References

  1. M.H. Fathy, M.M. Awad, E.-S.B. Zeidan, A.M. Hamed, Solar powered foldable apparatus for extracting water from atmospheric air, Renewable Energy, 162 (2020) 1462–1489.
  2. M. Kumar, A. Yadav, N. Mehla, Water generation from atmospheric air by using different composite desiccant materials, Int. J. Ambient Energy, 40 (2019) 343–349.
  3. M.H. Mohamed, G.E. William, M. Fatouh, Solar energy utilisation in water production from humid air, Sol. Energy, 148 (2017) 98–109.
  4. A. Das, R. Sharma, V. Thirunavukkarasu, M. Cheralathan, Desiccant-based water production from humid air using concentrated solar energy, J. Therm. Anal. Calorim., 147 (2022) 2641–2651.
  5. L.G. Gordeeva, M.V. Solovyeva, A. Sapienza, Y.I. Aristov, Potable water extraction from the atmosphere: potential of MOFs, Renewable Energy, 148 (2020) 72–80.
  6. S. Srivastava, A. Yadav, Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power, Sol. Energy, 169 (2018) 302–315.
  7. M. DaniŞMaz, M. Alhurmuzi, A literature review on extraction of potable water from atmospheric air using solar stills: recent developments, Avrupa Bilim ve Teknoloji Dergisi., 32 (2021) 991–999.
  8. M. Kumar, A. Yadav, Composite desiccant material “CaCl2/vermiculite/saw wood”: a new material for freshwater production from atmospheric air, Appl. Water Sci., 7 (2017) 2103–2111.
  9. J.Y. Wang, J.Y. Liu, R.Z. Wang, L.W. Wang, Experimental investigation on two solar-driven sorption-based devices to extract fresh water from atmosphere, Appl. Therm. Eng., 127 (2017) 1608–1616.
  10. J.Y. Wang, R.Z. Wang, L.W. Wang, J.Y. Liu, A high efficient semi-open system for fresh water production from atmosphere, Energy, 138 (2017) 542–551.
  11. H. Kim, S. Yang, S.R. Rao, S. Narayanan, E.A. Kapustin, H. Furukawa, E.N. Wang, Water harvesting from air with metalorganic frameworks powered by natural sunlight, Science, 356 (2017) 430–434.
  12. M.A. Talaat, M.M. Awad, E.B. Zeidan, A.M. Hamed, Solarpowered portable apparatus for extracting water from air using desiccant solution, Renewable Energy, 119 (2018) 662–674.
  13. H. Kim, S.R. Rao, E.A. Kapustin, L. Zhao, S. Yang, O.M. Yaghi, E.N. Wang, Adsorption-based atmospheric water harvesting device for arid climates, Nat. Commun., 9 (2018) 1–8.
  14. R. Li, Y. Shi, M. Alsaedi, M. Wu, L. Shi, P. Wang, Hybrid hydrogel with high water vapor harvesting capacity for deployable solardriven atmospheric water generator, Environ. Sci. Technol., 52 (2018) 11367–11377.
  15. P.A. Kallenberger, M. Fröba, Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix, Commun. Chem., 1 (2018) 1–6.
  16. R. Li, Y. Shi, L. Shi, M. Alsaedi, P. Wang, Harvesting water from air: using anhydrous salt with sunlight, Environ. Sci. Technol., 52 (2018) 5398–5406.
  17. F. Fathieh, M.J. Kalmutzki, E.A. Kapustin, P.J. Waller, J. Yang, O.M. Yaghi, Practical water production from desert air, Sci. Adv., 4 (2018) eaat3198, doi: 10.1126/sciadv.aat3198.
  18. F. Zhao, X. Zhou, Y. Liu, Y. Shi, Y. Dai, G. Yu, Super moistureabsorbent gels for all‐weather atmospheric water harvesting, Adv. Mater., 31 (2019) 1806446, doi: 10.1002/adma.201806446.
  19. H. Qi, T. Wei, W. Zhao, B. Zhu, G. Liu, P. Wang, X. Zhang, An interfacial solar‐driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption–desorption, Adv. Mater., 31 (2019) 1903378, doi: 10.1002/adma.201903378.
  20. D.K. Nandakumar, Y. Zhang, S.K. Ravi, N. Guo, C. Zhang, S.C. Tan, Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity, Adv. Mater., 31 (2019) 1806730, doi: 10.1002/adma.201806730.
  21. M. Elashmawy, Experimental study on water extraction from atmospheric air using tubular solar still, J. Cleaner Prod., 249 (2020) 119322, doi: 10.1016/j.jclepro.2019.119322.
  22. F.A. Essa, A.H. Elsheikh, R. Sathyamurthy, A.M. Manokar, A.W. Kandeal, S. Shanmugan, M.M. Younes, Extracting water content from the ambient air in a double-slope half-cylindrical basin solar still using silica gel under Egyptian conditions, Sustainable Energy Technol. Assess., 39 (2020) 100712, doi: 10.1016/j.seta.2020.100712.
  23. A. Mulchandani, S. Malinda, J. Edberg, P. Westerhoff, Sunlightdriven atmospheric water capture capacity is enhanced by nano-enabled photothermal desiccants, Environ. Sci. Nano, 7 (2020) 2584–2594.
  24. M. Elashmawy, F. Alshammari, Atmospheric water harvesting from low humid regions using tubular solar still powered by a parabolic concentrator system, J. Cleaner Prod., 256 (2020) 120329, doi: 10.1016/j.jclepro.2020.120329.
  25. P.M. Kumar, S. Arunthathi, S.J. Prasanth, T. Aswin, A.A. Antony, D. Daniel, P.N. Babu, Investigation on a desiccant based solar water recuperator for generating water from atmospheric air, Mater. Today Proc., 45 (2021) 7881–7884.
  26. P. Gandhidasan, H.I. Abualhamayel, Investigation of humidity harvest as an alternative water source in the Kingdom of Saudi Arabia, Water Environ. J., 24 (2010) 282–292.
  27. T.A. Tahseen, Optimal Geometric Arrangement of Unfinned and Finned Flat Tube Heat Exchangers Under Laminar Forced Convection, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 2014.
  28. M. Kumar, A. Yadav, Solar-driven technology for freshwater production from atmospheric air by using the composite desiccant material “CaCl2/floral foam”, Environ. Dev. Sustainability, 18 (2016) 1151–1165.