References

  1. X. Sun, G. Pan, H. Qi, Z. Sun, Dip-coating prepared nickelfoam composite cathodes with hydrophobic layer for atenolol elimination in electro-Fenton system, J. Electroanal. Chem., 856 (2020) 113725, doi: 10.1016/j.jelechem.2019.113725.
  2. A. Giacobbo, E.V. Soares, A.M. Bernardes, M.J. Rosa, M.N. Pinho, Atenolol removal by nanofiltration: a case-specific mass transfer correlation, Water Sci. Technol., 81 (2020) 210–216.
  3. Y. Gao, N. Gao, J. Chen, J. Zhang, D. Yin, Oxidation of β-blocker atenolol by a combination of UV light and chlorine: kinetics, degradation pathways and toxicity assessment, Sep. Purif. Technol., 231 (2020) 115927, doi: 10.1016/j.seppur.2019.115927.
  4. K. Govindan, V.D.W. Sumanasekara, A. Jang, Mechanisms for degradation and transformation of β-blocker atenolol via electrocoagulation, electro-Fenton, and electro-Fenton-like processes, Environ. Sci.: Water Res. Technol., 6 (2020) 1465–1481.
  5. X. Yu, W. Qin, X. Yuan, L. Sun, F. Pan, D. Xia, Synergistic mechanism and degradation kinetics for atenolol elimination via integrated UV/ozone/peroxymonosulfate process, J. Hazard. Mater., 407 (2021) 124393, doi: 10.1016/j.jhazmat.2020.124393.
  6. Z. Huo, S. Wang, Q. Zou, H. Shao, G. Xu, Radiolysis of cardiovascular drug atenolol in aqueous solution by electron beam: effect of water components and persulfate addition, Radiat. Phys. Chem., 184 (2021) 109458, doi: 10.1016/j.radphyschem.2021.109458.
  7. A. Hassani, J. Scaria, F. Ghanbari, P.V. Nidheesh, Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: a review on relevant activation mechanisms, performance, and perspectives, Environ. Res., 217 (2023) 114789, doi: 10.1016/j.envres.2022.114789.
  8. M.M. Amin, N. Bagheri, F. Mohammadi, B. Dehdashti, Sensitivity analysis with the Monte Carlo method and prediction of atenolol removal using modified multiwalled carbon nanotubes based on the response surface method: isotherm and kinetics studies, Int. J. Chem. Eng., 2022 (2022) 4613023, doi: 10.1155/2022/4613023.
  9. M. Farid, A. Mirvet, Y. Nacera, Degradation of atenolol in a rectangular staircase photocatalytic reactor with immobilized ZnO, Chem. Eng. Technol., 44 (2021) 140–147.
  10. F. Madjene, M. Assassi, O. Benhabiles, N. Yeddou-Mezenner, Optimisation and kinetic modelling of atenolol degradation by ZnO under solar irradiation, Int. J. Environ. Anal. Chem., (2021) 1–12, doi: 10.1080/03067319.2021.1959567.
  11. J.A. Garrido-Cardenas, B. Esteban-García, A. Agüera, J.A. Sánchez-Pérez, F. Manzano-Agugliaro, Wastewater treatment by advanced oxidation process and their worldwide research trends, Int. J. Environ. Res. Public Health, 17 (2020) 170, doi: 10.3390/ijerph17010170.
  12. C.V. Rekhate, J.K. Srivastava, Recent advances in ozone-based advanced oxidation processes for treatment of wastewater - a review, Chem. Eng. J. Adv., 3 (2020) 100031, doi: 10.1016/j.ceja.2020.100031.
  13. V. Kumar, M.P. Shah, Chapter 1 – Advanced Oxidation Processes for Complex Wastewater Treatment, M.P. Shah, Ed., Advanced Oxidation Processes for Effluent Treatment Plants, Elsevier, India, 2021, pp. 1–31.
  14. Y. Yang, Y. Cao, J. Jiang, X. Lu, J. Ma, S. Pang, J. Li, Y. Zhou, C. Guan, Comparative study on degradation of propranolol and formation of oxidation products by UV/H2O2 and UV/persulfate (PDS), Water Res., 149 (2019) 543–552.
  15. R. Bajagain, S-W. Jeong, Degradation of petroleum hydrocarbons in soil via advanced oxidation process using peroxymonosulfate activated by nanoscale zero-valent iron, Chemosphere, 270 (2021) 128627, doi: 10.1016/j.chemosphere.2020.128627.
  16. Q. Wang, P. Rao, G. Li, L. Dong, X. Zhang, Y. Shao, N. Gao, W. Chu, B. Xu, N. An, J. Deng, Degradation of imidacloprid by UV-activated persulfate and peroxymonosulfate processes: kinetics, impact of key factors and degradation pathway, Ecotoxicol. Environ. Saf., 187 (2020) 109779, doi: 10.1016/j.ecoenv.2019.109779.
  17. X. Chen, J. Zhou, Y. Chen, Y. Zhou, L. Ding, H. Liang, X. Li, Degradation of tetracycline hydrochloride by coupling of photocatalysis and peroxymonosulfate oxidation processes using CuO-BiVO4 heterogeneous catalyst, Process Saf. Environ. Prot., 145 (2021) 364–377.
  18. T. Cai, L. Bu, Y. Wu, S. Zhou, Z. Shi, Accelerated degradation of bisphenol A induced by the interaction of EGCG and Cu(II) in Cu(II)/EGCG/peroxymonosulfate process, Chem. Eng. J., 395 (2020) 125134, doi: 10.1016/j.cej.2020.125134.
  19. J. Mohamadiyan, G. Shams-Khoramabadi, S.A. Mussavi, B. Kamarehie, Y. Dadban Shahamat, H. Godini, Aniline degradation using advanced oxidation process by UV/peroxy disulfate from aqueous solution, Int. J. Eng. (IJE), 30 (2017) 684–690.
  20. K. Song, F. Taghipour, M. Mohseni, Microorganisms inactivation by wavelength combinations of ultraviolet light-emitting diodes (UV-LEDs), Sci. Total Environ., 665 (2019) 1103–1110.
  21. E. Ryan, S. Turkmen, S. Benson, An investigation into the application and practical use of (UV) ultraviolet light technology for marine antifouling, Ocean Eng., 216 (2020) 107690, doi: 10.1016/j.oceaneng.2020.107690.
  22. Y.D. Shahamat, M. Masihpour, P. Borghei, S.H. Rahmati, Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box–Behnken design, Inorg. Chem. Commun., 143 (2022) 109785, doi: 10.1016/j.inoche.2022.109785.
  23. G. Ozyildiz, T. Olmez-Hanci, I. Arslan-Alaton, Effect of nanoscale, reduced graphene oxide on the degradation of bisphenol A in real tertiary treated wastewater with the persulfate/UV-C process, Appl. Catal., B, 254 (2019) 135–144.
  24. P.P. Falciglia, E. Gagliano, V. Brancato, G. Malandrino, G. Finocchiaro, A. Catalfo, G.D. Guidi, S. Romano, P. Roccaro, F.G.A. Vagliasindi, Microwave based regenerating permeable reactive barriers (MW-PRBs): proof of concept and application for Cs removal, Chemosphere, 251 (2020) 126582,
    doi: 10.1016/j.chemosphere.2020.126582.
  25. L. Hu, P. Wang, T. Shen, Q. Wang, X. Wang, P. Xu, Q. Zheng, G. Zhang, The application of microwaves in sulfate radicalbased advanced oxidation processes for environmental remediation: a review, Sci. Total Environ., 722 (2020) 137831, doi: 10.1016/j.scitotenv.2020.137831.
  26. W. Wang, Z. Li, M. Zhang, C. Sun, Preparation of 3D network CNTs-modified nickel foam with enhanced microwave absorptivity and application potential in wastewater treatment, Sci. Total Environ., 702 (2020) 135006, doi: 10.1016/j.scitotenv.2019.135006.
  27. F. Wang, C. Wu, Q. Li, Treatment of refractory organics in strongly alkaline dinitrodiazophenol wastewater with microwave irradiation-activated persulfate, Chemosphere, 254 (2020) 126773, doi: 10.1016/j.chemosphere.2020.126773.
  28. J.V. Tu, Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes, Clin. Epidemiol., 49 (1996) 1225–1231.
  29. S. Panda, N.P. Padhy, Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design, Appl. Soft Comput., 8 (2008) 1418–1427.
  30. M. Berkani, B.K. Bouchareb, M. Bouhelassa, Y. Kadmi, Photocatalytic degradation of industrial dye in semi-pilot scale prototype solar photoreactor: optimization and modeling using ANN and RSM based on Box–Wilson approach, Top. Catal., 63 (2020) 964–975.
  31. J. Jawad, A.H. Hawari, S.J. Zaidi, Artificial neural network modeling of wastewater treatment and desalination using membrane processes: a review, Chem. Eng. J., 419 (2021) 129540, doi: 10.1016/j.cej.2021.129540.
  32. M. Piponski, K. Peleshok, L. Logoyda, L. Kravchuk, V. Piatnochka, U. Zakharchuk, Efficient validated HPLC/UV method for determination of valsartan and atenolol in dosage form and in vitro dissolution studies, Biointerface Res. Appl. Chem., 10 (2020) 6669–6675.
  33. F. Mohammadi, B. Bina, H. Karimi, S. Rahimi, Z. Yavari, Modeling and sensitivity analysis of the alkylphenols removal via moving bed biofilm reactor using artificial neural networks: comparison of Levenberg Marquardt and particle swarm optimization training algorithms, Biochem. Eng. J., 161 (2020) 107685, doi: 10.1016/j.bej.2020.107685.
  34. N. Lotfi, J. Tamouk, M. Farmanbar, 3-SAT problem a new memetic-PSO algorithm, arXiv, (2013) 13065070, doi: 10.48550/arXiv.1306.5070.
  35. A.K. Rathankumar, V.K. Vaithyanathan, K. Saikia, S.S. Anand, V.K. Vaidyanathan, H. Cabana, Effect of alkaline treatment on the removal of contaminants of emerging concern from municipal biosolids: modelling and optimization of process parameters using RSM and ANN coupled GA, Chemosphere, 286 (2022) 131847, doi: 10.1016/j.chemosphere.2021.131847.
  36. V. Bhatia, A. Dehir, A.K. Ray, Photocatalytic degradation of atenolol with graphene oxide/zinc oxide composite: optimization of process parameters using statistical method, J. Photochem. Photobiol., A, 409 (2021) 113136, doi: 10.1016/j. jphotochem.2021.113136.
  37. Y. Wu, Z. Fang, Y. Shi, H. Chen, Y. Liu, Y. Wang, W. Dong, Activation of peroxymonosulfate by BiOCl@Fe3O4 catalyst for the degradation of atenolol: kinetics, parameters, products and mechanism, Chemosphere, 216 (2019) 248–257.
  38. E. Hapeshi, A. Achilleos, M.I. Vasquez, C. Michael, N.P. Xekoukoulotakis, D. Mantzavinos, D. Kassinos, Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions, Water Res., 44 (2010) 1737–1746.
  39. Y. Xu, Z. Lin, Y. Wang, H. Zhang, The UV/peroxymonosulfate process for the mineralization of artificial sweetener sucralose, Chem. Eng. J., 317 (2017) 561–569.
  40. X. Liu, L. Fang, Y. Zhou, T. Zhang, Y. Shao, Comparison of UV/ PDS and UV/H2O2 processes for the degradation of atenolol in water, J. Environ. Sci., 25 (2013) 1519–1528.
  41. P.V. Gayathri, S. Yesodharan, E.P. Yesodharan, Microwave/persulphate assisted ZnO mediated photocatalysis (MW/PS/ UV/ZnO) as an efficient advanced oxidation process for the removal of RhB dye pollutant from water, J. Environ. Chem. Eng., 7 (2019) 103122, doi: 10.1016/j.jece.2019.103122.
  42. D. Miao, J. Peng, X. Zhou, L. Qian, M. Wang, L. Zhai, S. Gao, Oxidative degradation of atenolol by heat-activated persulfate: kinetics, degradation pathways and distribution of transformation intermediates, Chemosphere, 207 (2018) 174–182.
  43. Y. Shi, G. Shen, J. Geng, Y. Fu, S. Li, G. Wu, L. Wang, K. Xu, H. Ren, Predictive models for the degradation of 4 pharmaceutically active compounds in municipal wastewater effluents by the UV/H2O2 process, Chemosphere, 263 (2021) 127944, doi: 10.1016/j.chemosphere.2020.127944.
  44. J. Rodríguez-Chueca, C. Garcia-Cañibano, M. Sarro, Á. Encinas, C. Medana, D. Fabbri, P. Calza, J. Marugán, Evaluation of transformation products from chemical oxidation of micropollutants in wastewater by photo-assisted generation of sulfate radicals, Chemosphere, 226 (2019) 509–519.
  45. A. Zhihui, Y. Peng, L. Xiaohua, Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes, Chemosphere, 60 (2005) 824–827.
  46. X. Liu, F. Huang, Y. Yu, P. Zhao, Y. Zhou, Y. He, Y. Xu, Y. Zhang, Ofloxacin degradation over Cu–Ce tyre carbon catalysts by the microwave assisted persulfate process, Appl. Catal., B, 253 (2019) 149–159.
  47. S. Yang, P. Wang, X. Yang, G. Wei, W. Zhang, L. Shan, A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation, J. Environ. Sci., 21 (2009) 1175–1180.
  48. H. Xia, C. Li, G. Yang, Z. Shi, C. Jin, W. He, J. Xu, G. Li, A review of microwave-assisted advanced oxidation processes for wastewater treatment, Chemosphere, 287 (2022) 131981, doi: 10.1016/j.chemosphere.2021.131981.
  49. X. Liu, T. Zhang, Y. Zhou, L. Fang, Y. Shao, Degradation of atenolol by UV/peroxymonosulfate: kinetics, effect of operational parameters and mechanism, Chemosphere, 93 (2013) 2717–2724.
  50. H. Zhang, X. Liu, C. Lin, X. Li, Z. Zhou, G. Fan, J. Ma, Peroxymonosulfate activation by hydroxylamine-drinking water treatment residuals for the degradation of atrazine, Chemosphere, 224 (2019) 689–697.
  51. Y. Pang, H. Lei, Degradation of p-nitrophenol through microwave-assisted heterogeneous activation of peroxymonosulfate by manganese ferrite, Chem. Eng. J., 287 (2016) 585–592.
  52. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review, Chem. Eng. J., 310 (2017) 41–62.
  53. A. Hassani, P. Eghbali, F. Mahdipour, S. Wacławek, K.A. Lin, F. Ghanbari, Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: performance, mineralization, and activation mechanism, Chem. Eng. J., 453 (2023) 139556, doi: 10.1016/j.cej.2022.139556.
  54. S. Madihi-Bidgoli, S. Asadnezhad, A. Yaghoot-Nezhad, A. Hassani, Azurobine degradation using Fe2O3@multiwalled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: performance, mechanism and environmental application, J. Environ. Chem. Eng., 9 (2021) 106660, doi: 10.1016/j.jece.2021.106660.