References

  1. Y.H. Zhang, S.L. Liu, H.H. Xie, X.L. Zeng, J.H. Li, Current status on leaching precious metals from waste printed circuit boards, Procedia Environ. Sci., 16 (2012) 560–568.
  2. H. Wang, H.L. Song, R. Yu, X. Cao, Z. Fang, X.N. Li, New process for copper migration by bioelectricity generation in soil microbial fuel cells, Environ. Sci. Pollut. Res. Int., 23 (2016) 13147–13154.
  3. V. Rai, D.B. Liu, D. Xia, Y. Jayaraman, J.-C.P. Gabriel, Electrochemical approaches for the recovery of metals from electronic waste: a critical review, Recycling, 6 (2021) 53, doi: 10.3390/recycling6030053.
  4. T. Zubala, M. Patro, P. Boguta, Variability of zinc, copper and lead contents in sludge of the municipal stormwater treatment plant, Environ. Sci. Pollut. Res. Int., 24 (2017) 17145–17152.
  5. Z.Q. Zhang, Y. Zhou, J. Zhang, S.Q. Xia, Copper(II) adsorption by the extracellular polymeric substance extracted from waste activated sludge after short-time aerobic digestion, Environ. Sci. Pollut. Res. Int., 21 (2014) 2132–2140.
  6. L.P. Wang, Y.J. Chen, Sequential precipitation of iron, copper, and zinc from wastewater for metal recovery, J. Environ. Eng., 145 (2019) 04018130, doi: 10.1061/(ASCE)EE.1943-7870.0001480.
  7. Z.L. Dong, T. Jiang, B. Xu, J.K. Yang, Y.Z. Chen, Q. Li, Y.B. Yang, Comprehensive recoveries of selenium, copper, gold, silver and lead from a copper anode slime with a clean and economical hydrometallurgical process, Chem. Eng. J., 393 (2020) 124762, doi: 10.1016/j.cej.2020.124762.
  8. G. Kavlak, T.E. Graedel, Global anthropogenic selenium cycles for 1940–2010, Resour. Conserv. Recycl., 73 (2013) 17–22.
  9. G. Kavlak, T.E. Graedel, Global anthropogenic tellurium cycles for 1940–2010, Resour. Conserv. Recycl., 76 (2013) 21–26.
  10. U. Jadhav, H. Hocheng, Hydrometallurgical recovery of metals from large printed circuit board pieces, Sci. Rep., 5 (2015) 14574, doi: 10.1038/srep14574.
  11. S. Hedrich, R. Kermer, T. Aubel, M. Martin, A. Schippers, D.B. Johnson, E. Janneck, Implementation of biological and chemical techniques to recover metals from copper-rich leach solutions, Hydrometallurgy, 179 (2018) 274–281.
  12. M.Q. Li, N. Chen, H. Shang, C.C. Ling, K. Wei, S.X. Zhao, B. Zhou, F.L. Jia, Z.H. Ai, L.Z. Zhang, An electrochemical strategy for simultaneous heavy metal complexes wastewater treatment and resource recovery, Environ. Sci. Technol., 56 (2022) 10945–10953.
  13. L.G. Zhang, Z.M. Xu, A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes, J. Cleaner Prod., 202 (2018) 1001–1025.
  14. G.Q. Liu, Y.F. Wu, A.J. Tang, D. Pan, B. Li, Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: a review, Hydrometallurgy, 197 (2020) 105460, doi: 10.1016/j.hydromet.2020.105460.
  15. J.W. Kim, A.S. Lee, S.G. Yu, J.W. Han, En masse pyrolysis of flexible printed circuit board wastes quantitatively yielding environmental resources, J. Hazard. Mater., 342 (2018) 51–57.
  16. L.L. Wang, Q. Li, Y. Li, X.Y. Sun, J.S. Li, J.Y. Shen, W.Q. Han, L.J. Wang, A novel approach for recovery of metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical method, Waste Manage. (Oxford), 71 (2018) 411–419.
  17. J. Demol, E. Ho, G. Senanayake, Sulfuric acid baking and leaching of rare earth elements, thorium and phosphate from a monazite concentrate: effect of bake temperature from 200°C to 800°C, Hydrometallurgy, 179 (2018) 254–267.
  18. J.L. Su, X. Lin, S.L. Zheng, R. Ning, W.B. Lou, W. Jin, Mass transport-enhanced electrodeposition for the efficient recovery of copper and selenium from sulfuric acid solution, Sep. Purif. Rev., 182 (2017) 160–165.
  19. W.B. Lou, W.Q. Cai, P. Li, J.L. Su, S.L. Zheng, Y. Zhang, W. Jin, Additives-assisted electrodeposition of fine spherical copper powder from sulfuric acid solution, Powder Technol., 326 (2018) 84–88.
  20. M.D. Machado, E.V. Soares, H.M. Soares, Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process, Environ. Sci. Pollut. Res. Int., 18 (2011) 1279–1285.
  21. C. Liu, T. Wu, P.C. Hsu, J. Xie, J. Zhao, K. Liu, J. Sun, J.W. Xu, J. Tang, Z.W. Ye, D.C. Lin, Y. Cui, Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode, ACS Nano, 13 (2019) 6431–6437.
  22. E. De Beni, W. Giurlani, L. Fabbri, R. Emanuele, S. Santini, C. Sarti, T. Martellini, E. Piciollo, A. Cincinelli, M. Innocenti, Graphene-based nanomaterials in the electroplating industry: a suitable choice for heavy metal removal from wastewater, Chemosphere, 292 (2022) 133448, doi: 10.1016/j.chemosphere.2021.133448.
  23. Y. Delgado, F.J. Fernandez-Morales, J. Llanos, An old technique with a promising future: recent advances in the use of electrodeposition for metal recovery, Molecules, 26 (2021) 5525, doi: 10.3390/molecules26185525.
  24. D.R. Turner, G.R. Johnson, The effect of some addition agents on the kinetics of copper electrodeposition from a sulfate solution, J. Electrochem. Soc., 190 (1962) 798–804.
  25. C.X. Ji, G. Oskam, P.C. Searson, Electrodeposition of copper on silicon from sulfate solution, J. Electrochem. Soc., 148 (2001) C746–C752.
  26. L.P. Wang, G.Q. Zhang, W.J. Guan, L. Zeng, Q. Zhou, Y. Xia, Q. Wang, Q.G. Li, Z.Y. Cao, Complete removal of trace vanadium from ammonium tungstate solutions by solvent extraction, Hydrometallurgy, 179 (2018) 268–273.
  27. D. Torres, L. Madriz, R. Vargas, B.R. Scharifker, Electrochemical formation of copper phosphide from aqueous solutions of Cu(II) and hypophosphite ions, Electrochim. Acta, 354 (2020) 136705, doi: 10.1016/j.electacta.2020.136705.
  28. T. Kekesi, M. Isshiki, Electrodeposition of copper from pure cupric chloride hydrochloric acid solutions, J. Electroanal. Chem., 27 (1997) 982–990.
  29. M.Y. Wang, X.Z. Gong, Z. Wang, Sustainable electrochemical recovery of high-purity Cu powders from multi-metal acid solution by a centrifuge electrode, J. Cleaner Prod., 204 (2018) 41–49.
  30. F.I. Lizama-Tzec, L. Canché-Canul, G. Oskam, Electrodeposition of copper into trenches from a citrate plating bath, Electrochim. Acta, 56 (2011) 9391–9396.
  31. R. Torres, G.T. Lapidus, Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions, Waste Manage. (Oxford), 60 (2017) 561–568.
  32. X.T. Yu, M.Y. Wang, X.Z. Gong, Z.C. Guo, Z. Wang, S.Q. Jiao, Self-supporting porous CoP-based films with phase-separation structure for ultrastable overall water electrolysis at large current density, Adv. Energy Mater., 34 (2018) 1802445, doi: 10.1002/aenm.201802445.
  33. B. Segura-Bailón, G.T. Lapidus, Selective recovery of copper contained in waste PCBs from cellphones with impurity inhibition in the citrate-phosphate system, Hydrometallurgy, 203 (2021) 105699, doi: 10.1016/j.hydromet.2021.105699.
  34. K. Suwannahong, J. Sripirom, C. Sirilamduan, V. Thathong, T. Kreetachart, P. Panmuang, A. Deepatana, S. Punbut, S. Wongcharee, H. Hamad, Selective chelating resin for copper removal and recovery in aqueous acidic solution generated from synthetic copper-citrate complexes from bioleaching of e-waste, Adsorpt. Sci. Technol., 2022 (2022) 1–14.
  35. S.S. Goh, M. Rafatullah, N. Ismail, M. Alam, M.R. Siddiqui, E.K. Seow, Separation of chromium(VI), copper and zinc: chemistry of transport of metal ions across supported liquid membrane, Membranes (Basel), 12 (2022) 685, doi: 10.3390/membranes12070685.
  36. J.E. Terrazas-Rodríguez, S. Gutiérrez-Granados, M.A. Alatorre- Ordaz, C. Ponce de León, F.C. Walsh, A comparison of the electrochemical recovery of palladium using a parallel flat plate flow-by reactor and a rotating cylinder electrode reactor, Electrochim. Acta, 56 (2011) 9357–9363.
  37. W. Jin, M.Q. Hu, J.G. Hu, Selective and efficient electrochemical recovery of dilute copper and tellurium from acidic chloride solutions, ACS Sustainable Chem. Eng., 6 (2018) 13378–13384.
  38. M.Q. Hu, Z. Sun, J.G. Hu, H. Lei, W. Jin, Simultaneous phenol detoxification and dilute metal recovery in cyclone electrochemical reactor, Ind. Eng. Chem. Res., 58 (2019) 12642–12649.
  39. E. Mostafa, S. Martens, L. Asen, J. Zečević, O. Schneider, C. Argirusis, The influence of the ultrasound characteristics on the electrodeposition of copper from chloride-based electrolytes, J. Electroanal. Chem., 892 (2021) 115318, doi: 10.1016/j.jelechem.2021.115318.
  40. W. Jin, P.I. Laforest, A. Luyima, W. Read, L. Navarro, M.S. Moats, Electrolytic recovery of bismuth and copper as a powder from acidic sulfate effluents using an emew® cell, RSC Adv., 5 (2015) 50372–50378.
  41. J.A. Barragan, C. Ponce de Leon, J.R. Aleman Castro, A. Peregrina-Lucano, F. Gomez-Zamudio,
    E.R. Larios- Duran, Copper and antimony recovery from electronic waste by hydrometallurgical and electrochemical techniques, ACS Omega, 5 (2020) 12355–12363.
  42. G. Maduraiveeran, J. Wei, Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications, Trends Environ. Anal. Chem., 13 (2017) 10–23.
  43. S. Rode, C. Henninot, C. Vallières, M. Matlosz, Complexation chemistry in copper plating from citrate baths, J. Electrochem. Soc., 151 (2004) C405–C411.
  44. W. Shao, G. Pattanaik, G. Zangari, Influence of chloride anions on the mechanism of copper electrodeposition from acidic sulfate electrolytes, J. Electrochem. Soc., 154 (2007) D201–D207.