References
- Y. Lu, Y. Xu, Q. Wu, H. Yu, Y. Zhao, J. Qu, M. Huo, X. Yuan,
Synthesis of Cu2O nanocrystals/TiO2 photonic crystal
composite for efficient p-nitrophenol removal, Colloids Surf.,
A, 539 (2018) 291–300.
- J.A. Herrera-Melián, A.J. Martín-Rodríguez, A. Ortega-Méndez,
J. Araña, J.M. Doña-Rodríguez, J. Pérez-Peña, Degradation
and detoxification of 4-nitrophenol by advanced oxidation
technologies and bench-scale constructed wetlands, J. Environ.
Manage., 105 (2012) 53–60.
- O. Gimeno, M. Carbajo, F.J. Beltrán, F.J. Rivas, Phenol and
substituted phenols AOPs remediation, J. Hazard. Mater.,
119 (2005) 99–108.
- X. Wu, X. Song, H. Chen, J. Yu, Experimental study and
quantum chemical calculation of free radical reactions in
p-nitrophenol degradation during electrochemical oxidation
process, J. Water Process Eng., 40 (2021) 101769, doi: 10.1016/j.jwpe.2020.101769.
- S.A. Younis, E. Amdeha, R.A. El-Salamony, Enhanced removal
of p-nitrophenol by Ꞵ-Ga2O3-TiO2 photocatalyst immobilized
onto rice straw-based SiO2 via factorial optimization of the
synergy between adsorption and photocatalysis, J. Environ.
Chem. Eng., 9 (2021) 104619, doi: 10.1016/j.jece.2020.104619.
- X. Zhu, Z. Pan, H. Jiang, Y. Du, R. Chen, Hierarchical Pd/UiO-66-NH2-SiO2 nanofibrous catalytic membrane for highly
efficient removal of p-nitrophenol, Sep. Purif. Technol.,
279 (2021) 119731, doi: 10.1016/j.seppur.2021.119731.
- Y. Yue, Y. Wang, C. Qu, X. Xu, Modification of polyacrylonitrilebased
activated carbon fibers and their p-nitrophenol
adsorption and degradation properties, J. Environ. Chem. Eng.,
9 (2021) 105390, doi: 10.1016/j.jece.2021.105390.
- Z. Jemaat, M.E. Suárez-Ojeda, J. Pérez, J. Carrera, Simultaneous
nitritation and p-nitrophenol removal using aerobic granular
biomass in a continuous airlift reactor, Bioresour. Technol.,
150 (2013) 307–313.
- J. Huang, C. Yan, K. Huang, Removal of p-nitrophenol by a
water-compatible hyper-cross-linked resin functionalized
with formaldehyde carbonyl groups and XAD-4 in aqueous
solution: a comparative study, J. Colloid Interface Sci.,
332 (2009) 60–64.
- A.A. Pradhan, P.R. Gogate, Degradation of p-nitrophenol using
acoustic cavitation and Fenton chemistry, J. Hazard. Mater.,
173 (2010) 517–522.
- X. Chen, M. Murugananthan, Y. Zhang, Degradation of
p-nitrophenol by thermally activated persulfate in soil system,
Chem. Eng. J., 283 (2016) 1357–1365.
- J. Cai, Y. Zhang, Enhanced degradation of bisphenol S by
persulfate activated with sulfide-modified nanoscale zerovalent
iron, Environ. Sci. Pollut. Res. Int., 29 (2022) 8281–8293.
- H. Li, L. Yang, L. He, Y. Ma, X. Yan, L. Wu, Z. Zhang, Kinetics
and mechanisms of chloramphenicol degradation in aqueous
solutions using heat-assisted nZVI activation of persulfate,
J. Mol. Liq., 313 (2020) 113511, doi: 10.1016/j.molliq.2020.113511.
- H. Dong, K. Hou, W. Qiao, Y. Cheng, L. Zhang, B. Wang, L. Li,
Y. Wang, Q. Ning, G. Zeng, Insights into enhanced removal
of TCE utilizing sulfide-modified nanoscale zero-valent iron
activated persulfate, Chem. Eng. J., 359 (2019) 1046–1055.
- C. Gao, S. Chen, X. Quan, H. Yu, Y. Zhang, Enhanced Fentonlike
catalysis by iron-based metal organic frameworks for
degradation of organic pollutants, J. Catal., 356 (2017) 125–132.
- B. Kaur, L. Kuntus, P. Tikker, E. Kattel, M. Trapido, N. Dulova,
Photo-induced oxidation of ceftriaxone by persulfate in the
presence of iron oxides, Sci. Total Environ., 676 (2019) 165–175.
- Z.-H. Diao, X.-R. Xu, H. Chen, D. Jiang, Y.-X. Yang,
L.-J. Kong, Y.-X. Sun, Y.-X. Hu, Q.-W. Hao, L. Liu, Simultaneous
removal of Cr(VI) and phenol by persulfate activated with
bentonite-supported nanoscale zero-valent iron: reactivity
and mechanism, J. Hazard. Mater., 316 (2016) 186–193.
- M. Gu, U. Farooq, S. Lu, X. Zhang, Z. Qiu, Q. Sui, Degradation
of trichloroethylene in aqueous solution by rGO supported
nZVI catalyst under several oxic environments, J. Hazard.
Mater., 349 (2018) 35–44.
- V. Kecić, Đ. Kerkez, M. Prica, O. Lužanin, M. Bečelić-Tomin,
D.T. Pilipović, B. Dalmacija, Optimization of azo printing dye
removal with oak leaves-nZVI/H2O2 system using statistically
designed experiment, J. Cleaner Prod., 202 (2018) 65–80.
- R. Deewan, D.Y. Yan, P. Khamdahsag, V. Tanboonchuy,
Remediation of arsenic-contaminated water by green zerovalent
iron nanoparticles, Environ. Sci. Pollut. Res. Int.,
30 (2023) 90352–90361.
- P.M.M. Soares, D.C.A. Lima, R.M. Cardoso, M.L. Nascimento,
A. Semedo, Western Iberian offshore wind resources: more
or less in a global warming climate?, Appl. Energy, 203 (2017)
72–90.
- Y. Tan, N. Zhao, Q. Song, H. Ling, Alkali synergistic sulfidemodified
nZVI activation of persulfate for phenanthrene
removal, J. Environ. Chem. Eng., 11 (2023) 109923, doi: 10.1016/j.jece.2023.109923.
- G. Gopal, H. Sankar, C. Natarajan, A. Mukherjee, Tetracycline
removal using green synthesized bimetallic nZVI-Cu and
bentonite supported green nZVI-Cu nanocomposite: a
comparative study, J. Environ. Manage., 254 (2020) 109812,
doi: 10.1016/j.jenvman.2019.109812.
- S. Zhang, T. Wang, X. Guo, S. Chen, L. Wang, Adsorption
and reduction of trichloroethylene by sulfidated nanoscale
zerovalent iron (S-nZVI) supported by Mg(OH)2, Environ. Sci.
Pollut. Res. Int., 30 (2023) 14240–14252.
- P. Singh, P. Pal, P. Mondal, G. Saravanan, P. Nagababu, S.
Majumdar, N. Labhsetwar, S. Bhowmick, Kinetics and mechanism
of arsenic removal using sulfide-modified nanoscale
zerovalent iron, Chem. Eng. J., 412 (2021) 128667, doi: 10.1016/j.cej.2021.128667.
- M.P. Rayaroth, K.P. Prasanthkumar, Y.-G. Kang, C.-S. Lee,
Y.-S. Chang, Degradation of carbamazepine by singlet oxygen
from sulfidized nanoscale zero-valent iron – citric acid system,
Chem. Eng. J., 382 (2020) 122828, doi: 10.1016/j.cej.2019.122828.
- M.P. Rayaroth, C.-S. Lee, U.K. Aravind, C.T. Aravindakumar,
Y.-S. Chang, Oxidative degradation of benzoic acid using Fe0- and sulfidized Fe0-activated persulfate: a comparative study,
Chem. Eng. J., 315 (2017) 426–436.
- W. Guo, Q. Zhao, J. Du, H. Wang, X. Li, N. Ren, Enhanced
removal of sulfadiazine by sulfidated ZVI activated persulfate
process: performance, mechanisms and degradation pathways,
Chem. Eng. J., 388 (2020) 124303, doi: 10.1016/j.cej.2020.124303.
- M.P. Rayaroth, D. Oh, C.S. Lee, Y.G. Kang, Y.S. Chang, In-situ
chemical oxidation of contaminated groundwater using a
sulfidized nanoscale zerovalent iron-persulfate system: insights
from a box-type study, Chemosphere, 257 (2020) 127117,
doi: 10.1016/j.chemosphere.2020.127117.
- C.-C. Lin, S.-T. Hsu, Performance of nZVI/H2O2 process in
degrading polyvinyl alcohol in aqueous solutions, Sep. Purif.
Technol., 203 (2018) 111–116.
- L. Albarano, M. Toscanesi, M. Trifuoggi, M. Guida, G. Lofrano,
G. Libralato, In-situ microcosm remediation of polyaromatic
hydrocarbons: influence and effectiveness of nano-zero valent
iron and activated carbon, Environ. Sci. Pollut. Res. Int.,
30 (2023) 3235–3251.
- X. Chen, G. Fan, H. Li, Y. Li, R. Zhang, Y. Huang, X. Xu,
Nanoscale zero-valent iron particles supported on sludgebased
biochar for the removal of chromium(VI) from aqueous
system, Environ. Sci. Pollut. Res., 29 (2022) 3853–3863.
- W. Zhang, L. Qian, D. Ouyang, Y. Chen, L. Han, M. Chen,
Effective removal of Cr(VI) by attapulgite-supported nanoscale
zero-valent iron from aqueous solution: enhanced adsorption
and crystallization, Chemosphere, 221 (2019) 683–692.
- X. Chen, J. Cui, X. Xu, B. Sun, L. Zhang, W. Dong, C. Chen,
D. Sun, Bacterial cellulose/attapulgite magnetic composites
as an efficient adsorbent for heavy metal ions and dye
treatment, Carbohydr. Polym., 229 (2020) 115512, doi: 10.1016/j.carbpol.2019.115512.
- A. Maleki, Z. Hajizadeh, V. Sharifi, Z. Emdadi, A green, porous
and eco-friendly magnetic geopolymer adsorbent for heavy
metals removal from aqueous solutions, J. Cleaner Prod.,
215 (2019) 1233–1245.
- L. Zhao, K. Shen, B. Li, Y. Zhang, S. Zhang, Y. Hong, J. Zhang,
Z. Li, Exploration of novel high-temperature heavy metals
adsorbent for sludge incineration process: experiments and
theoretical calculations, J. Environ. Chem. Eng., 10 (2022)
107755, doi: 10.1016/j.jece.2022.107755.
- M. Chen, H. Xu, Y. Zhang, X. Zhao, Y. Chen, X. Kong, Effective
removal of heavy metal ions by attapulgite supported sulfidized
nanoscale zerovalent iron from aqueous solution, Colloids
Surf., A, 640 (2022) 128192, doi: 10.1016/j.colsurfa.2021.128192.
- H. Dong, B. Wang, L. Li, Y. Wang, Q. Ning, R. Tian, R. Li,
J. Chen, Q. Xie, Activation of persulfate and hydrogen peroxide
by using sulfide-modified nanoscale zero-valent iron for
oxidative degradation of sulfamethazine: a comparative study,
Sep. Purif. Technol., 218 (2019) 113–119.
- S.K. Mondal, A.K. Saha, A. Sinha, Removal of ciprofloxacin
using modified advanced oxidation processes: kinetics,
pathways and process optimization, J. Cleaner Prod., 171 (2018)
1203–1214.
- L. Wang, J. Yang, Y. Li, J. Lv, J. Zou, Removal of chlorpheniramine
in a nanoscale zero-valent iron induced heterogeneous Fenton
system: influencing factors and degradation intermediates,
Chem. Eng. J., 284 (2016) 1058–1067.
- A. Iqbal, Y. Tian, X. Wang, D. Gong, Y. Guo, K. Iqbal, Z. Wang,
W. Liu, W. Qin, Carbon dots prepared by solid state method
via citric acid and 1,10-phenanthroline for selective and sensing
detection of Fe2+ and Fe3+, Sens. Actuators, B, 237 (2016) 408–415.
- Y. Yao, N. Mi, C. He, H. He, Y. Zhang, Y. Zhang, L. Yin, J. Li, S.
Yang, S. Li, L. Ni, Humic acid modified nano-ferrous sulfide
enhances the removal efficiency of Cr(VI), Sep. Purif. Technol.,
240 (2020) 116623,
doi: 10.1016/j.seppur.2020.116623.
- Q. Wang, J. Wen, X. Hu, L. Xing, C. Yan, Immobilization
of Cr(VI) contaminated soil using green-tea impregnated
attapulgite, J. Cleaner Prod., 278 (2021) 123967, doi: 10.1016/j.jclepro.2020.123967.
- D. Lv, X. Zhou, J. Zhou, Y. Liu, Y. Li, K. Yang, Z. Lou, S.A. Baig,
D. Wu, X. Xu, Design and characterization of sulfide-modified
nanoscale zerovalent iron for cadmium(II) removal from
aqueous solutions, Appl. Surf. Sci., 442 (2018) 114–123.
- W. Zhang, H. Gao, J. He, P. Yang, D. Wang, T. Ma, H. Xia, X. Xu,
Removal of norfloxacin using coupled synthesized nanoscale
zero-valent iron (nZVI) with H2O2 system: optimization of
operating conditions and degradation pathway, Sep. Purif.
Technol., 172 (2017) 158–167.
- F. Zhu, Y. Wu, Y. Liang, H. Li, W. Liang, Degradation
mechanism of norfloxacin in water using persulfate activated
by BC@nZVI/Ni, Chem. Eng. J., 389 (2020) 124276, doi: 10.1016/j.cej.2020.124276.
- A. Shan, A. Idrees, W.Q. Zaman, Z. Abbas, M. Ali,
M.S.U. Rehman, S. Hussain, M. Danish, X. Gu, S. Lyu,
Synthesis of nZVI-Ni@BC composite as a stable catalyst
to activate persulfate: trichloroethylene degradation and
insight mechanism, J. Environ. Chem. Eng., 9 (2021) 104808,
doi: 10.1016/j.jece.2020.104808.
- H. Liu, T. Chen, Q. Xie, X. Zou, C. Chen, R.L. Frost, The
functionalization of limonite to prepare NZVI and its
application in decomposition of p-nitrophenol, J. Nanopart.
Res., 17 (2015) 374,
doi: 10.1007/s11051-015-3171-6.
- T.-L. Ren, X.-W. Ma, X.-Q. Wu, L. Yuan, Y.-L. Lai, Z.-H. Tong,
Degradation of imidazolium ionic liquids in a thermally
activated persulfate system, Chem. Eng. J., 412 (2021) 128624,
doi: 10.1016/j.cej.2021.128624.
- Q. Jiang, Y. Zhang, S. Jiang, Y. Wang, H. Li, W. Han, J. Qu,
L. Wang, Y. Hu, Graphene-like carbon sheet-supported nZVI
for efficient atrazine oxidation degradation by persulfate
activation, Chem. Eng. J., 403 (2021) 126309, doi: 10.1016/j.cej.2020.126309.
- Q. Mao, Y. Zhou, Y. Yang, J. Zhang, L. Liang, H. Wang, S. Luo,
L. Luo, P. Jeyakumar, Y.S. Ok, M. Rizwan, Experimental and
theoretical aspects of biochar-supported nanoscale zero-valent
iron activating H2O2 for ciprofloxacin removal from aqueous
solution, J. Hazard. Mater., 380 (2019) 120848, doi: 10.1016/j.jhazmat.2019.120848.
- A.R. Rahmani, M. Salari, A. Shabanloo, N. Shabanloo, S. Bajalan,
Y. Vaziri, Sono-catalytic activation of persulfate by nZVIreduced
graphene oxide for degradation of nonylphenol in
aqueous solution: process optimization, synergistic effect and
degradation pathway, J. Environ. Chem. Eng., 8 (2020) 104202,
doi: 10.1016/j.jece.2020.104202.
- J. Du, Y. Wang, Faheem, T. Xu, H. Zheng, J. Bao, Synergistic
degradation of PNP via coupling H2O2 with persulfate catalyzed
by nano zero valent iron, RSC Adv., 9 (2019) 20323–20331.
- Y. Du, M. Dai, I. Naz, X. Hao, X. Wei, R. Rong, C. Peng,
I. Ali, Carbothermal reduction synthesis of zero-valent iron
and its application as a persulfate activator for ciprofloxacin
degradation, Sep. Purif. Technol., 275 (2021) 119201,
doi: 10.1016/j.seppur.2021.119201.
- P. Xu, L. Wang, X. Liu, S. Xie, Z. Yang, P. Zhu, Ascorbic acid
enhanced the zero-valent iron/peroxymonosulfate oxidation:
simultaneous chelating and reducing, Sep. Purif. Technol.,
298 (2022) 121599, doi: 10.1016/j.seppur.2022.121599.
- W. Xu, X. Hu, Y. Lou, X. Jiang, K. Shi, Y. Tong, X. Xu,
C. Shen, B. Hu, L. Lou, Effects of environmental factors on
the removal of heavy metals by sulfide-modified nanoscale
zerovalent iron, Environ. Res., 187 (2020) 109662, doi: 10.1016/j.envres.2020.109662.
- X. Yang, S. Yu, M. Wang, Q. Liu, X. Jing, X. Cai, One-pot
preparations of cyclodextrin polymer-entrapped nano
zero-valent iron for the removal of p-nitrophenol in water,
Chem. Eng. J., 431 (2022) 133370,
doi: 10.1016/j.cej.2021.133370.
- M. Vogel, A. Georgi, F.-D. Kopinke, K. Mackenzie, Sulfidation
of ZVI/AC composite leads to highly corrosion-resistant
nanoremediation particles with extended life-time, Sci. Total
Environ., 665 (2019) 235–245.
- A.N. Garcia, Y. Zhang, S. Ghoshal, F. He, D.M. O’Carroll,
Recent advances in sulfidated zerovalent iron for contaminant
transformation, Environ. Sci. Technol., 55 (2021) 8464–8483.
- L. Tang, J. Tang, G. Zeng, G. Yang, X. Xie, Y. Zhou, Y. Pang,
Y. Fang, J. Wang, W. Xiong, Rapid reductive degradation
of aqueous p-nitrophenol using nanoscale zero-valent iron
particles immobilized on mesoporous silica with enhanced
antioxidation effect, Appl. Surf. Sci., 333 (2015) 220–228.
- B. Lai, Z. Chen, Y. Zhou, P. Yang, J. Wang, Z. Chen, Removal
of high concentration p-nitrophenol in aqueous solution by
zero valent iron with ultrasonic irradiation (US-ZVI), J. Hazard.
Mater., 250–251 (2013) 220–228.