References

  1. Y. Lu, Y. Xu, Q. Wu, H. Yu, Y. Zhao, J. Qu, M. Huo, X. Yuan, Synthesis of Cu2O nanocrystals/TiO2 photonic crystal composite for efficient p-nitrophenol removal, Colloids Surf., A, 539 (2018) 291–300.
  2. J.A. Herrera-Melián, A.J. Martín-Rodríguez, A. Ortega-Méndez, J. Araña, J.M. Doña-Rodríguez, J. Pérez-Peña, Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands, J. Environ. Manage., 105 (2012) 53–60.
  3. O. Gimeno, M. Carbajo, F.J. Beltrán, F.J. Rivas, Phenol and substituted phenols AOPs remediation, J. Hazard. Mater., 119 (2005) 99–108.
  4. X. Wu, X. Song, H. Chen, J. Yu, Experimental study and quantum chemical calculation of free radical reactions in p-nitrophenol degradation during electrochemical oxidation process, J. Water Process Eng., 40 (2021) 101769, doi: 10.1016/j.jwpe.2020.101769.
  5. S.A. Younis, E. Amdeha, R.A. El-Salamony, Enhanced removal of p-nitrophenol by Ꞵ-Ga2O3-TiO2 photocatalyst immobilized onto rice straw-based SiO2 via factorial optimization of the synergy between adsorption and photocatalysis, J. Environ. Chem. Eng., 9 (2021) 104619, doi: 10.1016/j.jece.2020.104619.
  6. X. Zhu, Z. Pan, H. Jiang, Y. Du, R. Chen, Hierarchical Pd/UiO-66-NH2-SiO2 nanofibrous catalytic membrane for highly efficient removal of p-nitrophenol, Sep. Purif. Technol., 279 (2021) 119731, doi: 10.1016/j.seppur.2021.119731.
  7. Y. Yue, Y. Wang, C. Qu, X. Xu, Modification of polyacrylonitrilebased activated carbon fibers and their p-nitrophenol adsorption and degradation properties, J. Environ. Chem. Eng., 9 (2021) 105390, doi: 10.1016/j.jece.2021.105390.
  8. Z. Jemaat, M.E. Suárez-Ojeda, J. Pérez, J. Carrera, Simultaneous nitritation and p-nitrophenol removal using aerobic granular biomass in a continuous airlift reactor, Bioresour. Technol., 150 (2013) 307–313.
  9. J. Huang, C. Yan, K. Huang, Removal of p-nitrophenol by a water-compatible hyper-cross-linked resin functionalized with formaldehyde carbonyl groups and XAD-4 in aqueous solution: a comparative study, J. Colloid Interface Sci., 332 (2009) 60–64.
  10. A.A. Pradhan, P.R. Gogate, Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry, J. Hazard. Mater., 173 (2010) 517–522.
  11. X. Chen, M. Murugananthan, Y. Zhang, Degradation of p-nitrophenol by thermally activated persulfate in soil system, Chem. Eng. J., 283 (2016) 1357–1365.
  12. J. Cai, Y. Zhang, Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zerovalent iron, Environ. Sci. Pollut. Res. Int., 29 (2022) 8281–8293.
  13. H. Li, L. Yang, L. He, Y. Ma, X. Yan, L. Wu, Z. Zhang, Kinetics and mechanisms of chloramphenicol degradation in aqueous solutions using heat-assisted nZVI activation of persulfate, J. Mol. Liq., 313 (2020) 113511, doi: 10.1016/j.molliq.2020.113511.
  14. H. Dong, K. Hou, W. Qiao, Y. Cheng, L. Zhang, B. Wang, L. Li, Y. Wang, Q. Ning, G. Zeng, Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate, Chem. Eng. J., 359 (2019) 1046–1055.
  15. C. Gao, S. Chen, X. Quan, H. Yu, Y. Zhang, Enhanced Fentonlike catalysis by iron-based metal organic frameworks for degradation of organic pollutants, J. Catal., 356 (2017) 125–132.
  16. B. Kaur, L. Kuntus, P. Tikker, E. Kattel, M. Trapido, N. Dulova, Photo-induced oxidation of ceftriaxone by persulfate in the presence of iron oxides, Sci. Total Environ., 676 (2019) 165–175.
  17. Z.-H. Diao, X.-R. Xu, H. Chen, D. Jiang, Y.-X. Yang, L.-J. Kong, Y.-X. Sun, Y.-X. Hu, Q.-W. Hao, L. Liu, Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: reactivity and mechanism, J. Hazard. Mater., 316 (2016) 186–193.
  18. M. Gu, U. Farooq, S. Lu, X. Zhang, Z. Qiu, Q. Sui, Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments, J. Hazard. Mater., 349 (2018) 35–44.
  19. V. Kecić, Đ. Kerkez, M. Prica, O. Lužanin, M. Bečelić-Tomin, D.T. Pilipović, B. Dalmacija, Optimization of azo printing dye removal with oak leaves-nZVI/H2O2 system using statistically designed experiment, J. Cleaner Prod., 202 (2018) 65–80.
  20. R. Deewan, D.Y. Yan, P. Khamdahsag, V. Tanboonchuy, Remediation of arsenic-contaminated water by green zerovalent iron nanoparticles, Environ. Sci. Pollut. Res. Int., 30 (2023) 90352–90361.
  21. P.M.M. Soares, D.C.A. Lima, R.M. Cardoso, M.L. Nascimento, A. Semedo, Western Iberian offshore wind resources: more or less in a global warming climate?, Appl. Energy, 203 (2017) 72–90.
  22. Y. Tan, N. Zhao, Q. Song, H. Ling, Alkali synergistic sulfidemodified nZVI activation of persulfate for phenanthrene removal, J. Environ. Chem. Eng., 11 (2023) 109923, doi: 10.1016/j.jece.2023.109923.
  23. G. Gopal, H. Sankar, C. Natarajan, A. Mukherjee, Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: a comparative study, J. Environ. Manage., 254 (2020) 109812, doi: 10.1016/j.jenvman.2019.109812.
  24. S. Zhang, T. Wang, X. Guo, S. Chen, L. Wang, Adsorption and reduction of trichloroethylene by sulfidated nanoscale zerovalent iron (S-nZVI) supported by Mg(OH)2, Environ. Sci. Pollut. Res. Int., 30 (2023) 14240–14252.
  25. P. Singh, P. Pal, P. Mondal, G. Saravanan, P. Nagababu, S. Majumdar, N. Labhsetwar, S. Bhowmick, Kinetics and mechanism of arsenic removal using sulfide-modified nanoscale zerovalent iron, Chem. Eng. J., 412 (2021) 128667, doi: 10.1016/j.cej.2021.128667.
  26. M.P. Rayaroth, K.P. Prasanthkumar, Y.-G. Kang, C.-S. Lee, Y.-S. Chang, Degradation of carbamazepine by singlet oxygen from sulfidized nanoscale zero-valent iron – citric acid system, Chem. Eng. J., 382 (2020) 122828, doi: 10.1016/j.cej.2019.122828.
  27. M.P. Rayaroth, C.-S. Lee, U.K. Aravind, C.T. Aravindakumar, Y.-S. Chang, Oxidative degradation of benzoic acid using Fe0- and sulfidized Fe0-activated persulfate: a comparative study, Chem. Eng. J., 315 (2017) 426–436.
  28. W. Guo, Q. Zhao, J. Du, H. Wang, X. Li, N. Ren, Enhanced removal of sulfadiazine by sulfidated ZVI activated persulfate process: performance, mechanisms and degradation pathways, Chem. Eng. J., 388 (2020) 124303, doi: 10.1016/j.cej.2020.124303.
  29. M.P. Rayaroth, D. Oh, C.S. Lee, Y.G. Kang, Y.S. Chang, In-situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron-persulfate system: insights from a box-type study, Chemosphere, 257 (2020) 127117, doi: 10.1016/j.chemosphere.2020.127117.
  30. C.-C. Lin, S.-T. Hsu, Performance of nZVI/H2O2 process in degrading polyvinyl alcohol in aqueous solutions, Sep. Purif. Technol., 203 (2018) 111–116.
  31. L. Albarano, M. Toscanesi, M. Trifuoggi, M. Guida, G. Lofrano, G. Libralato, In-situ microcosm remediation of polyaromatic hydrocarbons: influence and effectiveness of nano-zero valent iron and activated carbon, Environ. Sci. Pollut. Res. Int., 30 (2023) 3235–3251.
  32. X. Chen, G. Fan, H. Li, Y. Li, R. Zhang, Y. Huang, X. Xu, Nanoscale zero-valent iron particles supported on sludgebased biochar for the removal of chromium(VI) from aqueous system, Environ. Sci. Pollut. Res., 29 (2022) 3853–3863.
  33. W. Zhang, L. Qian, D. Ouyang, Y. Chen, L. Han, M. Chen, Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: enhanced adsorption and crystallization, Chemosphere, 221 (2019) 683–692.
  34. X. Chen, J. Cui, X. Xu, B. Sun, L. Zhang, W. Dong, C. Chen, D. Sun, Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment, Carbohydr. Polym., 229 (2020) 115512, doi: 10.1016/j.carbpol.2019.115512.
  35. A. Maleki, Z. Hajizadeh, V. Sharifi, Z. Emdadi, A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions, J. Cleaner Prod., 215 (2019) 1233–1245.
  36. L. Zhao, K. Shen, B. Li, Y. Zhang, S. Zhang, Y. Hong, J. Zhang, Z. Li, Exploration of novel high-temperature heavy metals adsorbent for sludge incineration process: experiments and theoretical calculations, J. Environ. Chem. Eng., 10 (2022) 107755, doi: 10.1016/j.jece.2022.107755.
  37. M. Chen, H. Xu, Y. Zhang, X. Zhao, Y. Chen, X. Kong, Effective removal of heavy metal ions by attapulgite supported sulfidized nanoscale zerovalent iron from aqueous solution, Colloids Surf., A, 640 (2022) 128192, doi: 10.1016/j.colsurfa.2021.128192.
  38. H. Dong, B. Wang, L. Li, Y. Wang, Q. Ning, R. Tian, R. Li, J. Chen, Q. Xie, Activation of persulfate and hydrogen peroxide by using sulfide-modified nanoscale zero-valent iron for oxidative degradation of sulfamethazine: a comparative study, Sep. Purif. Technol., 218 (2019) 113–119.
  39. S.K. Mondal, A.K. Saha, A. Sinha, Removal of ciprofloxacin using modified advanced oxidation processes: kinetics, pathways and process optimization, J. Cleaner Prod., 171 (2018) 1203–1214.
  40. L. Wang, J. Yang, Y. Li, J. Lv, J. Zou, Removal of chlorpheniramine in a nanoscale zero-valent iron induced heterogeneous Fenton system: influencing factors and degradation intermediates, Chem. Eng. J., 284 (2016) 1058–1067.
  41. A. Iqbal, Y. Tian, X. Wang, D. Gong, Y. Guo, K. Iqbal, Z. Wang, W. Liu, W. Qin, Carbon dots prepared by solid state method via citric acid and 1,10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+, Sens. Actuators, B, 237 (2016) 408–415.
  42. Y. Yao, N. Mi, C. He, H. He, Y. Zhang, Y. Zhang, L. Yin, J. Li, S. Yang, S. Li, L. Ni, Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr(VI), Sep. Purif. Technol., 240 (2020) 116623,
    doi: 10.1016/j.seppur.2020.116623.
  43. Q. Wang, J. Wen, X. Hu, L. Xing, C. Yan, Immobilization of Cr(VI) contaminated soil using green-tea impregnated attapulgite, J. Cleaner Prod., 278 (2021) 123967, doi: 10.1016/j.jclepro.2020.123967.
  44. D. Lv, X. Zhou, J. Zhou, Y. Liu, Y. Li, K. Yang, Z. Lou, S.A. Baig, D. Wu, X. Xu, Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions, Appl. Surf. Sci., 442 (2018) 114–123.
  45. W. Zhang, H. Gao, J. He, P. Yang, D. Wang, T. Ma, H. Xia, X. Xu, Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: optimization of operating conditions and degradation pathway, Sep. Purif. Technol., 172 (2017) 158–167.
  46. F. Zhu, Y. Wu, Y. Liang, H. Li, W. Liang, Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni, Chem. Eng. J., 389 (2020) 124276, doi: 10.1016/j.cej.2020.124276.
  47. A. Shan, A. Idrees, W.Q. Zaman, Z. Abbas, M. Ali, M.S.U. Rehman, S. Hussain, M. Danish, X. Gu, S. Lyu, Synthesis of nZVI-Ni@BC composite as a stable catalyst to activate persulfate: trichloroethylene degradation and insight mechanism, J. Environ. Chem. Eng., 9 (2021) 104808, doi: 10.1016/j.jece.2020.104808.
  48. H. Liu, T. Chen, Q. Xie, X. Zou, C. Chen, R.L. Frost, The functionalization of limonite to prepare NZVI and its application in decomposition of p-nitrophenol, J. Nanopart. Res., 17 (2015) 374,
    doi: 10.1007/s11051-015-3171-6.
  49. T.-L. Ren, X.-W. Ma, X.-Q. Wu, L. Yuan, Y.-L. Lai, Z.-H. Tong, Degradation of imidazolium ionic liquids in a thermally activated persulfate system, Chem. Eng. J., 412 (2021) 128624, doi: 10.1016/j.cej.2021.128624.
  50. Q. Jiang, Y. Zhang, S. Jiang, Y. Wang, H. Li, W. Han, J. Qu, L. Wang, Y. Hu, Graphene-like carbon sheet-supported nZVI for efficient atrazine oxidation degradation by persulfate activation, Chem. Eng. J., 403 (2021) 126309, doi: 10.1016/j.cej.2020.126309.
  51. Q. Mao, Y. Zhou, Y. Yang, J. Zhang, L. Liang, H. Wang, S. Luo, L. Luo, P. Jeyakumar, Y.S. Ok, M. Rizwan, Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H2O2 for ciprofloxacin removal from aqueous solution, J. Hazard. Mater., 380 (2019) 120848, doi: 10.1016/j.jhazmat.2019.120848.
  52. A.R. Rahmani, M. Salari, A. Shabanloo, N. Shabanloo, S. Bajalan, Y. Vaziri, Sono-catalytic activation of persulfate by nZVIreduced graphene oxide for degradation of nonylphenol in aqueous solution: process optimization, synergistic effect and degradation pathway, J. Environ. Chem. Eng., 8 (2020) 104202,
    doi: 10.1016/j.jece.2020.104202.
  53. J. Du, Y. Wang, Faheem, T. Xu, H. Zheng, J. Bao, Synergistic degradation of PNP via coupling H2O2 with persulfate catalyzed by nano zero valent iron, RSC Adv., 9 (2019) 20323–20331.
  54. Y. Du, M. Dai, I. Naz, X. Hao, X. Wei, R. Rong, C. Peng, I. Ali, Carbothermal reduction synthesis of zero-valent iron and its application as a persulfate activator for ciprofloxacin degradation, Sep. Purif. Technol., 275 (2021) 119201, doi: 10.1016/j.seppur.2021.119201.
  55. P. Xu, L. Wang, X. Liu, S. Xie, Z. Yang, P. Zhu, Ascorbic acid enhanced the zero-valent iron/peroxymonosulfate oxidation: simultaneous chelating and reducing, Sep. Purif. Technol., 298 (2022) 121599, doi: 10.1016/j.seppur.2022.121599.
  56. W. Xu, X. Hu, Y. Lou, X. Jiang, K. Shi, Y. Tong, X. Xu, C. Shen, B. Hu, L. Lou, Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron, Environ. Res., 187 (2020) 109662, doi: 10.1016/j.envres.2020.109662.
  57. X. Yang, S. Yu, M. Wang, Q. Liu, X. Jing, X. Cai, One-pot preparations of cyclodextrin polymer-entrapped nano zero-valent iron for the removal of p-nitrophenol in water, Chem. Eng. J., 431 (2022) 133370,
    doi: 10.1016/j.cej.2021.133370.
  58. M. Vogel, A. Georgi, F.-D. Kopinke, K. Mackenzie, Sulfidation of ZVI/AC composite leads to highly corrosion-resistant nanoremediation particles with extended life-time, Sci. Total Environ., 665 (2019) 235–245.
  59. A.N. Garcia, Y. Zhang, S. Ghoshal, F. He, D.M. O’Carroll, Recent advances in sulfidated zerovalent iron for contaminant transformation, Environ. Sci. Technol., 55 (2021) 8464–8483.
  60. L. Tang, J. Tang, G. Zeng, G. Yang, X. Xie, Y. Zhou, Y. Pang, Y. Fang, J. Wang, W. Xiong, Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect, Appl. Surf. Sci., 333 (2015) 220–228.
  61. B. Lai, Z. Chen, Y. Zhou, P. Yang, J. Wang, Z. Chen, Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI), J. Hazard. Mater., 250–251 (2013) 220–228.