of zeolite, Bulg. Chem. Commun.,
48 (2016) 80–83.
- G.L.D. Rivera, A.M. Hernández, A.F.P. Cabello, E.L.R. Barragán,
A.L. Montes, G.A.F. Escamilla, L.S. Rangel, S.I.S. Vazquez,
D.A. De Haro Del Río, Removal of chromate anions and
immobilization using surfactant-modified zeolites, J. Water
Process Eng., 39 (2021) 101717, doi: 10.1016/j.jwpe.2020.101717.
- D.R. Durham, L.C. Marshall, J.G. Miller, A.B. Chmurny, New
composite biocarriers engineered to contain adsorptive and
ion-exchange properties improve immobilized-cell bioreactor
process dependability, Appl. Environ. Microbiol., 60 (1994)
4178–4181.
- Y. Watanabe, H. Yamada, H. Kokusen, J. Tanaka, Y. Moriyoshi,
Y. Komatsu, Ion exchange behavior of natural zeolites in
distilled water, hydrochloric acid, and ammonium chloride
solution, Sep. Sci. Technol., 38 (2007) 1519–1532.
- J. Wen, H. Dong, G. Zeng, Application of zeolite in removing
salinity/sodicity from wastewater: a review of mechanisms,
challenges and opportunities, J. Cleaner Prod., 197 (2018)
1435–1446.
- A. Demir, A. Günay, E. Debik, Ammonium removal from
aqueous solution by ion-exchange using packed bed natural
zeolite, Water SA, 28 (2002) 329–336.
- Q. Du, S. Liu, Z. Cao, Y. Wang, Ammonia removal from
aqueous solution using natural Chinese clinoptilolite,
Sep. Purif. Technol., 44 (2005) 229–234.
- J. Chen, X. Wang, S. Zhou, Z. Chen, Effect of alkalinity on biozeolite
regeneration in treating cold low-strength ammonium
wastewater via adsorption and enhanced regeneration,
Environ. Sci. Pollut. Res., 26 (2019) 28040–28051.
- F. Group, Synthetic Zeolites Market Will Reach $2.7 bn by
2028 with a CAGR of 3.5%, Focus on Catalysts, 2022.