References

  1. C.P. Del Río-Galván, R.C. Hernández-León, M.O. Franco-Hernández, J. Meléndez-Estrada, Primary sewage sludge treatment using a spiral support system, Nat. Environ. Pollut. Technol., 21 (2022) 1167–1174.
  2. X.H. Dai, Necessity and urgency of stabilization treatment of sewage sludge in urban wastewater treatment plant, Water Waste Eng., 43 (2017) 12–13.
  3. K.K. Xiao, Y. Chen, X. Jiang, Q. Yang, W.Y. Seow, W.Y. Zhu, Y. Zhou, Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe(II)-oxone conditioning, Water Res., 109 (2017) 13–23.
  4. Z.L. Jin, C.R. Cai, T. Hashimoto, Y.D. Yuan, D.H. Kang, J. Hunter, X.R. Zhou, Alkaline etching and desmutting of aluminium alloy: The behaviour of Mg2Si particles, J. Alloys Compd., 842 (2020) 17–19.
  5. Z.Y. Yu, G.J. Zhao, H.W. Yu, Q. Liu, Z.Y. Zhang, R.F. Sun, W.G. Geng, L.Y. Wang, Iron-based denitration catalyst derived from Fenton sludge: optimization analysis of selective dealkalization and influence mechanism of calcination temperature, J. Cleaner Prod., 378 (2022) 134524, doi: 10.1016/j.jclepro.2022.134524.
  6. L. Wang, W.W. Ben, Y.G. Li, C. Liu, Z.M. Qiang, Behavior of tetracycline and macrolide antibiotics in activated sludge process and their subsequent removal during sludge reduction by ozone, Chemosphere, 206 (2018) 184–191.
  7. H. Yasui, K. Nakamura, S. Sakuma, A full-scale operation of a novel activated sludge process without excess sludge production, Water Sci. Technol., 96 (1996) 395–404.
  8. H. Yasui, M. Shibata, An innovative approach to reduce excess sludge production in the activated sludge process, Water Sci. Technol., 30 (1994) 11–20.
  9. Z.M. Qiang, L. Wang, H.Y. Dong, J.H. Qu, Operation performance of an A/A/O process coupled with excess sludge ozonation and phosphorus recovery: a pilot-scale study, Chem. Eng. J., 268 (2015) 162–169.
  10. H.Z. Huang, T.T. Wei, H. Wang, B. Xue, S. Chen, X.K. Wang, H.B. Wu, B. Dong, Z.X. Xu, In-situ sludge reduction based on Mn2+-catalytic ozonation conditioning: feasibility study and microbial mechanisms, J. Environ. Sci., 135 (2024) 185–197.
  11. D.N.K. Vo, M. Tokuoka, N.T. Phan, V.Q. Tran, The effect of adding wood chips on the decomposition of sludge from seafood processing wastewater treatment system, Earth Environ. Sci., 1009 (2022) 012003, doi: 10.1088/1755-1315/1009/1/012003.
  12. R. Morello, F. Di Capua, G. Esposito, F. Pirozzi, U. Fratino, D. Spasiano, Sludge minimization in mainstream wastewater treatment: mechanisms, strategies, technologies, and current development, J. Environ. Manage., 319 (2022) 115756, doi: 10.1016/j.jenvman.2022.115756.
  13. M. Tokumura, H. Katoh, T. Katoh, H.T. Znad, Y. Kawase, Solubilization of excess sludge in activated sludge process using the solar photo-Fenton reaction, J. Hazard. Mater., 162 (2009) 1390–1396.
  14. Z.X. Yang, G.X. Yan, S.H. Guo, Electrocatalytic oxidation degradation of ammonia nitrogen wastewater, J. Am. Chem. Soc., 257 (2019) 65–68.
  15. E.S. Zhang, L.M. Wu, L. Jiang, K.F. Guo, Z.Y. Su, P. Ju, A novel amino functionalized three-dimensional fluorescent Zn-MOF: the synthesis, structure and applications in the fluorescent sensing of organic water pollutants, J. Mol. Struct., 1264 (2022) 133314, doi: 10.1016/j.molstruc.2022.133314.