References

  1. D.Y. Tekle, A.B. Hailu, T.A. Wassie, A.G. Tesema, Effect of coffee processing plant effluent on the physicochemical properties of receiving water bodies, Jimma Zone Ethiopia, Am. J. Environ. Prot., 4 (2015) 83–90.
  2. Y. Shumete, Biological Nutrient Removal from Brewery Wastewater using a Laboratory Scale Anaerobic/Anoxic/Aerobic, Master’s Thesis (unpublished), Addis Ababa University, School of Graduate Studies, Environmental Science Program, Addis Ababa, Ethiopia, 2008, pp. 1–108.
  3. W. Genanaw, G.G. Kanno, D. Derese, M.B. Aregu, Effect of wastewater discharge from coffee processing plant on river water quality: Sidama Region, South Ethiopia, Environ. Health Insights, 15 (2021) 1–12.
  4. A. Almasi, A. Dargahi, M. Mohammad, H. Ahagh, M. Mohammadi, Efficiency of a constructed wetland in controlling organic pollutants, nitrogen, and heavy metals from sewage, J. Chem. Pharm. Sci., 9 (2016) 2924–2928.
  5. E. Alayu, S. Leta, Effectiveness of two-stage horizontal subsurface flow constructed wetland planted with Cyperus alternifolius and Typha latifolia in treating anaerobic reactor brewery effluent at different hydraulic residence times, Environ. Syst. Res., 9 (2020) 183–184.
  6. P.V.V.P. Rao, D. Beyene, The effectiveness of waste stabilization ponds in the treatment of brewery effluent, the case of Meta Abo brewery waste stabilization ponds, Sebeta, Ethiopia, J. Res. Sci. Technol., 2 (2013) 1–21.
  7. S. Ceschin, V. Sgambato, N.T.W. Ellwood, V. Zuccarello, Phytoremediation performance of Lemna communities in a constructed wetland system for wastewater treatment, Environ. Exp. Bot., 162 (2019) 67–71.
  8. S. Leta, F. Assefa, L. Gumaelius, G. Dalhammar, Biological nitrogen and organic matter removal from tannery wastewater in pilot plant operations in Ethiopia, Appl. Microbiol. Biotechnol., 66 (2004) 333–339.
  9. K. Angassa, S. Leta, W. Mulat, H. Kloos, E. Meers, Organic matter and nutrient removal performance of horizontal subsurface flow constructed wetlands planted with Phragmite karka and Vetiveria zizanioide for treating municipal wastewater, Environ. Processes, 5 (2018) 115–130.
  10. J. Bharat, G.U. Sehgal Apoorva, Research Article, Arch. Anesthesiol. Crit. Care, 4 (2018) 527–534.
  11. A. Beyene, Y. Kassahun, T. Addis, F. Assefa, A. Amsalu, W. Legesse, H. Kloos, L. Triest, The impact of traditional coffee processing on river water quality in Ethiopia and the urgency of adopting sound environmental practices, Environ. Monit. Assess., 184 (2012) 7053–7063.
  12. A.G. Woldesenbet, B. Woldeyes, B.S. Chandravanshi, Characteristics of wet coffee processing waste and its environmental impact in Ethiopia, Int. J. Res. Eng. Sci. ISSN, 2 (2014) 1–5.
  13. E.M. Ijanu, M.A. Kamaruddin, F.A. Norashiddin, Coffee processing wastewater treatment: a critical review on current treatment technologies with a proposed alternative, Appl. Water Sci., 10 (2020) 1–11.
  14. D. Dadi, E. Mengistie, G. Terefe, T. Getahun, A. Haddis, W. Birke, A. Beyene, P. Luis, B.V. der Bruggen, Assessment of the effluent quality of wet coffee processing wastewater and its influence on downstream water quality, Ecohydrol. Hydrobiol., 18 (2018) 201–211.
  15. M. Rossmann, A.T. Matos, E.C. Abreu, F.F. Silva, A.C. Borges, Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands, J. Environ. Manage., 128 (2013) 912–919.
  16. A. Cruz-Salomón, E. Ríos-Valdovinos, F. Pola-Albores, S. Lagunas-Rivera, R. Meza-Gordillo,
    V.M. Ruíz-Valdiviezo, Evaluation of hydraulic retention time on treatment of coffee processing wastewater (CPWW) in EGSB bioreactor, Sustainability, 10 (2018) 1–11.
  17. Y.K. Kebede, T. Kebede, F. Assefa, A. Amsalu, Environmental impact of coffee processing effluent on the ecological integrity of rivers found in gomma woreda of Jimma zone, Ethiopia, Ecohydrol. Hydrobiol., 10 (2010) 259–269.
  18. V.G. Tacias-Pascacio, A. Cruz-Salomón, J.H. Castañón-González, B. Torrestiana-Sanchez, Wastewater treatment of wet coffee processing in an anaerobic baffled bioreactor coupled to microfiltration system, Curr. Environ. Eng., 6 (2018) 45–54.
  19. M. Selvamurugan, P. Doraisamy, M. Maheswari, An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process, Ecol. Eng., 36 (2010) 1686–1690.
  20. A. Haddis, A. de Geyter, I. Smets, B. Van der Bruggen, Wastewater management in Ethiopian higher learning institutions: functionality, sustainability and policy context, J. Environ. Plann. Manage., 57 (2014) 369–383.
  21. M. Selvamurugan, P. Doraisamy, M. Maheswari, An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process, Ecol. Eng., 36 (2010) 1686–1690.
  22. R. Devi, V. Singh, A. Kumar, COD and BOD reduction from coffee processing wastewater using Avacado peel carbon, Bioresour. Technol., 99 (2008) 1853–1860.
  23. M. Rossmann, A.T. de Matos, E.C. Abreu, F.F. Silva, A.C. Borges, Performance of constructed wetlands in the treatment of aerated coffee processing wastewater: removal of nutrients and phenolic compounds, Ecol. Eng., 49 (2012) 264–269.
  24. M.M. Waly, T. Ahmed, Z. Abunada, S.B. Mickovski, C. Thomson, Constructed wetland for sustainable and low-cost wastewater treatment: review article, Land, 11 (2022) 1388, doi: 10.3390/land11091388.
  25. R.O.B. Makopondo, L.K. Rotich, C.G. Kamau, Potential use and challenges of constructed wetlands for wastewater treatment and conservation in game lodges and resorts in Kenya, Sci. World J., 2020 (2020) 1–9.
  26. M. Wang, D.Q. Zhang, J.W. Dong, S.K. Tan, Constructed wetlands for wastewater treatment in cold climate —
    a review, J. Environ. Sci. (China), 57 (2017) 293–311.
  27. M.E. Hallowed, Free Water Surface and Horizontal Subsurface Flow Constructed Wetlands: A Comparison of Performance in Treating Domestic Graywater, 2012, p. 81.
  28. M.H. Sayadi, R. Kargar, M.R. Doosti, H. Salehi, Hybrid constructed wetlands for wastewater treatment:
    a worldwide review, Proc. Int. Acad. Ecol. Environ. Sci., 2 (2012) 204–222.
  29. T. Engida, T. Alemu, J. Wu, D. Xu, Q. Zhou, Z. Wu, Analysis of constructed wetlands technology performance efficiency for the treatment of floriculture industry wastewater, in Ethiopia, J. Water Process Eng., 38 (2020) 101586, doi: 10.1016/j.jwpe.2020.101586.
  30. H.I. Abdel-Shafy, M.A. El-Khateeb, M. Shehata, Blackwater treatment via combination of sedimentation tank and hybrid wetlands for unrestricted reuse in Egypt, Desal. Water Treat., 71 (2017) 145–151.
  31. A. Younas, L. Kumar, M.J. Deitch, S.S. Qureshi, J. Shafiq, S.A. Naqvi1, A. Kumar, A.Q. Amjad, S. Nizamuddin, Treatment of industrial wastewater in a floating treatment wetland: a case study of Sialkot Tannery, Sustainability, 14 (2022) 12854, doi: 10.3390/su141912854.
  32. S. Wu, S. Wallace, H. Brix, P. Kuschk, W.K. Kirui, F. Masi, R. Dong, Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance, Environ. Pollut., 201 (2015) 107–120.
  33. X. Fu, X. Wu, S. Zhou, Y. Chen, M. Chen, R. Chen, A constructed wetland system for rural household sewage treatment in subtropical regions, Water (Switzerland), 10 (2018) 1–12.
  34. J. Vymaza, The historical development of constructed wetlands for wastewater treatment, Land, 11 (2022) 1–29.
  35. S.Ç. Ayaz, L. Akça, Treatment of wastewater by natural systems, Environ. Int., 26 (2001) 189–195.
  36. A.I. Stefanakis, V.A. Tsihrintzis, Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands, Chem. Eng. J., 181–182 (2012) 416–430.
  37. X. Zhang, Z. Hu, J. Zhang, J. Fan, H.H. Ngo, W. Guo, C. Zeng, Y. Wu, S. Wang, A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: performance and mechanisms, Bioresour. Technol., 250 (2017) 94–101.
  38. F. García-Ávila, J. Patiño-Chávez, F. Zhinín-Chimbo, S. Donoso-Moscoso, L. Flores del Pino, A. Avilés-Añazco, Performance of Phragmites australis and Cyperus papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands, Int. Soil Water Conserv. Res., 7 (2019) 286–296.
  39. J. Vymazal, Constructed wetlands for wastewater treatment, Ecol. Eng., 25 (2005) 475–477.
  40. M.C. Schierano, M.C. Panigatti, M.A. Maine, Horizontal subsurface flow constructed wetlands for tertiary treatment of dairy wastewater, Int. J. Phytorem., 20 (2018) 895–900.
  41. K. Angassa, S. Leta, W. Mulat, H. Kloos, E. Meers, Evaluation of pilot-scale constructed wetlands with Phragmites karka for phytoremediation of municipal wastewater and biomass production in Ethiopia, Environ. Processes, 6 (2019) 65–84.
  42. T. Abedi, A. Mojiri, Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment, Environ. Technol. Innovation, 16 (2019) 100472, doi: 10.1016/j.eti.2019.100472.
  43. I.H. Farooqi, F. Basheer, R.J. Chaudhari, Constructed Wetland System (CWS) for Wastewater Treatment, Proc. Taal 2007 World Lake Conf., 2008, pp. 1004–1009.
  44. T. Abedi, A. Mojiri, Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment, Environ. Technol. Innovation, 16 (2019) 100472, doi: 10.1016/j. eti.2019.100472.
  45. K. Angassa, S. Leta, W. Mulat, H. Kloos, E. Meers, Effect of hydraulic loading on bioremediation of municipal wastewater using constructed wetland planted with vetiver grass, Addis Ababa, Ethiopia, Nanotechnol. Environ. Eng., 4 (2019) 1–11.
  46. K. Angassa, S. Leta, W. Mulat, H. Kloos, E. Meers, Effect of hydraulic loading on bioremediation of municipal wastewater using constructed wetland planted with vetiver grass, Addis Ababa, Ethiopia, Nanotechnol. Environ. Eng., 4 (2019) 1–11.
  47. M.C. Schierano, M.C. Panigatti, M.A. Maine, Horizontal subsurface flow constructed wetlands for tertiary treatment of dairy wastewater, Int. J. Phytorem., 20 (2018) 895–900.
  48. M. Perle, S. Kimchie, G. Shelef, Some biochemical aspects of the anaerobic degradation of dairy wastewater, Water Res., 29 (1995) 1549–1554.
  49. I. Hussain, X. Lu, J. Hussain, R. Fahim, S.T. Venusto Lako, Nutrients removal efficiency assessment of constructed wetland for the rural domestic wastewater growing distinct species of vegetation, J. Environ. Anal. Toxicol., 8 (2018) 1–6.
  50. E. Rahmadyanti, A. Wiyono, N. Aritonang, Combination of phytocoagulant Moringa oleifera seeds and constructed wetland for coffee processing wastewater treatment, J. Eng. Sci. Technol., 15 (2020) 728–745.
  51. T. Engida, T. Alemu, J. Wu, D. Xu, Q. Zhou, Z. Wu, Analysis of constructed wetlands technology performance efficiency for the treatment of floriculture industry wastewater, in Ethiopia, J. Water Process Eng., 38 (2020) 101586, doi: 10.1016/j.jwpe.2020.101586.
  52. M.M. Aslam, M.A. Baig, M. Malik, I. Hassan, Constructed treatment wetlands: an option for wastewater treatment in Pakistan, Electron. J. Environ. Agric. Food Chem., 5 (2004) 739–742.
  53. A. Clesceri, L.S. Greenberg, A.E. Eaton, Standard Methods for the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater, Public Health, 1999.
  54. USEPA, Manual Treatment of Municipal Wastewaters, United States Environ. Prot. Agency, EPA/625/R-99/010 2000.
  55. T.E. Protection, T. United, N. Industrial, Ambient Environment Standards for, Esid, 2003, pp. 6–108.