References

  1. O. Varis, P. Vakkilainen, China’s 8 challenges to water resources management in the first quarter of the 21st century, Geomorphology, 41 (2001) 93–104.
  2. Y.S. Alnouri, L. Patrick, M.M. El-Halwagi, Accounting for central and distributed zero liquid discharge options in interplant water network design, J. Cleaner Prod., 171 (2018) 644–661.
  3. D. Liu, Q.Q. Liu, B. Zhou, H. Li, Y. Zhang, Research progress on zero discharge and utilization of high salinity industrial wastewater, Mod. Chem. Ind., 41 (2021) 19–22.
  4. Z.T. Tong, Menachem, The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions, Environ. Sci. Technol., 50 (2016) 6846–6855.
  5. S. Azimibavil, A. Jafarian, Heat transfer evaluation and economic characteristics of falling film brine concentrator in zero liquid discharge processes, J. Cleaner Prod., 285 (2021) 124892, doi: 10.1016/j.jclepro.2020.124892.
  6. F. Mansou, S.Y. Alnouri, M.A. Hindi, F. Azizi, P. Linke, Screening and cost assessment strategies for end-of-pipe zero liquid discharge systems, J. Cleaner Prod., 179 (2018) 460–477.
  7. Y. Muhammad, L. Wontae, Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review, Sci. Total Environ., 681 (2019) 551–563.
  8. X. Lin, C.H. Liu, Q.L. Liu, D. Song, Z. Nie, Y.F. Zhou, Q. He, J. Ma, Research progress of membrane distillation technology for the treatment of industrial wastewater, China Water Supply Drain., 38 (2022) 46–55.
  9. W.F. He, C. Yue, D. Han, Energy saving analysis for a solution evaporation system with high boiling point elevation based on self-heat recuperation theory, Desalination, 355 (2015) 197–203.
  10. C. Yue, B. Wang, B.S. Zhu, Thermal analysis for the evaporation concentrating process with high boiling point elevation-based exhaust waste heat recovery, Desalination, 436 (2018) 39–47.
  11. J. Xu, J.X. Xie, Z. Cheng, S.Y. Zhu, B. Wang, Source apportionment of pulping wastewater and application of mechanical vapor recompression: environmental and economic analyses, J. Environ. Manage., 292 (2021) 112740, doi: 10.1016/j. jenvman.2021.112740.
  12. Y.S. Zhou, C.J. Shi, G.Q. Dong, Analysis of a mechanical vapor recompression wastewater distillation system, Desalination, 353 (2014) 91–97.
  13. L. Liang, D. Han, R. Ma, T. Peng, Treatment of highconcentration wastewater using double-effect mechanical vapor recompression, Desalination, 314 (2013) 139–146.
  14. D. Yang, B. Leng, T. Li, M. Li, Energy saving research on multieffect evaporation crystallization process of bittern based on MVR and TVR heat pump technology, Am. J. Chem. Eng., 8 (2020) 54–62.
  15. Y. Liu, C.L. Pei, J. Wang, Design and analysis of high boiling point solution evaporation system, J. Proc. Eng., 17 (2017) 859–865.
  16. H. Jiang, Z.Y. Zhang, W.Q. Gong, Design and evaluation of a parallel-connected double-effect mechanical vapor recompression evaporation crystallization system, Appl. Therm. Eng., 179 (2020) 115646,
    doi: 10.1016/j.applthermaleng.2020.115646.
  17. M.L. Elsayed, W. Wu, L.C. Chow, High salinity seawater boiling point elevation: experimental verification, Desalination, 504 (2021) 114955, doi: 10.1016/j.desal.2021.114955.
  18. B. Hu, D. Wu, J.T. Jiang, Experimental study on steam ultrahigh temperature heat pump system, J. Eng. Thermophys.-Rus., 42 (2021) 833–840.
  19. D. Wu, B. Hu, R.Z. Wang, Research status and Prospect of water refrigerant and steam compressor, J. Chem. Eng., 68 (2017) 2959–2968.
  20. J.B. Shen, N.G. Tan, Z.C. Li, J.D. Zhang, Analysis of a novel double-effect split mechanical vapor recompression systems for wastewater concentration, Appl. Therm. Eng., 216 (2022) 119019, doi: 10.1016/j.applthermaleng.2022.119019.
  21. S.D. Eunice, M. Mohsen, F.G. Johann, Assessment of the thermodynamic performance improvement of a typical sugar mill through the integration of waste-heat recovery technologies, Appl. Therm. Eng., 158 (2019) 113768, doi: 10.1016/j.applthermaleng.2019.113768.
  22. Z.T. Si, D. Han, J.M. Gu, Y. Song, Y. Liu, Exergy analysis of a vacuum membrane distillation system integrated with mechanical vapor recompression for sulfuric acid waste treatment, Appl. Therm. Eng., 178 (2020) 115516, doi: 10.1016/j.applthermaleng.2020.115516.
  23. L. Liang, D. Han, T. Peng, Exergy analysis of system for ammonium sulfate wastewater treatment with mechanical vapor recompression, CIESC J., 40 (2012) 74–78.
  24. S.F. Li, Z.H. Liu, Z.X. Shao, H.S. Xiao, X. Ning, Performance study on a passive solar seawater desalination system using multi-effect heat recovery, Appl. Energy, 213 (2018) 343–352.
  25. V.G. Gude, Energy storage for desalination processes powered by renewable energy and waste heat sources, Appl. Energy, 137 (2015) 877–898.
  26. X.D. Zhang, D.P. Hu, Z.Y. Li, Performance analysis on a new multi-effect distillation combined with an open absorption heat transformer driven by waste heat, Appl. Therm. Eng., 62 (2014) 239–244.