References

  1. H. An, A. Razzaq, M. Haseeb, L.W.W. Mihardjo, The role of technology innovation and people’s connectivity in testing environmental Kuznets curve and pollution heaven hypotheses across the Belt and Road host countries: new evidence from Method of Moments Quantile Regression, Environ. Sci. Pollut. Res., 28 (2021) 5254–5270.
  2. O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: current status, future prospects and their enabling technology, Renewable Sustainable Energy Rev., 39 (2014) 748–764.
  3. C. Scheel, E. Aguiñaga, B. Bello, Decoupling economic development from the consumption of finite resources using circular economy. A model for developing countries, Sustainability, 12 (2020) 1291–1312.
  4. R. Sharma, A. Sinha, P. Kautish, Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia, J. Cleaner Prod., 285 (2021) 124867, doi: 10.1016/j.jclepro.2020.124867.
  5. S. Zhang, X. Xu, T. Lin, P. He, Recent advances in nanomaterials for packaging of electronic devices, J. Mater. Sci. - Mater. Electron., 30 (2019) 13855–13868.
  6. Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng, Y. Pi, Y. Luo, H. Pang, MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors, Angew. Chem., 133 (2021) 25522–25526.
  7. Q. Jing, W. Li, J. Wang, X. Chen, H. Pang, Calcination activation of three-dimensional cobalt organic phosphate nanoflake assemblies for supercapacitors, Inorg. Chem. Front., 8 (2021) 4222–4229.
  8. C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang, H. Pang, In-situ growth of three‐dimensional MXene/metal–organic framework composites for high-performance supercapacitors, Angew. Chem., 134 (2022) e202116282, doi: 10.1002/anie.202116282.
  9. H. Zhou, S. Zheng, X. Guo, Y. Gao, H. Li, H. Pang, Ordered porous and uniform electric-field-strength micro-supercapacitors by 3D printing based on liquid-crystal V2O5 nanowires compositing carbon nanomaterials, J. Colloid Interface Sci., 628 (2022) 24–32.
  10. Y. Xiu, L. Cheng, L. Chunyan, Research on hybrid energy storage system of super-capacitor and battery optimal allocation, J. Int. Counc. Electr. Eng., 4 (2014) 341–347.
  11. M. Horn, J. MacLeod, M. Liu, J. Webb, N. Motta, Supercapacitors: a new source of power for electric cars?, Econ. Anal. Policy., 61 (2019) 93–103.
  12. H. Xu, M. Shen, The control of lithium‐ion batteries and supercapacitors in hybrid energy storage systems for electric vehicles: a review, Int. J. Energy Res., 45 (2021) 20524–20544.
  13. S. Özarslan, M.R. Atelge, H.D. Kıvrak, S. Horoz, C. Yavuz, M. Kaya, S. Ünalan, A double-functional carbon material as a supercapacitor electrode and hydrogen production: Cu-doped tea factory waste catalyst, J. Mater. Sci. - Mater. Electron., 32 (2021) 28909–28918.
  14. D. Nandi, V.B. Mohan, A.K. Bhowmick, D. Bhattacharyya, Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review, J. Mater. Sci., 55 (2020) 6375–6400.
  15. S. Özarslan, M.R. Atelge, M. Kaya, S. Ünalan, Production of dual functional carbon material from biomass treated with NaOH for supercapacitor and catalyst, Energy Storage, 3 (2021) e257, doi: 10.1002/est2.257.
  16. P. Veerakumar, A. Sangili, S. Manavalan, P. Thanasekaran, K.-C. Lin, Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications, Ind. Eng. Chem. Res., 59 (2020) 6347–6374.
  17. Z.S. Iro, C. Subramani, S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci., 11 (2016) 10628–10643.
  18. R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review, J. Alloys Compd., 734 (2018) 89–111.
  19. P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices, Nat. Mater., 19 (2020) 1151–1163.
  20. S. Nayak, A. Soam, J. Nanda, C. Mahender, M. Singh, D. Mohapatra, R. Kumar, Sol–gel synthesized
    BiFeO3–graphene nanocomposite as efficient electrode for supercapacitor application, J. Mater. Sci. - Mater. Electron., 29 (2018) 9361–9368.
  21. M. Akdemir, D.E. Karakaş, M. Kaya, Synthesis of a dualfunctionalized carbon-based material as catalyst and supercapacitor for efficient hydrogen production and energy storage: Pd-supported pomegranate peel, Energy Storage, 4 (2022) e284, doi: 10.1002/est2.284.
  22. I.I.G. Inal, M. Akdemir, M. Kaya, Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: a dual functional material, Int. J. Hydrogen Energy, 46 (2021) 21534–21541.
  23. C. Zhan, P. Zhang, S. Dai, D. Jiang, Boron supercapacitors, ACS Energy Lett., 1 (2016) 1241–1246.
  24. A. Kilic, E. Aytar, L. Beyazsakal, A novel dopamine-based boronate esters with the organic base as highly efficient, stable, and green catalysts for the conversion of CO2 with epoxides to cyclic carbonates, Energy Technol., 9 (2021) 2100478, doi: 10.1002/ente.202100478.
  25. A. Kilic, İ.H. Kaya, I. Ozaslan, M. Aydemir, F. Durap, Catecholtype ligand containing new modular design dioxaborinane compounds: use in the transfer hydrogenation of various ketones, Catal. Commun., 111 (2018) 42–46.
  26. A. Kilic, İ.H. Kaya, I. Ozaslan, M. Aydemir, F. Durap, Synthesis and effective catalytic performance in cycloaddition reactions with CO2 of boronate esters versus N-heterocyclic carbene (NHC)-stabilized boronate esters, Sustainable Energy Fuels, 4 (2020) 5682–5696.
  27. Q. Meng, M. Wang, M. Vicente, Tetravalent Boron-Based, M.M. Pereira, M.J.F. Calvete, Eds., Sustainable Synthesis of Pharmaceuticals: Using Transition Metal Complexes as Catalysts, De Gruyter, 2018, p. 253.
  28. M. Richold, Boron exposure from consumer products, Biol. Trace Elem. Res., 66 (1998) 121–129.
  29. M.M. Smedskjaer, J.C. Mauro, R.E. Youngman, C.L. Hogue, M. Potuzak, Y. Yue, Topological principles of borosilicate glass chemistry, J. Phys. Chem. B, 115 (2011) 12930–12946.
  30. A. Chardon, J. Rouden, J. Blanchet, Borinic acid mediated hydrosilylations: reductions of carbonyl derivatives, Eur. J. Org. Chem., 2019 (2019) 995–998.
  31. P. Eisenberger, C. Crudden, Borocation catalysis, Dalton Trans., 46 (2017) 4874–4887.
  32. A. Kilic, M. Durgun, F. Durap, M. Aydemir, The chiral boronatecatalyzed asymmetric transfer hydrogenation of various aromatic ketones to high-value alcohols: preparation and spectroscopic studies, J. Org. Chem., 890 (2019) 1–12.
  33. T. Mahdi, D.W. Stephan, Facile protocol for catalytic frustrated Lewis pair hydrogenation and reductive deoxygenation of ketones and aldehydes, Angew. Chem. Int. Ed., 54 (2015) 8511–8514.
  34. M. Akdemir, T.A. Hansu, A. Kilic, L. Beyazsakal, M. Kaya, Sabit Horoz, Investigation of electrochemical properties of tri-and tetravalent boronate ester compounds for supercapacitor applications, Ionics, 28 (2022) 5199–5210.
  35. T.A. Hansu, A. Kilic, R. Soylemez, M. Akdemir, M. Kaya, S. Horoz, The preparation and characterization of the novel mono-/binuclear boron-based materials for supercapacitor electrode applications, Chem. Pap., 76 (2022) 7111–7122.
  36. G. Chen, Z. Hu, H. Su, J. Zhang, D. Wang, Ultrahigh level heteroatoms doped carbon nanosheets as cathode materials for Zn-ion hybrid capacitor: the indispensable roles of B containing functional groups, Colloids Surf., A, 656 (2023) 130528, doi: 10.1016/j.colsurfa.2022.130528.
  37. Z. Sun, X. Han, and D.J.J.o.E.S. Wang, Zinc-iodine batterycapacitor hybrid device with excellent electrochemical performance enabled by a robust iodine host, J. Energy Storage, 62 (2023) 106857, doi: 10.1016/j.est.2023.106857.
  38. D. Wang, Z. Zhang, J. Sun, Z. Lu, From volatile ethanolamine to highly N, B dual doped carbon superstructures for advanced Zn-ion hybrid capacitors: unveiling the respective effects heteroatom functionalities, J. Electrochem. Soc., 169 (2022) 070511, doi: 10.1149/1945-7111/ac7e71.
  39. S. Wang, Z. Hu, Z. Pan, D. Wang, Mohr’s salt assisted KOH activation strategy to customize S-doped hierarchical carbon frameworks enabling satisfactory rate performance of supercapacitors, J. Alloys Compd., 876 (2021) 160203, doi: 10.1016/j.jallcom.2021.160203.
  40. Y. Guo, C. Yan, P. Wang, L. Rao, C. Wang, Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution, Chem. Eng. J., 387 (2020) 124136, doi: 10.1016/j.cej.2020.124136.
  41. L. Manjakkal, C.G. Núñez, W. Dang, R. Dahiya, Flexible selfcharging supercapacitor based on graphene-Ag-3D graphene foam electrodes, Nano Energy, 51 (2018) 604–612.
  42. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors, Carbon, 49 (2011) 2917–2925.
  43. X. Yan, Y. Yu, X. Yang, Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups, RSC Adv., 4 (2014) 24986–24990.
  44. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources, 101 (2001) 109–116.
  45. X. Zhu, S. Yu, K. Xu, Y. Zhang, L. Zhang, G. Lou, Y. Wu, E. Zhu, H. Chen, Z. Shen, B. Bao, S. Fu, Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials, Chem. Eng. Sci., 181 (2018) 36–45.
  46. S. Ghosh, T. Mathews, B. Gupta, A. Das, N. Gopala Krishna, M. Kamruddin, Supercapacitive vertical graphene nanosheets in aqueous electrolytes, Nano-Struct. Nano-Objects, 10 (2017) 42–50.
  47. X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, J. Su, Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons, J. Power Sources, 216 (2012) 290–296.
  48. C. Zequine, C.K. Ranaweera, Z. Wang, S. Singh, P. Tripathi, O.N. Srivastava, B.K. Gupta, K. Ramasamy, P.K. Kahol, P.R. Dvornic, R.K. Gupta, High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications, Sci. Rep., 6 (2016) 1–10.
  49. I.I.G. Inal, M. Akdemir, M. Kaya, Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: a dual functional material, Int. J. Hydrogen Energy, 46 (2021) 21534–21541.
  50. V. Thirumal, A. Pandurangan, R. Jayavel, R. Ilangovan, Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications, Synth. Met., 220 (2016) 524–532.
  51. H. Guo, Q. Gao, Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor, J. Power Sources, 186 (2009) 551–556.
  52. M. Khandelwal, C.V. Tran, J. Lee, J.B. In, Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications, Chem. Eng. J., 428 (2022) 131119, doi: 10.1016/j.cej.2021.131119.
  53. I. Karbhal, A. Basu, A. Patrike, M.V. Shelke, Laser patterning of boron carbon nitride electrodes for flexible micro-supercapacitor with remarkable electrochemical stability/capacity, Carbon, 171 (2021) 750–757.
  54. J. Zhang, X. Yu, Z.Q. Zhang, Z.Y. Zhao, Preparation of boron-doped diamond foam film for supercapacitor applications, Appl. Surf. Sci., 506 (2020) 144645, doi: 10.1016/j.apsusc.2019.144645.