References
- M.H. Fathy, M.M. Awad, E.-S.B. Zeidan, A.M. Hamed,
Solar powered foldable apparatus for extracting water from
atmospheric air, Renewable Energy, 162 (2020) 1462–1489.
- M. Kumar, A. Yadav, N. Mehla, Water generation from
atmospheric air by using different composite desiccant
materials, Int. J. Ambient Energy, 40 (2019) 343–349.
- M.H. Mohamed, G.E. William, M. Fatouh, Solar energy
utilisation in water production from humid air, Sol. Energy,
148 (2017) 98–109.
- A. Das, R. Sharma, V. Thirunavukkarasu, M. Cheralathan,
Desiccant-based water production from humid air using
concentrated solar energy, J. Therm. Anal. Calorim., 147 (2022)
2641–2651.
- L.G. Gordeeva, M.V. Solovyeva, A. Sapienza, Y.I. Aristov,
Potable water extraction from the atmosphere: potential of
MOFs, Renewable Energy, 148 (2020) 72–80.
- S. Srivastava, A. Yadav, Water generation from atmospheric
air by using composite desiccant material through fixed focus
concentrating solar thermal power, Sol. Energy, 169 (2018)
302–315.
- M. DaniŞMaz, M. Alhurmuzi, A literature review on extraction
of potable water from atmospheric air using solar stills:
recent developments, Avrupa Bilim ve Teknoloji Dergisi.,
32 (2021) 991–999.
- M. Kumar, A. Yadav, Composite desiccant material “CaCl2/vermiculite/saw wood”: a new material for freshwater
production from atmospheric air, Appl. Water Sci., 7 (2017)
2103–2111.
- J.Y. Wang, J.Y. Liu, R.Z. Wang, L.W. Wang, Experimental
investigation on two solar-driven sorption-based devices
to extract fresh water from atmosphere, Appl. Therm. Eng.,
127 (2017) 1608–1616.
- J.Y. Wang, R.Z. Wang, L.W. Wang, J.Y. Liu, A high efficient
semi-open system for fresh water production from
atmosphere, Energy, 138 (2017) 542–551.
- H. Kim, S. Yang, S.R. Rao, S. Narayanan, E.A. Kapustin,
H. Furukawa, E.N. Wang, Water harvesting from air with metalorganic
frameworks powered by natural sunlight, Science,
356 (2017) 430–434.
- M.A. Talaat, M.M. Awad, E.B. Zeidan, A.M. Hamed, Solarpowered
portable apparatus for extracting water from air
using desiccant solution, Renewable Energy, 119 (2018) 662–674.
- H. Kim, S.R. Rao, E.A. Kapustin, L. Zhao, S. Yang, O.M. Yaghi,
E.N. Wang, Adsorption-based atmospheric water harvesting
device for arid climates, Nat. Commun., 9 (2018) 1–8.
- R. Li, Y. Shi, M. Alsaedi, M. Wu, L. Shi, P. Wang, Hybrid hydrogel
with high water vapor harvesting capacity for deployable solardriven
atmospheric water generator, Environ. Sci. Technol.,
52 (2018) 11367–11377.
- P.A. Kallenberger, M. Fröba, Water harvesting from air with
a hygroscopic salt in a hydrogel–derived matrix, Commun.
Chem., 1 (2018) 1–6.
- R. Li, Y. Shi, L. Shi, M. Alsaedi, P. Wang, Harvesting water from
air: using anhydrous salt with sunlight, Environ. Sci. Technol.,
52 (2018) 5398–5406.
- F. Fathieh, M.J. Kalmutzki, E.A. Kapustin, P.J. Waller, J. Yang,
O.M. Yaghi, Practical water production from desert air,
Sci. Adv., 4 (2018) eaat3198, doi: 10.1126/sciadv.aat3198.
- F. Zhao, X. Zhou, Y. Liu, Y. Shi, Y. Dai, G. Yu, Super moistureabsorbent
gels for all‐weather atmospheric water harvesting,
Adv. Mater., 31 (2019) 1806446, doi: 10.1002/adma.201806446.
- H. Qi, T. Wei, W. Zhao, B. Zhu, G. Liu, P. Wang, X. Zhang, An
interfacial solar‐driven atmospheric water generator based on
a liquid sorbent with simultaneous adsorption–desorption,
Adv. Mater., 31 (2019) 1903378, doi: 10.1002/adma.201903378.
- D.K. Nandakumar, Y. Zhang, S.K. Ravi, N. Guo, C. Zhang,
S.C. Tan, Solar energy triggered clean water harvesting from
humid air existing above sea surface enabled by a hydrogel
with ultrahigh hygroscopicity, Adv. Mater., 31 (2019) 1806730,
doi: 10.1002/adma.201806730.
- M. Elashmawy, Experimental study on water extraction from
atmospheric air using tubular solar still, J. Cleaner Prod.,
249 (2020) 119322, doi: 10.1016/j.jclepro.2019.119322.
- F.A. Essa, A.H. Elsheikh, R. Sathyamurthy, A.M. Manokar,
A.W. Kandeal, S. Shanmugan, M.M. Younes, Extracting water
content from the ambient air in a double-slope half-cylindrical
basin solar still using silica gel under Egyptian conditions,
Sustainable Energy Technol. Assess., 39 (2020) 100712,
doi: 10.1016/j.seta.2020.100712.
- A. Mulchandani, S. Malinda, J. Edberg, P. Westerhoff, Sunlightdriven
atmospheric water capture capacity is enhanced by
nano-enabled photothermal desiccants, Environ. Sci. Nano,
7 (2020) 2584–2594.
- M. Elashmawy, F. Alshammari, Atmospheric water harvesting
from low humid regions using tubular solar still powered by
a parabolic concentrator system, J. Cleaner Prod., 256 (2020)
120329, doi: 10.1016/j.jclepro.2020.120329.
- P.M. Kumar, S. Arunthathi, S.J. Prasanth, T. Aswin, A.A. Antony,
D. Daniel, P.N. Babu, Investigation on a desiccant based solar
water recuperator for generating water from atmospheric air,
Mater. Today Proc., 45 (2021) 7881–7884.
- P. Gandhidasan, H.I. Abualhamayel, Investigation of humidity
harvest as an alternative water source in the Kingdom of
Saudi Arabia, Water Environ. J., 24 (2010) 282–292.
- T.A. Tahseen, Optimal Geometric Arrangement of Unfinned
and Finned Flat Tube Heat Exchangers Under Laminar Forced
Convection, Faculty of Mechanical Engineering, Universiti
Malaysia Pahang, 2014.
- M. Kumar, A. Yadav, Solar-driven technology for freshwater
production from atmospheric air by using the composite
desiccant material “CaCl2/floral foam”, Environ. Dev.
Sustainability, 18 (2016) 1151–1165.