References
- O. Varis, P. Vakkilainen, China’s 8 challenges to water
resources management in the first quarter of the 21st century,
Geomorphology, 41 (2001) 93–104.
- Y.S. Alnouri, L. Patrick, M.M. El-Halwagi, Accounting for central
and distributed zero liquid discharge options in interplant
water network design, J. Cleaner Prod., 171 (2018) 644–661.
- D. Liu, Q.Q. Liu, B. Zhou, H. Li, Y. Zhang, Research progress
on zero discharge and utilization of high salinity industrial
wastewater, Mod. Chem. Ind., 41 (2021) 19–22.
- Z.T. Tong, Menachem, The global rise of zero liquid discharge
for wastewater management: drivers, technologies, and future
directions, Environ. Sci. Technol., 50 (2016) 6846–6855.
- S. Azimibavil, A. Jafarian, Heat transfer evaluation and
economic characteristics of falling film brine concentrator in
zero liquid discharge processes, J. Cleaner Prod., 285 (2021)
124892, doi: 10.1016/j.jclepro.2020.124892.
- F. Mansou, S.Y. Alnouri, M.A. Hindi, F. Azizi, P. Linke,
Screening and cost assessment strategies for end-of-pipe zero
liquid discharge systems, J. Cleaner Prod., 179 (2018) 460–477.
- Y. Muhammad, L. Wontae, Zero-liquid discharge (ZLD)
technology for resource recovery from wastewater: a review,
Sci. Total Environ., 681 (2019) 551–563.
- X. Lin, C.H. Liu, Q.L. Liu, D. Song, Z. Nie, Y.F. Zhou, Q. He,
J. Ma, Research progress of membrane distillation technology
for the treatment of industrial wastewater, China Water
Supply Drain., 38 (2022) 46–55.
- W.F. He, C. Yue, D. Han, Energy saving analysis for a solution
evaporation system with high boiling point elevation based
on self-heat recuperation theory, Desalination, 355 (2015)
197–203.
- C. Yue, B. Wang, B.S. Zhu, Thermal analysis for the evaporation
concentrating process with high boiling point elevation-based
exhaust waste heat recovery, Desalination, 436 (2018) 39–47.
- J. Xu, J.X. Xie, Z. Cheng, S.Y. Zhu, B. Wang, Source
apportionment of pulping wastewater and application of
mechanical vapor recompression: environmental and economic
analyses, J. Environ. Manage., 292 (2021) 112740, doi: 10.1016/j.
jenvman.2021.112740.
- Y.S. Zhou, C.J. Shi, G.Q. Dong, Analysis of a mechanical vapor
recompression wastewater distillation system, Desalination,
353 (2014) 91–97.
- L. Liang, D. Han, R. Ma, T. Peng, Treatment of highconcentration
wastewater using double-effect mechanical
vapor recompression, Desalination, 314 (2013) 139–146.
- D. Yang, B. Leng, T. Li, M. Li, Energy saving research on multieffect
evaporation crystallization process of bittern based on
MVR and TVR heat pump technology, Am. J. Chem. Eng.,
8 (2020) 54–62.
- Y. Liu, C.L. Pei, J. Wang, Design and analysis of high boiling
point solution evaporation system, J. Proc. Eng., 17 (2017)
859–865.
- H. Jiang, Z.Y. Zhang, W.Q. Gong, Design and evaluation
of a parallel-connected double-effect mechanical vapor
recompression evaporation crystallization system,
Appl. Therm. Eng., 179 (2020) 115646,
doi: 10.1016/j.applthermaleng.2020.115646.
- M.L. Elsayed, W. Wu, L.C. Chow, High salinity seawater
boiling point elevation: experimental verification, Desalination,
504 (2021) 114955, doi: 10.1016/j.desal.2021.114955.
- B. Hu, D. Wu, J.T. Jiang, Experimental study on steam ultrahigh
temperature heat pump system, J. Eng. Thermophys.-Rus.,
42 (2021) 833–840.
- D. Wu, B. Hu, R.Z. Wang, Research status and Prospect of water
refrigerant and steam compressor, J. Chem. Eng., 68 (2017)
2959–2968.
- J.B. Shen, N.G. Tan, Z.C. Li, J.D. Zhang, Analysis of a novel
double-effect split mechanical vapor recompression systems
for wastewater concentration, Appl. Therm. Eng., 216 (2022)
119019, doi: 10.1016/j.applthermaleng.2022.119019.
- S.D. Eunice, M. Mohsen, F.G. Johann, Assessment of the
thermodynamic performance improvement of a typical
sugar mill through the integration of waste-heat recovery
technologies, Appl. Therm. Eng., 158 (2019) 113768,
doi: 10.1016/j.applthermaleng.2019.113768.
- Z.T. Si, D. Han, J.M. Gu, Y. Song, Y. Liu, Exergy analysis of
a vacuum membrane distillation system integrated with
mechanical vapor recompression for sulfuric acid waste
treatment, Appl. Therm. Eng., 178 (2020) 115516, doi: 10.1016/j.applthermaleng.2020.115516.
- L. Liang, D. Han, T. Peng, Exergy analysis of system for
ammonium sulfate wastewater treatment with mechanical
vapor recompression, CIESC J., 40 (2012) 74–78.
- S.F. Li, Z.H. Liu, Z.X. Shao, H.S. Xiao, X. Ning, Performance
study on a passive solar seawater desalination system using
multi-effect heat recovery, Appl. Energy, 213 (2018) 343–352.
- V.G. Gude, Energy storage for desalination processes powered
by renewable energy and waste heat sources, Appl. Energy,
137 (2015) 877–898.
- X.D. Zhang, D.P. Hu, Z.Y. Li, Performance analysis on a new
multi-effect distillation combined with an open absorption
heat transformer driven by waste heat, Appl. Therm. Eng.,
62 (2014) 239–244.