References
- E. Manoli, C. Samara, Polycyclic aromatic hydrocarbons
in natural waters: sources, occurrence and analysis, TrAC,
Trends Anal. Chem., 18 (1999) 417–428.
- U.S. EPA, Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet,
National Center for Environmental Assessment, Office of
Research and Development, United States Environmental
Protection Agency, Washington D.C., 2008.
- S. Lamichhane, K.C. Bal Krishna, R. Sarukkalige, Polycyclic
aromatic hydrocarbons (PAHs) removal by sorption:
a review, Chemosphere, 148 (2016) 336–353.
- M. Kronenberg, E. Trably, N. Bernet, D. Patureau,
Biodegradation of polycyclic aromatic hydrocarbons: using
microbial bioelectrochemical systems to overcome an
impasse, Environ. Pollut., 231 (2017) 509–523.
- Y. Liu, Y. Gao, N. Yu, C. Zhang, S. Wang, L. Ma, J. Zhao,
R. Lohmann, Particulate matter, gaseous and particulate
polycyclic aromatic hydrocarbons (PAHs) in an urban traffic
tunnel of China: emission from on-road vehicles and gasparticle
partitioning, Chemosphere, 134 (2015) 52–59.
- S. Dobaradaran, T.C. Schmidt, N. Lorenzo-Parodi,
M.A. Jochmann, I. Nabipour, A. Raeisi, N. Stojanovi,
M. Mahmoodi, Cigarette butts: an overlooked source of
PAHs in the environment?, Environ. Pollut., 249 (2019) 932–939.
- S. Dobaradaran, T.C. Schmidt, N. Lorenzo-Parodi, W. Kaziur-Cegla, M.A. Jochmann, I. Nabipour, H.V. Lutze, U. Telgheder,
Polycyclic aromatic hydrocarbons (PAHs) leachates from
cigarette butts into water, Environ. Pollut., 259 (2020) 113916,
doi: 10.1016/j.envpol.2020.113916.
- C.H. Vane, A.W. Kim, D.J. Beriro, M.R. Cave, K. Knights, V. Moss-
Hayes, P.C. Nathanail, Polycyclic aromatic hydrocarbons
(PAH) and polychlorinated biphenyls (PCB) in urban soils of
Greater London, UK, Appl. Geochem., 51 (2014) 303–314.
- J. Wang, C. Wang, Q. Huang, F. Ding, X. He, Adsorption
of PAHs on the sediments from the yellow river delta as a
function of particle size and salinity, Soil Sediment Contam.,
24 (2015) 103–115.
- C.F. Chang, C.Y. Chang, K.H. Chen, W.T. Tsai, J.H. Shie,
Y.H. Chen, Adsorption of naphthalene on zeolite from
aqueous solution, J. Colloid Interface Sci., 277 (2004) 29–34.
- A. Balati, A. Shahbazi, M.M. Amini, S.H. Hashemi, Adsorption
of polycyclic aromatic hydrocarbons from wastewater by
using silica-based organic–inorganic nanohybrid material,
J. Water Reuse Desal., 5 (2015) 50–63.
- S. Mukhopadhyay, R. Dutta, P. Das, A critical review on
plant biomonitors for determination of polycyclic aromatic
hydrocarbons (PAHs) in air through solvent extraction
techniques, Chemosphere, 251 (2020) 126441, doi: 10.1016/j.chemosphere.2020.126441.
- E. Caroselli, E. Frapiccini, S. Franzellitti, Q. Palazzo, F. Prada,
M. Betti, S. Goffredo, M. Marini, Accumulation of PAHs in the
tissues and algal symbionts of a common Mediterranean coral:
skeletal storage relates to population age structure, Sci. Total
Environ., 743 (2020) 140781, doi: 10.1016/j.scitotenv.2020.140781.
- R. Akhbarizadeh, S. Dobaradaran, M.A. Torkmahalleh,
R. Saeedi, R. Aibaghi, F.F. Ghasemi, Suspended fine particulate
matter (PM2.5), microplastics (MPs), and polycyclic aromatic
hydrocarbons (PAHs) in air: their possible relationships
and health implications, Environ. Res., 192 (2021) 110339,
doi: 10.1016/j.envres.2020.110339.
- G. Goudarzi, Z. Baboli, M. Moslemnia, M. Tobekhak,
Y.T. Birgani, A. Neisi, K. Ghanemi, A.A. Babaei, B. Hashemzadeh,
K.A. Angali, S. Dobaradaran, Z. Ramezani, M.S. Hassanvand,
H. Dehdari, N. Kayedi, Assessment of incremental lifetime
cancer risks of ambient air PM10-bound PAHs in oil-rich
cities of Iran, J. Environ. Health Sci. Eng., 19 (2021) 319–330.
- A. Raeisi, H. Arfaeinia, M. Seifi, M. Shirzad-Siboni,
M. Keshtkar, S. Dobaradaran, Polycyclic aromatic
hydrocarbons (PAHs) in coastal sediments from urban and
industrial areas of Asaluyeh Harbor, Iran: distribution,
potential source and ecological risk assessment, Water Sci.
Technol., 74 (2016) 957–973.
- S. Kalteh, E. Ahmadi, H. Ghaffari, S. Yousefzadeh,
S. Dobaradaran, R. Saeedi, Occurrence of polycyclic aromatic
hydrocarbons in meat and meat products: systematic review,
meta-analysis and probabilistic human health risk, Int. J.
Environ. Anal. Chem., (2022), doi: 10.1080/03067319.2022.2087517.
- A.K. Doroodzani, S. Dobaradaran, R. Akhbarizadeh,
A. Raeisi, E. Rahmani, M. Mahmoodi, I. Nabipour, S. Keshmiri,
A.H. Darabi, G. Khamisipour, M. Mahmudpour, M. Keshtkar,
Diet, exposure to polycyclic aromatic hydrocarbons during
pregnancy, and fetal growth: a comparative study of mothers
and their fetuses in industrial and urban areas in Southwest
Iran, Environ. Pollut., 276 (2021) 116668, doi: 10.1016/j.envpol.2021.116668.
- U.S. EPA, Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet,
National Center for Environmental Assessment, Office of
Research and Development, United States Environmental
Protection Agency, Washington D.C., 2008.
- A. Rubio-Clemente, R. Torres-Palma, G.A. Peñuela, Removal
of polycyclic aromatic hydrocarbons in aqueous environment
by chemical treatments: a review, Sci. Total Environ.,
478 (2014) 201–225.
- K. Amstaetter, E. Eek, G. Cornelissen, Sorption of PAHs and
PCBs to activated carbon: coal versus biomass-based quality,
Chemosphere, 87 (2012) 573–578.
- Z. Gong, K. Alef, B.-M. Wilke, P. Li, Activated carbon adsorption
of PAHs from vegetable oil used in soil remediation,
J. Hazard. Mater., 143 (2007) 372–378.
- J. Tang, W. Zhu, R. Kookana, A. Katayama, Characteristics of
biochar and its application in remediation of contaminated
soil, J. Biosci. Bioeng., 116 (2013) 653–659.
- Y.X. Seow, Y.H. Tan, N.M. Mubrak, J. Kansedo, M. Khalid,
M.L. Ibrahim, M. Ghasemi, A review on biochar production
from different biomass wastes by recent carbonization
technologies and its sustainable applications, J. Environ. Chem.
Eng., 10 (2022) 107017, doi: 10.1016/j.jece.2021.107017.
- P. Oleszczuk, S.E. Hale, J. Lehmann, G. Cornelissen, Activated
carbon and biochar amendments decrease pore-water
concentrations of polycyclic aromatic hydrocarbons (PAHs) in
sewage sludge, Bioresour. Technol., 111 (2012) 84–91.
- L. Beesley, E. Moreno-Jimenez, J.L. Gomez-Eyles, Effects of
biochar and greenwaste compost amendments on mobility,
bioavailability and toxicity of inorganic and organic
contaminants in a multi-element polluted soil, Environ. Pollut.,
158 (2010) 2282–2287.
- S.E. Hale, K. Hanley, J. Lehmann, A. Zimmerman, G. Cornelissen,
Effects of chemical, biological, and physical aging as well as
soil addition on the sorption of pyrene to activated carbon
and biochar, Environ. Sci. Technol., 45 (2011) 10445–10453.
- W. Yang, T. Qu, M. Flury, X. Zhang, S. Gabriel, J. Shang,
B. Li, PAHs sorption to biochar colloids changes their mobility
over time, J. Hydrol., 603 (2021) 126839, doi: 10.1016/j.jhydrol.2021.126839.
- X. Wang, T. Sato, B. Xing, Competitive sorption of pyrene
on wood chars, Environ. Sci. Technol., 40 (2005) 3267–3272.
- W. Zheng, M. Guo, T. Chow, D.N. Bennett, N. Rajagopalan,
Sorption properties of greenwaste biochar for two triazine
pesticides, J. Hazard. Mater., 181 (2010) 121–126.
- M. Ahmad, S.S. Le, X. Dou, D. Mohan, J.K. Sung, J.E. Yang,
Y.S. Ok, Effects of pyrolysis temperature on soybean stoverand
peanut shell-derived biochar properties and TCE
adsorption in water, Bioresour. Technol., 2012 (118) 536–544.
- Ch. Anyika, Z.A. Majid, Z. Ibrahim, M.P. Zakaria, A. Yahya,
The impact of biochars on sorption and biodegradation
of polycyclic aromatic hydrocarbons in soils—a review,
Environ. Sci. Pollut. Res., 22 (2014) 3314–3341.
- G. Cornelissen, Ö. Gustafsson, T.D. Bucheli, M.T.O. Jonker,
A.A. Koelmans, P.C.M. van Noort, Extensive sorption of organic
compounds to black carbon, coal, and kerogen in sediments
and soils: mechanisms and consequences for distribution,
bioaccumulation, and biodegradation, Environ. Sci. Technol.,
39 (2005) 6881–6895.
- M. Sander, J.J. Pignatello, Characterization of charcoal
adsorption sites for aromatic compounds: insights drawn
from single-solute and bi-solute competitive experiments,
Environ. Sci. Technol., 39 (2005) 1606–1615.
- R.M. Allen-King, P. Grathwohl, W.P. Ball, New modeling
paradigms for the sorption of hydrophobic organic chemicals
to heterogeneous carbonaceous matter in soils, sediments,
and rocks, Adv. Water Resour., 25 (2002) 985–1016.
- M.W.I. Schmidt, A.G. Noack, Black carbon in soils and
sediments: analysis, distribution, implications, and current
challenges, Global Biogeochem. Cycles, 14 (2000) 777–793.
- M.M. Titirici, A. Thomas, S.H. Yu, J.O. Müller, M. Antonietti,
A direct synthesis of mesoporous carbons with bicontinuous
pore morphology from crude plant material by hydrothermal
carbonization, Chem. Mater., 19 (2007) 4205–4212.
- A. Gopinath, G. Divyapriya, V. Srivastava, A.R. Laiju,
P.V. Nidheesh, M. Suresh Kumar, Conversion of sewage sludge
into biochar: a potential resource in water and wastewater
treatment, Environ. Res., 194 (2021) 110656, doi: 10.1016/j.envres.2020.110656.
- K. Malińska, Biochar - a response to current environmental
issues, Eng. Prot. Environ., 15 (2012) 384–403.
- H. Lu, W. Zhang, S. Wang, L. Shuang, Y. Yang, R. Qiu,
Characterization of sewage sludge derived biochar from
different feedstocks and pyrolysis temperatures, J. Anal. Appl.
Pyrolysis, 102 (2013) 137–143.
- J. Alvarez, M. Amutio, G. Lopez, I. Barbarias, J. Bilbao,
M. Olazar, Sewage sludge valorization by flash pyrolysis
in a conical pouted bed reactor, Chem. Eng. J., 273 (2015)
173–183.
- A. Zielińska, P. Oleszczuk, Evaluation of sewage sludge
and slow pyrolyzed sewage sludge-derived biochar for
adsorption of phenanthrene and pyrene, Bioresour. Technol.,
192 (2015) 618–626.
- Z. Bis, R. Kobyłecki, M. Ścisłowska, R. Zarzycki., Biochar
– potential tool to combat climate change and drought,
Ecohydrol. Hydrobiol., 18 (2018) 441–453.
- M. Ścisłowska, R. Włodarczyk, R. Kobyłecki, Z. Bis, biochar
to improve the quality and productivity of soils, J. Ecol. Eng.,
16 (2015) 31–35.
- Directive (EU) 2020/2184 of the European Parliament and
of the Council of 16 December 2020 on the Quality of Water
Intended for Human Consumption (Recast) (Text with EEA
Relevance), 2020.
- Regulation of the Minister of Health of 7 December 2017
on the Quality of Water Intended for Human Consumption
(Journal of Laws Item 2294), 2017.
- K.T. Semple, K.J. Doick, L.Y. Wick, H. Harms, Microbial
interactions with organic contaminants in soil: definitions,
processes and measurement, Environ. Pollut., 150 (2007)
166–176.
- Z.C. Zeledon-Toruno, C. Lao-Luque, F.X. de Las Heras, M. Sole-
Sardans, Removal of PAHs from water using an immature
coal (leonardite), Chemosphere, 67 (2007) 505–512.
- Y. Hu, Y. He, X. Wang, C. Wei, Efficient adsorption of
phenanthrene by simply synthesized hydrophobic MCM-41
molecular sieves, Appl. Surf. Sci., 311 (2014) 825–830.
- H. Gupta, Removal of phenanthrene from water using
activated carbon developed from orange rind, Int. J. Sci. Res.
Environ. Sci., 3 (2015) 248–255.
- M. Smol, M. Włodarczyk-Makuła, D. Włóka, The effectiveness
adsorption of carcinogenic PAHs on mineral and on
organic sorbents, Sci. J. Higher School Labor Prot. Manage.
Katowice, 10 (2014) 5–18.
- M. Wolska, A. Sambor, M. Pawłowska, The effect of the water
pre-treatment method on the adsorption process in a surface
water treatment system, Desal. Water Treat., 199 (2020)
234–240.
- C. Valderrama, X. Gamisans, A. de las Heras, A. Farran,
J.L. Cortina, Sorption kinetics of polycyclic aromatic hydrocarbons
removal using granular activated carbon: intraparticle
diffusion coefficients, J. Hazard. Mater., 157 (2008) 386–396.
- I. Hilber, F. Blum, H.-P. Schmidt, T.D. Bucheli, Current
analytical methods to quantify PAHs in activated carbon
and vegetable carbon (E153) are not fit for purpose, Environ.
Pollut., 309 (2022) 119599, doi: 10.1016/j.envpol.2022.119599.
- A. Krzyszczak, M.P. Dybowski, M. Kończak, B. Czech, Low
bioavailability of derivatives of polycyclic aromatic hydrocarbons
in biochar obtained from different feedstock,
Environ. Res., 214 (2022) 113787, doi: 10.1016/j.envres.2022.113787.
- A. Zielińska, P. Oleszczuk, Attenuation of phenanthrene
and pyrene adsorption by sewage sludge-derived biochar
in biochar-amended soils, Environ. Sci. Pollut. Res., 23 (2016)
21822–21832.