References
- A.K. Misra, Climate change and challenges of water and food
security, Int. J. Sustainable Built Environ., 3 (2014) 153–165.
- F. Kaviari, M. Saadi Mesgari, E. Seidi, H. Motieyan, Simulation
of urban growth using agent-based modeling and game theory
with different temporal resolutions, Cities, 95 (2019) 102387,
doi: 10.1016/j.cities.2019.06.018.
- S.D. Nerantzaki, D. Efstathiou, G.V. Giannakis, M. Kritsotakis,
M.G. Grillakis, A.G. Koutroulis, I.K. Tsanis, N.P. Nikolaidis,
Climate change impact on the hydrological budget of a large
Mediterranean island, Hydrol. Sci. J., 64 (2019) 1190–1203.
- A. Rossati, Global warming and its health impact, Int. J. Occup.
Environ. Med., 8 (2017) 7–20.
- Y. Tramblay, M.C. Llasat, C. Randin, E. Coppola, Climate change
impacts on water resources in the Mediterranean, Reg. Environ.
Change, 20 (2020 83, doi: 10.1007/s10113-020-01665-y.
- J. Xia, Q.-Y. Duan, Y. Luo, Z.-H. Xie, Z.-Y. Liu, X.-G. Mo, Climate
change and water resources: case study of Eastern Monsoon
Region of China, Adv. Clim. Change Res., 8 (2017) 63–67.
- Y.S. Getahun, M.-H. Li, I.-F. Pun, Trend and change-point
detection analyses of rainfall and temperature over the Awash
River basin of Ethiopia, Heliyon, 7 (2021) e08024, doi: 10.1016/j.heliyon.2021.e08024.
- R. Mahmood, S. Jia, W. Zhu, Analysis of climate variability,
trends, and prediction in the most active parts of the Lake
Chad basin, Africa, Sci. Rep., 9 (2019) 6317, doi: 10.1038/s41598-019-42811-9.
- P.-A. Versini, L. Pouget, S. McEnnis, E. Custodio, I. Escaler,
Climate change impact on water resources availability: case
study of the Llobregat River basin (Spain), Hydrol. Sci. J.,
61 (2016) 2496–2508.
- S. Eslamian, F. Eslamian, Disaster Risk Reduction for
Resilience: Climate Change and Disaster Risk Adaptation,
Springer Nature, Cham, 2023.
- S. Tong, H.L. Berry, K. Ebi, H. Bambrick, W. Hu, D. Green,
E. Hanna, Z. Wang, C.D. Butler, Climate change, food, water
and population health in China, Bull. World Health Organ.,
94 (2016) 759–765.
- A.J. McMichael, R.E. Woodruff, S. Hales, Climate change and
human health: present and future risks, Lancet, 367 (2006)
859–869.
- J.M. Balbus, A.B.A. Boxall, R.A. Fenske, T.E. McKone, L. Zeise,
Implications of global climate change for the assessment
and management of human health risks of chemicals in the
natural environment, Environ. Toxicol. Chem., 32 (2013) 62–78.
- X. Wang, J. Zhang, V. Babovic, Improving real-time forecasting
of water quality indicators with combination of process-based
models and data assimilation technique, Ecol. Indic., 66 (2016)
428–439.
- N. Mujere, W. Moyce, Climate Change Impacts on Surface
Water Quality, in: Hydrology and Water Resource Management:
Breakthroughs in Research and Practice, IGI Global, 2018,
pp. 97–115.
- I. Delpla, A.-V. Jung, E. Baures, M. Clement, O. Thomas,
Impacts of climate change on surface water quality in relation to
drinking water production, Environ. Int., 35 (2009) 1225–1233.
- H.K. Moghaddam, A. Rajaei, Z. Rahimzadeh kivi,
H.K. Moghaddam, Prediction of qualitative parameters concentration
in the groundwater resources using the Bayesian
approach, Groundwater Sustainable Dev., 17 (2022) 100758,
doi: 10.1016/j.gsd.2022.100758.
- X. Wang, J. Zhang, V. Babovic, K.Y.H. Gin, A comprehensive
integrated catchment-scale monitoring and modelling approach
for facilitating management of water quality, Environ. Modell.
Software, 120 (2019) 104489, doi: 10.1016/j.envsoft.2019.07.014.
- X. Li, A. Meshgi, X. Wang, J. Zhang, S.H.X. Tay, G. Pijcke,
N. Manocha, M. Ong, M.T. Nguyen, V. Babovic, Three
resampling approaches based on method of fragments for
daily-to-subdaily precipitation disaggregation, Int. J. Climatol.,
38 (2018) e1119–e1138.
- N. Chokkavarapu, V.R. Mandla, Comparative study of GCMs,
RCMs, downscaling and hydrological models: a review
toward future climate change impact estimation, SN Appl. Sci.,
1 (2019) 1698,
doi: 10.1007/s42452-019-1764-x.
- W. Fang, Q. Xue, L. Shen, V.S. Sheng, Survey on the application
of deep learning in extreme weather prediction, Atmosphere,
12 (2021) 661, doi: 10.3390/atmos12060661.
- X. Li, V. Babovic, A new scheme for multivariate, multisite
weather generator with inter-variable, inter-site dependence
and inter-annual variability based on empirical copula
approach, Clim. Dyn., 52 (2019) 2247–2267.
- N. Peleg, S. Fatichi, A. Paschalis, P. Molnar, P. Burlando, An
advanced stochastic weather generator for simulating 2-D
high-resolution climate variables, J. Adv. Model. Earth Syst.,
9 (2017) 1595–1627.
- H. Sanikhani, O. Kisi, B. Amirataee, Impact of climate change
on runoff in Lake Urmia basin, Iran, Theor. Appl. Climatol.,
132 (2018) 491–502.
- P.B. Parajuli, P. Jayakody, G.F. Sassenrath, Y. Ouyang, Assessing
the impacts of climate change and tillage practices on stream
flow, crop and sediment yields from the Mississippi River
Basin, Agric. Water Manage., 168 (2016) 112–124.
- Z. Hassan, S. Shamsudin, S. Harun, Application of SDSM and
LARS-WG for simulating and downscaling of rainfall and
temperature, Theor. Appl. Climatol., 116 (2014) 243–257.
- X. Li, K. Zhang, V. Babovic, Projections of future climate change
in Singapore based on a multi-site multivariate downscaling
approach, Water, 11 (2019) 2300, doi: 10.3390/w11112300.
- L. Mba, P. Meukam, A. Kemajou, Application of artificial neural
network for predicting hourly indoor air temperature and
relative humidity in modern building in humid region, Energy
Build., 121 (2016) 32–42.
- A. Sharafati, S.B. Haji Seyed Asadollah, D. Motta, Z.M. Yaseen,
Application of newly developed ensemble machine learning
models for daily suspended sediment load prediction and
related uncertainty analysis, Hydrol. Sci. J., 65 (2020) 2022–2042.
- S. Marabi, M. Hafezparast, Quantitative qualitative prediction
of Khorramrud River discharge due to climate change with
Neurosolution model and support vector regression, Irrig.
Water Eng., 12 (2021) 291–313.
- N.A. Mohammed, A. Al-Bazi, An adaptive backpropagation
algorithm for long-term electricity load forecasting, Neural
Comput. Appl., 34 (2022) 477–491.
- D. Niu, F. Wu, S. Dai, S. He, B. Wu, Detection of long-term effect
in forecasting municipal solid waste using a long short-term
memory neural network, J. Cleaner Prod., 290 (2021) 125187,
doi: 10.1016/j.jclepro.2020.125187.
- S. Emamgholizadeh, H. Kashi, I. Marofpoor, E. Zalaghi,
Prediction of water quality parameters of Karoon River (Iran)
by artificial intelligence-based models, Int. J. Environ. Sci.
Technol., 11 (2014) 645–656.
- N.M. Gazzaz, M.K. Yusoff, A.Z. Aris, H. Juahir, M.F. Ramli,
Artificial neural network modeling of the water quality index
for Kinta River (Malaysia) using water quality variables as
predictors, Mar. Pollut. Bull., 64 (2012) 2409–2420.
- N.M. Gazzaz, M.K. Yusoff, M.F. Ramli, H. Juahir, A.Z. Aris,
Artificial neural network modeling of the water quality index
using land use areas as predictors, Water Environ. Res.,
87 (2015) 99–112.
- K. Sulaiman, L.H. Ismail, M.A.M. Razi, M.S. Adnan, R. Ghazali,
Water quality classification using an artificial neural network
(ANN), IOP Conf. Ser.: Mater. Sci. Eng., 601 (2019) 012005,
doi: 10.1088/1757-899X/601/1/012005.
- M. Al-Mukhtar, F. Al-Yaseen, Modeling water quality
parameters using data-driven models, a case study Abu-Ziriq
marsh in south of Iraq, J. Hydrol., 6 (2019) 24, doi: 10.3390/hydrology6010024.
- A.K. Kadam, V.M. Wagh, A.A. Muley, B.N. Umrikar,
R.N. Sankhua, Prediction of water quality index using artificial
neural network and multiple linear regression modelling
approach in Shivganga River basin, India, Model. Earth Syst.
Environ., 5 (2019) 951–962.
- N. Jafarzadeh, S. Ahmad Mirbagheri, T. Rajaee, A. Danehkar,
M. Robati, Using artificial intelligent to model predict the
biological resilience with an emphasis on population of
cyanobacteria in Jajrood River in The Eastern Tehran, Iran, J.
Environ. Health Sci. Eng., 20 (2022) 123–138.
- J. Aazami, N. KianiMehr, A. Zamani, Ecological water health
assessment using benthic macroinvertebrate communities
(case study: the Ghezel Ozan River in Zanjan Province,
Iran), Environ. Monit. Assess., 191 (2019) 689, doi: 10.1007/s10661-019-7894-1.
- S. Fatichi, V.Y. Ivanov, E. Caporali, Simulation of future climate
scenarios with a weather generator, Adv. Water Resour.,
34 (2011) 448–467.
- C. Miao, Q. Duan, Q. Sun, J. Li, Evaluation and application of
Bayesian multi-model estimation in temperature simulations,
Prog. Phys. Geogr., 37 (2013) 727–744.
- C.W. Richardson, Stochastic simulation of daily precipitation,
temperature, and solar radiation, Water Resour. Res., 17 (1981)
182–190.
- K. Duan, Y. Mei, A comparison study of three statistical
downscaling methods and their model-averaging ensemble
for precipitation downscaling in China, Theor. Appl. Climatol.,
116 (2014) 707–719.
- S. Moghanlo, M. Alavinejad, V. Oskoei, H.N. Saleh,
A.A. Mohammadi, H. Mohammadi, Z. DerakhshanNejad,
Using artificial neural networks to model the impacts of
climate change on dust phenomenon in the Zanjan region,
north-west Iran, Urban Clim., 35 (2021) 100750, doi: 10.1016/j.uclim.2020.100750.
- J.M. Melillo, T. Richmond, G. Yohe, Climate Change Impacts in
the United States, Third National Climate Assessment, 2014.
- E. Pisoni, M. Farina, C. Carnevale, L. Piroddi, Forecasting peak
air pollution levels using NARX models, Eng. Appl. Artif.
Intell., 22 (2009) 593–602.
- Y. Chen, L. Song, Y. Liu, L. Yang, D. Li, A review of the
artificial neural network models for water quality prediction,
Appl. Sci., 10 (2020) 5776, doi: 10.3390/app10175776.
- K.S. Reddy, M. Kumar, V. Maruthi, B. Umesha, Vijayalaxmi,
C.V.K. Nageswar Rao, Climate change analysis in southern
Telangana region, Andhra Pradesh using LARS-WG model,
Curr. Sci., 107 (2014) 54–62.
- H. Chen, J. Guo, Z. Zhang, C.-Y. Xu, Prediction of temperature
and precipitation in Sudan and South Sudan by using LARS-WG
in future, Theor. Appl. Climatol., 113 (2013) 363–375.
- C. Petpongpan, C. Ekkawatpanit, D. Kositgittiwong, Climate
change impact on surface water and groundwater recharge
in Northern Thailand, Water, 12 (2020) 1029, doi: 10.3390/w12041029.
- R.P. Silberstein, S.K. Aryal, J. Durrant, M. Pearcey, M. Braccia,
S.P. Charles, L. Boniecka, G.A. Hodgson, M.A. Bari, N.R. Viney,
D.J. McFarlane, Climate change and runoff in south-western
Australia, J. Hydrol., 475 (2012) 441–455.
- B. Ghazi, E. Jeihouni, O. Kisi, Q.B. Pham, B. Đurin, Estimation
of Tasuj aquifer response to main meteorological parameter
variations under shared socioeconomic pathways scenarios,
Theor. Appl. Climatol., 149 (2022) 25–37.
- F. Li, Z. Xu, W. Liu, Y. Zhang, The impact of climate change
on runoff in the Yarlung Tsangpo River basin in the Tibetan
Plateau, Stochastic Environ. Res. Risk Assess., 28 (2014) 517–526.
- B. Ghazi, E. Jeihouni, Projection of temperature and
precipitation under climate change in Tabriz, Iran, Arabian J.
Geosci., 15 (2022) 621, doi: 10.1007/s12517-022-09848-z.
- H. Cai, H. Shi, S. Liu, V. Babovic, Impacts of regional
characteristics on improving the accuracy of groundwater level
prediction using machine learning: the case of central eastern
continental United States, J. Hydrol.: Reg. Stud., 37 (2021)
100930, doi: 10.1016/j.ejrh.2021.100930.
- S. Jiang, Y. Zheng, C. Wang, V. Babovic, Uncovering
flooding mechanisms across the contiguous United States
through interpretive deep learning on representative
catchments, Water Resour. Res., 58 (2022) e2021WR030185,
doi: 10.1029/2021WR030185.
- H.M.V.V. Herath, J. Chadalawada, V. Babovic, Hydrologically
informed machine learning for rainfall–runoff modelling:
towards distributed modelling, Hydrol. Earth Syst. Sci.,
25 (2021) 4373–4401.
- J. Chadalawada, H.M.V.V. Herath, V. Babovic, Hydrologically
informed machine learning for rainfall-runoff modeling: a
genetic programming-based toolkit for automatic model
induction, Water Resour. Res., 87 (2015) 99–112.