References
- Y.H. Zhang, S.L. Liu, H.H. Xie, X.L. Zeng, J.H. Li, Current
status on leaching precious metals from waste printed circuit
boards, Procedia Environ. Sci., 16 (2012) 560–568.
- H. Wang, H.L. Song, R. Yu, X. Cao, Z. Fang, X.N. Li, New
process for copper migration by bioelectricity generation in
soil microbial fuel cells, Environ. Sci. Pollut. Res. Int., 23 (2016)
13147–13154.
- V. Rai, D.B. Liu, D. Xia, Y. Jayaraman, J.-C.P. Gabriel,
Electrochemical approaches for the recovery of metals from
electronic waste: a critical review, Recycling, 6 (2021) 53,
doi: 10.3390/recycling6030053.
- T. Zubala, M. Patro, P. Boguta, Variability of zinc, copper and
lead contents in sludge of the municipal stormwater treatment
plant, Environ. Sci. Pollut. Res. Int., 24 (2017) 17145–17152.
- Z.Q. Zhang, Y. Zhou, J. Zhang, S.Q. Xia, Copper(II) adsorption
by the extracellular polymeric substance extracted from
waste activated sludge after short-time aerobic digestion,
Environ. Sci. Pollut. Res. Int., 21 (2014) 2132–2140.
- L.P. Wang, Y.J. Chen, Sequential precipitation of iron, copper,
and zinc from wastewater for metal recovery, J. Environ. Eng.,
145 (2019) 04018130, doi: 10.1061/(ASCE)EE.1943-7870.0001480.
- Z.L. Dong, T. Jiang, B. Xu, J.K. Yang, Y.Z. Chen, Q. Li, Y.B. Yang,
Comprehensive recoveries of selenium, copper, gold, silver and
lead from a copper anode slime with a clean and economical
hydrometallurgical process, Chem. Eng. J., 393 (2020) 124762,
doi: 10.1016/j.cej.2020.124762.
- G. Kavlak, T.E. Graedel, Global anthropogenic selenium cycles
for 1940–2010, Resour. Conserv. Recycl., 73 (2013) 17–22.
- G. Kavlak, T.E. Graedel, Global anthropogenic tellurium cycles
for 1940–2010, Resour. Conserv. Recycl., 76 (2013) 21–26.
- U. Jadhav, H. Hocheng, Hydrometallurgical recovery of metals
from large printed circuit board pieces, Sci. Rep., 5 (2015) 14574,
doi: 10.1038/srep14574.
- S. Hedrich, R. Kermer, T. Aubel, M. Martin, A. Schippers,
D.B. Johnson, E. Janneck, Implementation of biological and
chemical techniques to recover metals from copper-rich leach
solutions, Hydrometallurgy, 179 (2018) 274–281.
- M.Q. Li, N. Chen, H. Shang, C.C. Ling, K. Wei, S.X. Zhao,
B. Zhou, F.L. Jia, Z.H. Ai, L.Z. Zhang, An electrochemical
strategy for simultaneous heavy metal complexes wastewater
treatment and resource recovery, Environ. Sci. Technol.,
56 (2022) 10945–10953.
- L.G. Zhang, Z.M. Xu, A critical review of material flow,
recycling technologies, challenges and future strategy for
scattered metals from minerals to wastes, J. Cleaner Prod.,
202 (2018) 1001–1025.
- G.Q. Liu, Y.F. Wu, A.J. Tang, D. Pan, B. Li, Recovery of
scattered and precious metals from copper anode slime by
hydrometallurgy: a review, Hydrometallurgy, 197 (2020)
105460, doi: 10.1016/j.hydromet.2020.105460.
- J.W. Kim, A.S. Lee, S.G. Yu, J.W. Han, En masse pyrolysis of
flexible printed circuit board wastes quantitatively yielding
environmental resources, J. Hazard. Mater., 342 (2018) 51–57.
- L.L. Wang, Q. Li, Y. Li, X.Y. Sun, J.S. Li, J.Y. Shen, W.Q. Han,
L.J. Wang, A novel approach for recovery of metals from waste
printed circuit boards and simultaneous removal of iron from
steel pickling waste liquor by two-step hydrometallurgical
method, Waste Manage. (Oxford), 71 (2018) 411–419.
- J. Demol, E. Ho, G. Senanayake, Sulfuric acid baking and
leaching of rare earth elements, thorium and phosphate from
a monazite concentrate: effect of bake temperature from 200°C
to 800°C, Hydrometallurgy, 179 (2018) 254–267.
- J.L. Su, X. Lin, S.L. Zheng, R. Ning, W.B. Lou, W. Jin, Mass
transport-enhanced electrodeposition for the efficient
recovery of copper and selenium from sulfuric acid solution,
Sep. Purif. Rev., 182 (2017) 160–165.
- W.B. Lou, W.Q. Cai, P. Li, J.L. Su, S.L. Zheng, Y. Zhang,
W. Jin, Additives-assisted electrodeposition of fine spherical
copper powder from sulfuric acid solution, Powder Technol.,
326 (2018) 84–88.
- M.D. Machado, E.V. Soares, H.M. Soares, Selective recovery
of chromium, copper, nickel, and zinc from an acid solution
using an environmentally friendly process, Environ. Sci. Pollut.
Res. Int., 18 (2011) 1279–1285.
- C. Liu, T. Wu, P.C. Hsu, J. Xie, J. Zhao, K. Liu, J. Sun, J.W. Xu,
J. Tang, Z.W. Ye, D.C. Lin, Y. Cui, Direct/alternating current
electrochemical method for removing and recovering heavy
metal from water using graphene oxide electrode, ACS Nano,
13 (2019) 6431–6437.
- E. De Beni, W. Giurlani, L. Fabbri, R. Emanuele, S. Santini,
C. Sarti, T. Martellini, E. Piciollo, A. Cincinelli, M. Innocenti,
Graphene-based nanomaterials in the electroplating
industry: a suitable choice for heavy metal removal from
wastewater, Chemosphere, 292 (2022) 133448, doi: 10.1016/j.chemosphere.2021.133448.
- Y. Delgado, F.J. Fernandez-Morales, J. Llanos, An old technique
with a promising future: recent advances in the use of
electrodeposition for metal recovery, Molecules, 26 (2021) 5525,
doi: 10.3390/molecules26185525.
- D.R. Turner, G.R. Johnson, The effect of some addition agents
on the kinetics of copper electrodeposition from a sulfate
solution, J. Electrochem. Soc., 190 (1962) 798–804.
- C.X. Ji, G. Oskam, P.C. Searson, Electrodeposition of copper
on silicon from sulfate solution, J. Electrochem. Soc.,
148 (2001) C746–C752.
- L.P. Wang, G.Q. Zhang, W.J. Guan, L. Zeng, Q. Zhou,
Y. Xia, Q. Wang, Q.G. Li, Z.Y. Cao, Complete removal of trace
vanadium from ammonium tungstate solutions by solvent
extraction, Hydrometallurgy, 179 (2018) 268–273.
- D. Torres, L. Madriz, R. Vargas, B.R. Scharifker, Electrochemical
formation of copper phosphide from aqueous solutions of
Cu(II) and hypophosphite ions, Electrochim. Acta, 354 (2020)
136705, doi: 10.1016/j.electacta.2020.136705.
- T. Kekesi, M. Isshiki, Electrodeposition of copper from pure
cupric chloride hydrochloric acid solutions, J. Electroanal.
Chem., 27 (1997) 982–990.
- M.Y. Wang, X.Z. Gong, Z. Wang, Sustainable electrochemical
recovery of high-purity Cu powders from multi-metal acid
solution by a centrifuge electrode, J. Cleaner Prod., 204 (2018)
41–49.
- F.I. Lizama-Tzec, L. Canché-Canul, G. Oskam, Electrodeposition
of copper into trenches from a citrate plating bath,
Electrochim. Acta, 56 (2011) 9391–9396.
- R. Torres, G.T. Lapidus, Closed circuit recovery of copper,
lead and iron from electronic waste with citrate solutions,
Waste Manage. (Oxford), 60 (2017) 561–568.
- X.T. Yu, M.Y. Wang, X.Z. Gong, Z.C. Guo, Z. Wang, S.Q. Jiao,
Self-supporting porous CoP-based films with phase-separation
structure for ultrastable overall water electrolysis at large
current density, Adv. Energy Mater., 34 (2018) 1802445,
doi: 10.1002/aenm.201802445.
- B. Segura-Bailón, G.T. Lapidus, Selective recovery of copper
contained in waste PCBs from cellphones with impurity
inhibition in the citrate-phosphate system, Hydrometallurgy,
203 (2021) 105699, doi: 10.1016/j.hydromet.2021.105699.
- K. Suwannahong, J. Sripirom, C. Sirilamduan, V. Thathong,
T. Kreetachart, P. Panmuang, A. Deepatana, S. Punbut,
S. Wongcharee, H. Hamad, Selective chelating resin for copper
removal and recovery in aqueous acidic solution generated
from synthetic copper-citrate complexes from bioleaching of
e-waste, Adsorpt. Sci. Technol., 2022 (2022) 1–14.
- S.S. Goh, M. Rafatullah, N. Ismail, M. Alam, M.R. Siddiqui,
E.K. Seow, Separation of chromium(VI), copper and zinc:
chemistry of transport of metal ions across supported liquid
membrane, Membranes (Basel), 12 (2022) 685, doi: 10.3390/membranes12070685.
- J.E. Terrazas-Rodríguez, S. Gutiérrez-Granados, M.A. Alatorre-
Ordaz, C. Ponce de León, F.C. Walsh, A comparison of the
electrochemical recovery of palladium using a parallel flat
plate flow-by reactor and a rotating cylinder electrode reactor,
Electrochim. Acta, 56 (2011) 9357–9363.
- W. Jin, M.Q. Hu, J.G. Hu, Selective and efficient electrochemical
recovery of dilute copper and tellurium from acidic chloride
solutions, ACS Sustainable Chem. Eng., 6 (2018) 13378–13384.
- M.Q. Hu, Z. Sun, J.G. Hu, H. Lei, W. Jin, Simultaneous
phenol detoxification and dilute metal recovery in cyclone
electrochemical reactor, Ind. Eng. Chem. Res., 58 (2019)
12642–12649.
- E. Mostafa, S. Martens, L. Asen, J. Zečević, O. Schneider,
C. Argirusis, The influence of the ultrasound characteristics
on the electrodeposition of copper from chloride-based
electrolytes, J. Electroanal. Chem., 892 (2021) 115318,
doi: 10.1016/j.jelechem.2021.115318.
- W. Jin, P.I. Laforest, A. Luyima, W. Read, L. Navarro, M.S. Moats,
Electrolytic recovery of bismuth and copper as a powder
from acidic sulfate effluents using an emew® cell, RSC Adv.,
5 (2015) 50372–50378.
- J.A. Barragan, C. Ponce de Leon, J.R. Aleman Castro,
A. Peregrina-Lucano, F. Gomez-Zamudio,
E.R. Larios-
Duran, Copper and antimony recovery from electronic waste
by hydrometallurgical and electrochemical techniques,
ACS Omega, 5 (2020) 12355–12363.
- G. Maduraiveeran, J. Wei, Nanomaterials based electrochemical
sensor and biosensor platforms for environmental
applications, Trends Environ. Anal. Chem., 13 (2017) 10–23.
- S. Rode, C. Henninot, C. Vallières, M. Matlosz, Complexation
chemistry in copper plating from citrate baths, J. Electrochem.
Soc., 151 (2004) C405–C411.
- W. Shao, G. Pattanaik, G. Zangari, Influence of chloride anions
on the mechanism of copper electrodeposition from acidic
sulfate electrolytes, J. Electrochem. Soc., 154 (2007) D201–D207.