References
- H. An, A. Razzaq, M. Haseeb, L.W.W. Mihardjo, The role of
technology innovation and people’s connectivity in testing
environmental Kuznets curve and pollution heaven hypotheses
across the Belt and Road host countries: new evidence from
Method of Moments Quantile Regression, Environ. Sci. Pollut.
Res., 28 (2021) 5254–5270.
- O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy
resources: current status, future prospects and their enabling
technology, Renewable Sustainable Energy Rev., 39 (2014)
748–764.
- C. Scheel, E. Aguiñaga, B. Bello, Decoupling economic
development from the consumption of finite resources
using circular economy. A model for developing countries,
Sustainability, 12 (2020) 1291–1312.
- R. Sharma, A. Sinha, P. Kautish, Does renewable energy
consumption reduce ecological footprint? Evidence from
eight developing countries of Asia, J. Cleaner Prod., 285 (2021)
124867, doi: 10.1016/j.jclepro.2020.124867.
- S. Zhang, X. Xu, T. Lin, P. He, Recent advances in nanomaterials
for packaging of electronic devices, J. Mater. Sci. - Mater.
Electron., 30 (2019) 13855–13868.
- Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng, Y. Pi, Y. Luo, H. Pang,
MXene-copper/cobalt hybrids via Lewis acidic molten salts
etching for high performance symmetric supercapacitors,
Angew. Chem., 133 (2021) 25522–25526.
- Q. Jing, W. Li, J. Wang, X. Chen, H. Pang, Calcination activation
of three-dimensional cobalt organic phosphate nanoflake
assemblies for supercapacitors, Inorg. Chem. Front., 8 (2021)
4222–4229.
- C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang, H. Pang, In-situ growth
of three‐dimensional MXene/metal–organic framework
composites for high-performance supercapacitors, Angew.
Chem., 134 (2022) e202116282, doi: 10.1002/anie.202116282.
- H. Zhou, S. Zheng, X. Guo, Y. Gao, H. Li, H. Pang, Ordered porous
and uniform electric-field-strength micro-supercapacitors by 3D
printing based on liquid-crystal V2O5 nanowires compositing
carbon nanomaterials, J. Colloid Interface Sci., 628 (2022) 24–32.
- Y. Xiu, L. Cheng, L. Chunyan, Research on hybrid energy storage
system of super-capacitor and battery optimal allocation,
J. Int. Counc. Electr. Eng., 4 (2014) 341–347.
- M. Horn, J. MacLeod, M. Liu, J. Webb, N. Motta, Supercapacitors:
a new source of power for electric cars?, Econ. Anal. Policy.,
61 (2019) 93–103.
- H. Xu, M. Shen, The control of lithium‐ion batteries and
supercapacitors in hybrid energy storage systems for electric
vehicles: a review, Int. J. Energy Res., 45 (2021) 20524–20544.
- S. Özarslan, M.R. Atelge, H.D. Kıvrak, S. Horoz, C. Yavuz,
M. Kaya, S. Ünalan, A double-functional carbon material as a
supercapacitor electrode and hydrogen production: Cu-doped
tea factory waste catalyst, J. Mater. Sci. - Mater. Electron.,
32 (2021) 28909–28918.
- D. Nandi, V.B. Mohan, A.K. Bhowmick, D. Bhattacharyya, Metal/metal oxide decorated graphene synthesis and application as
supercapacitor: a review, J. Mater. Sci., 55 (2020) 6375–6400.
- S. Özarslan, M.R. Atelge, M. Kaya, S. Ünalan, Production
of dual functional carbon material from biomass treated
with NaOH for supercapacitor and catalyst, Energy Storage,
3 (2021) e257, doi: 10.1002/est2.257.
- P. Veerakumar, A. Sangili, S. Manavalan, P. Thanasekaran,
K.-C. Lin, Research progress on porous carbon supported
metal/metal oxide nanomaterials for supercapacitor electrode
applications, Ind. Eng. Chem. Res., 59 (2020) 6347–6374.
- Z.S. Iro, C. Subramani, S. Dash, A brief review on electrode
materials for supercapacitor, Int. J. Electrochem. Sci., 11 (2016)
10628–10643.
- R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of
nanostructured metal oxides and pure nickel oxide (NiO)
electrodes for supercapacitors: a review, J. Alloys Compd.,
734 (2018) 89–111.
- P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors
and related devices, Nat. Mater., 19 (2020) 1151–1163.
- S. Nayak, A. Soam, J. Nanda, C. Mahender, M. Singh,
D. Mohapatra, R. Kumar, Sol–gel synthesized
BiFeO3–graphene
nanocomposite as efficient electrode for supercapacitor
application, J. Mater. Sci. - Mater. Electron., 29 (2018) 9361–9368.
- M. Akdemir, D.E. Karakaş, M. Kaya, Synthesis of a dualfunctionalized
carbon-based material as catalyst and
supercapacitor for efficient hydrogen production and energy
storage: Pd-supported pomegranate peel, Energy Storage,
4 (2022) e284, doi: 10.1002/est2.284.
- I.I.G. Inal, M. Akdemir, M. Kaya, Microcystis aeruginosa
supported-Mn catalyst as a new promising supercapacitor
electrode: a dual functional material, Int. J. Hydrogen Energy,
46 (2021) 21534–21541.
- C. Zhan, P. Zhang, S. Dai, D. Jiang, Boron supercapacitors,
ACS Energy Lett., 1 (2016) 1241–1246.
- A. Kilic, E. Aytar, L. Beyazsakal, A novel dopamine-based
boronate esters with the organic base as highly efficient, stable,
and green catalysts for the conversion of CO2 with epoxides
to cyclic carbonates, Energy Technol., 9 (2021) 2100478,
doi: 10.1002/ente.202100478.
- A. Kilic, İ.H. Kaya, I. Ozaslan, M. Aydemir, F. Durap, Catecholtype
ligand containing new modular design dioxaborinane
compounds: use in the transfer hydrogenation of various
ketones, Catal. Commun., 111 (2018) 42–46.
- A. Kilic, İ.H. Kaya, I. Ozaslan, M. Aydemir, F. Durap, Synthesis
and effective catalytic performance in cycloaddition reactions
with CO2 of boronate esters versus N-heterocyclic carbene
(NHC)-stabilized boronate esters, Sustainable Energy Fuels,
4 (2020) 5682–5696.
- Q. Meng, M. Wang, M. Vicente, Tetravalent Boron-Based,
M.M. Pereira, M.J.F. Calvete, Eds., Sustainable Synthesis
of Pharmaceuticals: Using Transition Metal Complexes as
Catalysts, De Gruyter, 2018, p. 253.
- M. Richold, Boron exposure from consumer products, Biol.
Trace Elem. Res., 66 (1998) 121–129.
- M.M. Smedskjaer, J.C. Mauro, R.E. Youngman, C.L. Hogue,
M. Potuzak, Y. Yue, Topological principles of borosilicate glass
chemistry, J. Phys. Chem. B, 115 (2011) 12930–12946.
- A. Chardon, J. Rouden, J. Blanchet, Borinic acid mediated
hydrosilylations: reductions of carbonyl derivatives,
Eur. J. Org. Chem., 2019 (2019) 995–998.
- P. Eisenberger, C. Crudden, Borocation catalysis, Dalton Trans.,
46 (2017) 4874–4887.
- A. Kilic, M. Durgun, F. Durap, M. Aydemir, The chiral boronatecatalyzed
asymmetric transfer hydrogenation of various
aromatic ketones to high-value alcohols: preparation and
spectroscopic studies, J. Org. Chem., 890 (2019) 1–12.
- T. Mahdi, D.W. Stephan, Facile protocol for catalytic frustrated
Lewis pair hydrogenation and reductive deoxygenation of
ketones and aldehydes, Angew. Chem. Int. Ed., 54 (2015)
8511–8514.
- M. Akdemir, T.A. Hansu, A. Kilic, L. Beyazsakal, M. Kaya,
Sabit Horoz, Investigation of electrochemical properties
of tri-and tetravalent boronate ester compounds for
supercapacitor applications, Ionics, 28 (2022) 5199–5210.
- T.A. Hansu, A. Kilic, R. Soylemez, M. Akdemir, M. Kaya,
S. Horoz, The preparation and characterization of the novel
mono-/binuclear boron-based materials for supercapacitor
electrode applications, Chem. Pap., 76 (2022) 7111–7122.
- G. Chen, Z. Hu, H. Su, J. Zhang, D. Wang, Ultrahigh level
heteroatoms doped carbon nanosheets as cathode materials
for Zn-ion hybrid capacitor: the indispensable roles of B
containing functional groups, Colloids Surf., A, 656 (2023)
130528, doi: 10.1016/j.colsurfa.2022.130528.
- Z. Sun, X. Han, and D.J.J.o.E.S. Wang, Zinc-iodine batterycapacitor
hybrid device with excellent electrochemical
performance enabled by a robust iodine host, J. Energy Storage,
62 (2023) 106857, doi: 10.1016/j.est.2023.106857.
- D. Wang, Z. Zhang, J. Sun, Z. Lu, From volatile ethanolamine
to highly N, B dual doped carbon superstructures for advanced
Zn-ion hybrid capacitors: unveiling the respective effects
heteroatom functionalities, J. Electrochem. Soc., 169 (2022)
070511, doi: 10.1149/1945-7111/ac7e71.
- S. Wang, Z. Hu, Z. Pan, D. Wang, Mohr’s salt assisted
KOH activation strategy to customize S-doped hierarchical
carbon frameworks enabling satisfactory rate performance
of supercapacitors, J. Alloys Compd., 876 (2021) 160203,
doi: 10.1016/j.jallcom.2021.160203.
- Y. Guo, C. Yan, P. Wang, L. Rao, C. Wang, Doping of carbon
into boron nitride to get the increased adsorption ability
for tetracycline from water by changing the pH of solution,
Chem. Eng. J., 387 (2020) 124136, doi: 10.1016/j.cej.2020.124136.
- L. Manjakkal, C.G. Núñez, W. Dang, R. Dahiya, Flexible selfcharging
supercapacitor based on graphene-Ag-3D graphene
foam electrodes, Nano Energy, 51 (2018) 604–612.
- Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin,
Graphene and nanostructured MnO2 composite electrodes
for supercapacitors, Carbon, 49 (2011) 2917–2925.
- X. Yan, Y. Yu, X. Yang, Effects of electrolytes on the capacitive
behavior of nitrogen/phosphorus co-doped nonporous carbon
nanofibers: an insight into the role of phosphorus groups,
RSC Adv., 4 (2014) 24986–24990.
- J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau,
Studies and characterisations of various activated carbons
used for carbon/carbon supercapacitors, J. Power Sources,
101 (2001) 109–116.
- X. Zhu, S. Yu, K. Xu, Y. Zhang, L. Zhang, G. Lou, Y. Wu, E. Zhu,
H. Chen, Z. Shen, B. Bao, S. Fu, Sustainable activated carbons
from dead ginkgo leaves for supercapacitor electrode active
materials, Chem. Eng. Sci., 181 (2018) 36–45.
- S. Ghosh, T. Mathews, B. Gupta, A. Das, N. Gopala Krishna,
M. Kamruddin, Supercapacitive vertical graphene nanosheets
in aqueous electrolytes, Nano-Struct. Nano-Objects, 10 (2017)
42–50.
- X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, J. Su, Effect of
aqueous electrolytes on the electrochemical behaviors of
supercapacitors based on hierarchically porous carbons,
J. Power Sources, 216 (2012) 290–296.
- C. Zequine, C.K. Ranaweera, Z. Wang, S. Singh, P. Tripathi,
O.N. Srivastava, B.K. Gupta, K. Ramasamy, P.K. Kahol,
P.R. Dvornic, R.K. Gupta, High performance and flexible
supercapacitors based on carbonized bamboo fibers for wide
temperature applications, Sci. Rep., 6 (2016) 1–10.
- I.I.G. Inal, M. Akdemir, M. Kaya, Microcystis aeruginosa
supported-Mn catalyst as a new promising supercapacitor
electrode: a dual functional material, Int. J. Hydrogen Energy,
46 (2021) 21534–21541.
- V. Thirumal, A. Pandurangan, R. Jayavel, R. Ilangovan, Synthesis
and characterization of boron doped graphene nanosheets for
supercapacitor applications, Synth. Met., 220 (2016) 524–532.
- H. Guo, Q. Gao, Boron and nitrogen co-doped porous carbon
and its enhanced properties as supercapacitor, J. Power
Sources, 186 (2009) 551–556.
- M. Khandelwal, C.V. Tran, J. Lee, J.B. In, Nitrogen and
boron co-doped densified laser-induced graphene for
supercapacitor applications, Chem. Eng. J., 428 (2022) 131119,
doi: 10.1016/j.cej.2021.131119.
- I. Karbhal, A. Basu, A. Patrike, M.V. Shelke, Laser patterning of
boron carbon nitride electrodes for flexible micro-supercapacitor
with remarkable electrochemical stability/capacity, Carbon,
171 (2021) 750–757.
- J. Zhang, X. Yu, Z.Q. Zhang, Z.Y. Zhao, Preparation of
boron-doped diamond foam film for supercapacitor
applications, Appl. Surf. Sci., 506 (2020) 144645, doi: 10.1016/j.apsusc.2019.144645.