References
- E.I. Lord, S.G. Anthony, G. Goodlass, Agricultural nitrogen
balance and water quality in the UK, Soil Use Manage.,
18 (2002) 363–369.
- G. Castaldelli, N. Colombani, E. Soana, F. Vincenzi, E.A. Fano,
M. Mastrocicco, Reactive nitrogen losses via denitrification
assessed in saturated agricultural soils, Geoderma, 337 (2019)
91–98.
- M. Mastrocicco, N. Colombani, E. Soana, F. Vincenzi,
G. Castaldelli, Intense rainfalls trigger nitrite leaching in
agricultural soils depleted in organic matter, Sci. Total Environ.,
15 (2019) 80–90.
- USEPA (Environmental Protection Agency), Camp Dresser &
McKee, Washington, 2004.
- A. Matei, G. Racoviteanu, Review of the technologies for
nitrates removal from water intended for human consumption,
IOP Conf. Ser.: Earth Environ. Sci., 664 (2021) 012024,
doi: 10.1088/1755-1315/664/1/012024.
- Y. Liu, J. Wang, Reduction of nitrate by zero-valent iron (ZVI)-
based materials: a review, Sci. Total Environ., 671 (2019)
388–403.
- Y. Yang, W.-Z. Gai, J.-G. Zhou, Z.-Y. Deng, Surface modified
zero-valent aluminum for Cr(VI) removal at neutral pH,
Chem. Eng. J., 395 (2020) 125140, doi: 10.1016/j.cej.2020.125140.
- A. Siciliano, G.M. Curcio, C. Limonti, Chemical denitrification
with Mg0 particles in column systems, Sustainability, 12 (2020)
2984, doi: 10.3390/su12072984.
- Y.-T. Chiu, C.-H. Lin, J. Lee, K.-Y.A. Lin, Reduction of nitrate
to nitrite in water by acid-washed zero-valent zinc, Sep. Sci.
Technol., 55 (2020) 761–770.
- Y. Segura, F. Martínez, J.A. Melero, J.L.G. Fierro, Zerovalent
iron (ZVI) mediated Fenton degradation of industrial
wastewater: treatment performance and characterization of
final composites, Chem. Eng. J., 269 (2015) 298–305.
- X. Guan, Y. Sun, H. Qin, J. Li, I.M.C. Lo, D. He, H. Dong,
The limitations of applying zero-valent iron technology
in contaminants sequestration and the corresponding
countermeasures: the development in zero-valent iron
technology in the last two decades (1994–2014), Water Res.,
75 (2015) 224–248.
- A.A. Yaqoob, T. Parveen, K. Umar, M.N. Mohamad Ibrahim,
Role of nanomaterials in the treatment of wastewater: a review,
Water, 12 (2020) 495, doi: 10.3390/w12020495.
- T. Phenrat, P. Skácelová, E. Petala, A. Velosa, J. Filip, Nanoscale
Zero-Valent Iron Particles for Water Treatment: From Basic
Principles to Field-Scale Applications, J. Filip, T. Cajthaml,
P. Najmanová, M. Černík, R. Zbořil, Eds., Advanced Nano-Bio Technologies for Water and Soil Treatment. Applied
Environmental Science and Engineering for a Sustainable
Future, Springer, Cham, 2020, pp. 19–52.
- X. Lv, H. Peng, X. Wang, L. Hu, M. Peng, Z. Liu, G. Jiang, Nitrate
reduction by nanoscale zero-valent iron
(nFe0)-based systems:
mechanism, reaction pathway and strategy for enhanced N2
formation, Chem. Eng. J., 430 (2022) 133133, doi: 10.1016/j.cej.2021.133133.
- Z.S. Bao, Q. Hu, W.K. Qi, Y. Tang, W. Wang, P.Y. Wan, J.B. Chao,
X.J. Yang, Nitrate reduction in water by aluminum alloys
particles, J. Environ. Manage., 196 (2017) 666–673.
- G.M. Curcio, C. Limonti, A. Siciliano, I. Kabdaşlı, Nitrate
removal by zero-valent metals: a comprehensive review,
Sustainability, 14 (2022) 4500, doi: 10.3390/su14084500.
- S. Furukawa, N. Yamauchi, K. Nakashima, K.-I. Watanabe,
H. Koda, H. Kunigami, H. Kunigami Y. Kobayashi, Oxidation
control of metallic zinc nanoparticles by silica coating, Mater.
Res. Innovations, 27 (2023) 205–211.
- H. Li, J. Guo, L. Yang, Y. Lan, Degradation of methyl orange by
sodium persulfate activated with zero-valent zinc, Sep. Purif.
Technol., 132 (2014) 168–173.
- O. Ayyildiz, E. Acar, B. Ileri, Sonocatalytic reduction of
hexavalent chromium by metallic magnesium particles, Water
Air Soil Pollut., 227 (2016) 363, doi: 10.1007/s11270-016-3065-y.
- T.J. Mason, J.P. Lorimer, Applied Sonochemistry, The Uses of Power
Ultrasound in Chemistry and Processing, Wiley-VCH, Weinheim,
2002.
- S.K. Gujar, G. Divyapriya, P.R. Gogate, P.V. Nidheesh, Environmental
applications of ultrasound activated persulfate/peroxymonosulfate oxidation process in combination with
other activating agents, Crit. Rev. Env. Sci. Technol., 53 (2023)
780–802.
- M.-L. Doche, J.-Y. Hihn, F. Touyeras, J.P. Lorimer, T.J. Mason,
M. Plattes, Electrochemical behaviour of zinc in 20 kHz
sonicated NaOH electrolytes, Ultrason. Sonochem., 8 (2001)
291–298.
- T. Huang, G. Zhang, S. Chong, Y. Liu, N. Zhang, S. Fang, J. Zhu,
Effects and mechanism of diclofenac degradation in aqueous
solution by US/Zn0, Ultrason. Sonochem., 37 (2017) 676–685.
- J. Guo, L. Zhu, N. Sun, Y. Lan, Degradation of nitrobenzene
by sodium persulfate activated with zero-valent zinc in the
presence of low frequency ultrasound, J. Taiwan Inst. Chem.
Eng., 78 (2017) 137–143.
- L. Limousy, P. Dutournie, D. Hadijiev, Kinetics of nitrite
reduction by zinc metal: influence of metal shape on the
determination of kinetic parameters, Water Environ. Res.,
82 (2010) 648–656.
- D. Landolt, Corrosion and Surface Chemistry of Metals,
EPFL Press, New York, NY, 2007.
- G. Lee, J. Park, O.R. Harvey, Reduction of chromium(VI)
mediated by zero-valent magnesium under neutral pH
conditions, Water Res., 47 (2013) 1136–1146.
- V.L. Snoeyink, D. Jenkins, Water Chemistry, Wiley, New York,
NY, 1980.
- Y.J. Tsai, F.C. Chou, T.C. Cheng, Coupled acidification and
ultrasound with iron enhances nitrate reduction, J. Hazard.
Mater., 163 (2009) 743–747.