References

  1. E. Kirsten, M. Jiri, S. Karl, A review of water reuse and recycling, with reference to Canadian practice and potential: 1. Incentives and implementation, Water Qual. Res. J. Can., 39 (2004) 1–12.
  2. S.D.N. Freeman, O.J. Morin, Recent developments in membrane water reuse projects, Desalination, 103 (1995) 19–30.
  3. P. Jing, Z. Wang, Analysis of influencing factors of groundwater nitrate nitrogen driven by sewage reuse, IOP Conf. Ser.: Earth Environ. Sci., 766 (2021) 12–24.
  4. C.-W. Liu, Y. Sung, B.-C. Chen, H.-Y. Lai, Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.), Int. J. Environ. Res. Public Health, 11 (2014) 4427–4440.
  5. T.L. Ng, W. Eheart, X. Cai, J.B. Braden, G.F. Czapar, Agronomic and stream nitrate load responses to incentives for bioenergy crop cultivation and reductions of carbon emissions and fertilizer use, J. Water Resour. Plann. Manage., 140 (2014) 112–120.
  6. K. Wu, Y. Li, T. Liu, N. Zhang, M. Wang, S. Yang, W. Wang, P. Jin, Evaluation of the adsorption of ammonium-nitrogen and phosphate on a granular composite adsorbent derived from zeolite, Environ. Sci. Pollut. Res., 26 (2019) 17632–17643.
  7. H. Li, Y. Li, J. Guo, Y. Song, Y. Hou, C. Lu, Y. Han, X. Shen, B. Liu, Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe2+ regulatory mechanisms: electron transfer and biofilm properties, Environ. Res., 194 (2021) 110708, doi: 10.1016/j.envres.2021.110708.
  8. Y. Li, J. Guo, H. Li, Y. Song, Z. Chen, C. Lu, Y. Han, Y. Hou, Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers, Bioresour. Technol., 296 (2020) 122340, doi: 10.1016/j.biortech.2019.122340.
  9. D.M. Mahapatra, G.S. Murthy, Long term evaluation of a pilot scale multimodal algal bioprocess for treatment of municipal wastewater, J. Cleaner Prod., 311 (2021) 127690, doi: 10.1016/j.jclepro.2021.127690.
  10. Y. Zhang, G.B. Douglas, L. Pu, Q. Zhao, Y. Tang, W. Xu, B. Luo, W. Hong, L. Cui, Z. Ye, Zero-valent iron-facilitated reduction of nitrate: chemical kinetics and reaction pathways, Sci. Total Environ., 598 (2017) 1140–1150, doi: 10.1016/j.scitotenv.2017.04.071
  11. L. El Hanache, B. Lebeau, H. Nouali, J. Toufaily, T. Hamieh, T. Jean Daou, Performance of surfactant-modified *BEA-type zeolite nanosponges for the removal of nitrate in contaminated water: effect of the external surface, J. Hazard. Mater., 364 (2019) 206–217.
  12. K.S. Haugen, M.J. Semmens, P.J. Novak, A novel in situ technology for the treatment of nitrate contaminated groundwater, Water Res., 36 (2002) 3497–3506.
  13. Y. Yurekli, Determination of adsorption characteristics of synthetic NaX nanoparticles, J. Hazard. Mater., 378 (2019) 120743, doi: 10.1016/j.jhazmat.2019.120743.
  14. C. Qin, R. Wang, W. Ma, Characteristics of calcium adsorption by Ca-selectivity zeolite in fixed-pH and in a range of pH, Chem. Eng. J., 156 (2010) 540–545.
  15. X. Liu, R. Wang, Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite, J. Hazard. Mater., 326 (2017) 157–164.
  16. M. Pérez-Page, J. Makel, K. Guan, S. Zhang, J. Tringe, R.H.R. Castro, P. Stroeve, Gas adsorption properties of ZSM-5 zeolites heated to extreme temperatures, Ceram. Int., 42 (2016) 15423–15431.
  17. R. Yan, S. Lin, Y. Li, W. Liu, Y. Mi, C. Tang, L. Wang, P. Wu, H. Peng, Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance, J. Hazard. Mater., 396 (2020) 122592, doi: 10.1016/j.jhazmat.2020.122592.
  18. Y. Nomura, S. Fukahori, T. Fujiwara, Removal of sulfamonomethoxine and its transformation by-products from fresh aquaculture wastewater by a rotating advanced oxidation contactor equipped with zeolite/TiO2 composite sheets, Process Saf. Environ. Prot., 134 (2020) 161–168.
  19. J. Wang, W. Jin, H. Guo, X. Wang, J. Liu, Experimental study on ammonia nitrogen adsorption performance of zeolite powder, Chem. Eng. Trans., 46 (2015) 79–84.
  20. L. Lin, Z. Lei, L. Wang, X. Liu, Y. Zhang, C. Wan, D.-J. Lee, J.H. Tay, Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites, Sep. Purif. Technol., 103 (2013) 15–20.
  21. X. Guo, X. Cui, H. Li, B. Xiong, Purifying effect of biocharzeolite constructed wetlands on arsenic-containing biogas slurry in large-scale pig farms, J. Cleaner Prod., 279 (2021) 123579, doi: 10.1016/j.jclepro.2020.123579.
  22. R.S. Bowman, Applications of surfactant-modified zeolites to environmental remediation, Microporous Mesoporous Mater., 61 (2003) 43–56.
  23. J.-I. Lee, J.-K. Kang, J.-S. Oh, S.-C. Yoo, C.-G. Lee, E.H. Jho, S.-J. Park, New insight to the use of oyster shell for removing phosphorus from aqueous solutions and fertilizing rice growth, J. Cleaner Prod., 328 (2021) 129536, doi: 10.1016/j.jclepro.2021.129536.
  24. C. Wang, D. Ren, G. Harle, Q. Qin, L. Guo, T. Zheng, X. Yin, J. Du, Y. Zhao, Ammonia removal in selective catalytic oxidation: influence of catalyst structure on the nitrogen selectivity, J. Hazard. Mater., 416 (2021) 125782, doi: 10.1016/j.jhazmat.2021.125782.
  25. D. Wang, Z. Qi, Z. Xing, F. Lei, Control of chloride ion corrosion by MgAlOx/MgAlFeOx in the process of chloride deicing, Environ. Sci. Pollut. Res. Int., 29 (2022) 9269–9281.
  26. APHA Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), USA, 2005.
  27. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  28. P. He, Y. Zhang, X. Zhang, H. Chen, Diverse zeolites derived from a circulating fluidized bed fly ash based geopolymer for the adsorption of lead ions from wastewater, J. Cleaner Prod., 312 (2021) 127769, doi: 10.1016/j.jclepro.2021.127769.
  29. G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res., 18 (1984) 1501–1507.
  30. H. Hazar, R. Tekdogan, H. Sevinc, Determination of the effects of oxygen-enriched air with the help of zeolites on the exhaust emission and performance of a diesel engine, Energy, 236 (2021) 121455, doi: 10.1016/j.energy.2021.121455.
  31. C. Wan, S. Ding, C. Zhang, X. Tan, W. Zou, X. Liu, X. Yang, Simultaneous recovery of nitrogen and phosphorus from sludge fermentation liquid by zeolite adsorption: mechanism and application, Sep. Purif. Technol., 180 (2017) 1–12.
  32. Z. Razavi, N. Mirghaffari, A. Akbar Alemrajabi, F. Davar, M. Soleimani, Adsorption and photocatalytic removal of SO2 using natural and synthetic zeolites-supported TiO2 in a solar parabolic trough collector, J. Cleaner Prod., 310 (2021) 127376, doi: 10.1016/j.jclepro.2021.127376.
  33. F. Espejel Ayala, Y. Reyes-Vidal, J. Bacame-Valenzuela, J. Pérez- García, A. Hernández Palomares, Natural and Synthetic Zeolites for the Removal of Heavy Metals and Metalloids Generated in the Mining Industry, M.P. Shah, S.R. Couto, V. Kumar, Eds., New Trends in Removal of Heavy Metals from Industrial Wastewater, Elsevier, Amsterdam, 2021, pp. 631–648.
  34. J. Szerement, A. Szatanik-Kloc, R. Jarosz, T. Bajda, M. Mierzwa- Hersztek, Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection, J. Cleaner Prod., 311 (2021) 127461, doi: 10.1016/j.jclepro.2021.127461.
  35. M.M. Mohamed, W.A. Bayoumy, M. Khairy, M.A. Mousa, Synthesis of micro–mesoporous TiO2 materials assembled via cationic surfactants: morphology, thermal stability and surface acidity characteristics, Microporous Mesoporous Mater., 103 (2007) 174–183.
  36. C. Zhang, B. Zhou, Z. Li, Study on simultaneous degradation of nitrogen and phosphorus in wastewater from sludge dewatering removal by mixing sodium and lanthanum modified zeolite, IOP Conf. Ser.: Earth Environ. Sci., 601 (2020) 012019, doi: 10.1088/1755-1315/601/1/012019.
  37. H. Zhu, L. Li, W. Chen, Y. Tong, X. Wang, Controllable synthesis of coral-like hierarchical porous magnesium hydroxide with various surface area and pore volume for lead and cadmium ion adsorption, J. Hazard. Mater., 416 (2021) 125922, doi: 10.1016/j.jhazmat.2021.125922.
  38. N. Widiastuti, H. Wu, H.M. Ang, D. Zhang, Removal of ammonium from greywater using natural zeolite, Desalination, 277 (2011) 15–23.
  39. N. Merilaita, T. Vastamäki, A. Ismailov, E. Levänen, M. Järveläinen, Stereolithography as a manufacturing method for a hierarchically porous ZSM-5 zeolite structure with adsorption capabilities, Ceram. Int., 47 (2021) 10742–10748.
  40. L. Xu, T. Jiang, P. Yu, Q. Zhao, Experimental study on the effect of combined modified aluminum and magnesium and phosphorus removal of zeolite, Bulg. Chem. Commun., 48 (2016) 80–83.
  41. G.L.D. Rivera, A.M. Hernández, A.F.P. Cabello, E.L.R. Barragán, A.L. Montes, G.A.F. Escamilla, L.S. Rangel, S.I.S. Vazquez, D.A. De Haro Del Río, Removal of chromate anions and immobilization using surfactant-modified zeolites, J. Water Process Eng., 39 (2021) 101717, doi: 10.1016/j.jwpe.2020.101717.
  42. D.R. Durham, L.C. Marshall, J.G. Miller, A.B. Chmurny, New composite biocarriers engineered to contain adsorptive and ion-exchange properties improve immobilized-cell bioreactor process dependability, Appl. Environ. Microbiol., 60 (1994) 4178–4181.
  43. Y. Watanabe, H. Yamada, H. Kokusen, J. Tanaka, Y. Moriyoshi, Y. Komatsu, Ion exchange behavior of natural zeolites in distilled water, hydrochloric acid, and ammonium chloride solution, Sep. Sci. Technol., 38 (2007) 1519–1532.
  44. J. Wen, H. Dong, G. Zeng, Application of zeolite in removing salinity/sodicity from wastewater: a review of mechanisms, challenges and opportunities, J. Cleaner Prod., 197 (2018) 1435–1446.
  45. A. Demir, A. Günay, E. Debik, Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite, Water SA, 28 (2002) 329–336.
  46. Q. Du, S. Liu, Z. Cao, Y. Wang, Ammonia removal from aqueous solution using natural Chinese clinoptilolite, Sep. Purif. Technol., 44 (2005) 229–234.
  47. J. Chen, X. Wang, S. Zhou, Z. Chen, Effect of alkalinity on biozeolite regeneration in treating cold low-strength ammonium wastewater via adsorption and enhanced regeneration, Environ. Sci. Pollut. Res., 26 (2019) 28040–28051.
  48. F. Group, Synthetic Zeolites Market Will Reach $2.7 bn by 2028 with a CAGR of 3.5%, Focus on Catalysts, 2022.