References

  1. E.I. Lord, S.G. Anthony, G. Goodlass, Agricultural nitrogen balance and water quality in the UK, Soil Use Manage., 18 (2002) 363–369.
  2. G. Castaldelli, N. Colombani, E. Soana, F. Vincenzi, E.A. Fano, M. Mastrocicco, Reactive nitrogen losses via denitrification assessed in saturated agricultural soils, Geoderma, 337 (2019) 91–98.
  3. M. Mastrocicco, N. Colombani, E. Soana, F. Vincenzi, G. Castaldelli, Intense rainfalls trigger nitrite leaching in agricultural soils depleted in organic matter, Sci. Total Environ., 15 (2019) 80–90.
  4. USEPA (Environmental Protection Agency), Camp Dresser & McKee, Washington, 2004.
  5. A. Matei, G. Racoviteanu, Review of the technologies for nitrates removal from water intended for human consumption, IOP Conf. Ser.: Earth Environ. Sci., 664 (2021) 012024,
    doi: 10.1088/1755-1315/664/1/012024.
  6. Y. Liu, J. Wang, Reduction of nitrate by zero-valent iron (ZVI)- based materials: a review, Sci. Total Environ., 671 (2019) 388–403.
  7. Y. Yang, W.-Z. Gai, J.-G. Zhou, Z.-Y. Deng, Surface modified zero-valent aluminum for Cr(VI) removal at neutral pH, Chem. Eng. J., 395 (2020) 125140, doi: 10.1016/j.cej.2020.125140.
  8. A. Siciliano, G.M. Curcio, C. Limonti, Chemical denitrification with Mg0 particles in column systems, Sustainability, 12 (2020) 2984, doi: 10.3390/su12072984.
  9. Y.-T. Chiu, C.-H. Lin, J. Lee, K.-Y.A. Lin, Reduction of nitrate to nitrite in water by acid-washed zero-valent zinc, Sep. Sci. Technol., 55 (2020) 761–770.
  10. Y. Segura, F. Martínez, J.A. Melero, J.L.G. Fierro, Zerovalent iron (ZVI) mediated Fenton degradation of industrial wastewater: treatment performance and characterization of final composites, Chem. Eng. J., 269 (2015) 298–305.
  11. X. Guan, Y. Sun, H. Qin, J. Li, I.M.C. Lo, D. He, H. Dong, The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014), Water Res., 75 (2015) 224–248.
  12. A.A. Yaqoob, T. Parveen, K. Umar, M.N. Mohamad Ibrahim, Role of nanomaterials in the treatment of wastewater: a review, Water, 12 (2020) 495, doi: 10.3390/w12020495.
  13. T. Phenrat, P. Skácelová, E. Petala, A. Velosa, J. Filip, Nanoscale Zero-Valent Iron Particles for Water Treatment: From Basic Principles to Field-Scale Applications, J. Filip, T. Cajthaml, P. Najmanová, M. Černík, R. Zbořil, Eds., Advanced Nano-Bio Technologies for Water and Soil Treatment. Applied Environmental Science and Engineering for a Sustainable Future, Springer, Cham, 2020, pp. 19–52.
  14. X. Lv, H. Peng, X. Wang, L. Hu, M. Peng, Z. Liu, G. Jiang, Nitrate reduction by nanoscale zero-valent iron
    (nFe0)-based systems: mechanism, reaction pathway and strategy for enhanced N2 formation, Chem. Eng. J., 430 (2022) 133133, doi: 10.1016/j.cej.2021.133133.
  15. Z.S. Bao, Q. Hu, W.K. Qi, Y. Tang, W. Wang, P.Y. Wan, J.B. Chao, X.J. Yang, Nitrate reduction in water by aluminum alloys particles, J. Environ. Manage., 196 (2017) 666–673.
  16. G.M. Curcio, C. Limonti, A. Siciliano, I. Kabdaşlı, Nitrate removal by zero-valent metals: a comprehensive review, Sustainability, 14 (2022) 4500, doi: 10.3390/su14084500.
  17. S. Furukawa, N. Yamauchi, K. Nakashima, K.-I. Watanabe, H. Koda, H. Kunigami, H. Kunigami Y. Kobayashi, Oxidation control of metallic zinc nanoparticles by silica coating, Mater. Res. Innovations, 27 (2023) 205–211.
  18. H. Li, J. Guo, L. Yang, Y. Lan, Degradation of methyl orange by sodium persulfate activated with zero-valent zinc, Sep. Purif. Technol., 132 (2014) 168–173.
  19. O. Ayyildiz, E. Acar, B. Ileri, Sonocatalytic reduction of hexavalent chromium by metallic magnesium particles, Water Air Soil Pollut., 227 (2016) 363, doi: 10.1007/s11270-016-3065-y.
  20. T.J. Mason, J.P. Lorimer, Applied Sonochemistry, The Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH, Weinheim, 2002.
  21. S.K. Gujar, G. Divyapriya, P.R. Gogate, P.V. Nidheesh, Environmental applications of ultrasound activated persulfate/peroxymonosulfate oxidation process in combination with other activating agents, Crit. Rev. Env. Sci. Technol., 53 (2023) 780–802.
  22. M.-L. Doche, J.-Y. Hihn, F. Touyeras, J.P. Lorimer, T.J. Mason, M. Plattes, Electrochemical behaviour of zinc in 20 kHz sonicated NaOH electrolytes, Ultrason. Sonochem., 8 (2001) 291–298.
  23. T. Huang, G. Zhang, S. Chong, Y. Liu, N. Zhang, S. Fang, J. Zhu, Effects and mechanism of diclofenac degradation in aqueous solution by US/Zn0, Ultrason. Sonochem., 37 (2017) 676–685.
  24. J. Guo, L. Zhu, N. Sun, Y. Lan, Degradation of nitrobenzene by sodium persulfate activated with zero-valent zinc in the presence of low frequency ultrasound, J. Taiwan Inst. Chem. Eng., 78 (2017) 137–143.
  25. L. Limousy, P. Dutournie, D. Hadijiev, Kinetics of nitrite reduction by zinc metal: influence of metal shape on the determination of kinetic parameters, Water Environ. Res., 82 (2010) 648–656.
  26. D. Landolt, Corrosion and Surface Chemistry of Metals, EPFL Press, New York, NY, 2007.
  27. G. Lee, J. Park, O.R. Harvey, Reduction of chromium(VI) mediated by zero-valent magnesium under neutral pH conditions, Water Res., 47 (2013) 1136–1146.
  28. V.L. Snoeyink, D. Jenkins, Water Chemistry, Wiley, New York, NY, 1980.
  29. Y.J. Tsai, F.C. Chou, T.C. Cheng, Coupled acidification and ultrasound with iron enhances nitrate reduction, J. Hazard. Mater., 163 (2009) 743–747.