References

  1. E. Manoli, C. Samara, Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis, TrAC, Trends Anal. Chem., 18 (1999) 417–428.
  2. U.S. EPA, Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet, National Center for Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Washington D.C., 2008.
  3. S. Lamichhane, K.C. Bal Krishna, R. Sarukkalige, Polycyclic aromatic hydrocarbons (PAHs) removal by sorption:
    a review, Chemosphere, 148 (2016) 336–353.
  4. M. Kronenberg, E. Trably, N. Bernet, D. Patureau, Biodegradation of polycyclic aromatic hydrocarbons: using microbial bioelectrochemical systems to overcome an impasse, Environ. Pollut., 231 (2017) 509–523.
  5. Y. Liu, Y. Gao, N. Yu, C. Zhang, S. Wang, L. Ma, J. Zhao, R. Lohmann, Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: emission from on-road vehicles and gasparticle partitioning, Chemosphere, 134 (2015) 52–59.
  6. S. Dobaradaran, T.C. Schmidt, N. Lorenzo-Parodi, M.A. Jochmann, I. Nabipour, A. Raeisi, N. Stojanovi, M. Mahmoodi, Cigarette butts: an overlooked source of PAHs in the environment?, Environ. Pollut., 249 (2019) 932–939.
  7. S. Dobaradaran, T.C. Schmidt, N. Lorenzo-Parodi, W. Kaziur-Cegla, M.A. Jochmann, I. Nabipour, H.V. Lutze, U. Telgheder, Polycyclic aromatic hydrocarbons (PAHs) leachates from cigarette butts into water, Environ. Pollut., 259 (2020) 113916, doi: 10.1016/j.envpol.2020.113916.
  8. C.H. Vane, A.W. Kim, D.J. Beriro, M.R. Cave, K. Knights, V. Moss- Hayes, P.C. Nathanail, Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK, Appl. Geochem., 51 (2014) 303–314.
  9. J. Wang, C. Wang, Q. Huang, F. Ding, X. He, Adsorption of PAHs on the sediments from the yellow river delta as a function of particle size and salinity, Soil Sediment Contam., 24 (2015) 103–115.
  10. C.F. Chang, C.Y. Chang, K.H. Chen, W.T. Tsai, J.H. Shie, Y.H. Chen, Adsorption of naphthalene on zeolite from aqueous solution, J. Colloid Interface Sci., 277 (2004) 29–34.
  11. A. Balati, A. Shahbazi, M.M. Amini, S.H. Hashemi, Adsorption of polycyclic aromatic hydrocarbons from wastewater by using silica-based organic–inorganic nanohybrid material, J. Water Reuse Desal., 5 (2015) 50–63.
  12. S. Mukhopadhyay, R. Dutta, P. Das, A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques, Chemosphere, 251 (2020) 126441, doi: 10.1016/j.chemosphere.2020.126441.
  13. E. Caroselli, E. Frapiccini, S. Franzellitti, Q. Palazzo, F. Prada, M. Betti, S. Goffredo, M. Marini, Accumulation of PAHs in the tissues and algal symbionts of a common Mediterranean coral: skeletal storage relates to population age structure, Sci. Total Environ., 743 (2020) 140781, doi: 10.1016/j.scitotenv.2020.140781.
  14. R. Akhbarizadeh, S. Dobaradaran, M.A. Torkmahalleh, R. Saeedi, R. Aibaghi, F.F. Ghasemi, Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications, Environ. Res., 192 (2021) 110339, doi: 10.1016/j.envres.2020.110339.
  15. G. Goudarzi, Z. Baboli, M. Moslemnia, M. Tobekhak, Y.T. Birgani, A. Neisi, K. Ghanemi, A.A. Babaei, B. Hashemzadeh, K.A. Angali, S. Dobaradaran, Z. Ramezani, M.S. Hassanvand, H. Dehdari, N. Kayedi, Assessment of incremental lifetime cancer risks of ambient air PM10-bound PAHs in oil-rich cities of Iran, J. Environ. Health Sci. Eng., 19 (2021) 319–330.
  16. A. Raeisi, H. Arfaeinia, M. Seifi, M. Shirzad-Siboni, M. Keshtkar, S. Dobaradaran, Polycyclic aromatic hydrocarbons (PAHs) in coastal sediments from urban and industrial areas of Asaluyeh Harbor, Iran: distribution, potential source and ecological risk assessment, Water Sci. Technol., 74 (2016) 957–973.
  17. S. Kalteh, E. Ahmadi, H. Ghaffari, S. Yousefzadeh, S. Dobaradaran, R. Saeedi, Occurrence of polycyclic aromatic hydrocarbons in meat and meat products: systematic review, meta-analysis and probabilistic human health risk, Int. J. Environ. Anal. Chem., (2022), doi: 10.1080/03067319.2022.2087517.
  18. A.K. Doroodzani, S. Dobaradaran, R. Akhbarizadeh, A. Raeisi, E. Rahmani, M. Mahmoodi, I. Nabipour, S. Keshmiri, A.H. Darabi, G. Khamisipour, M. Mahmudpour, M. Keshtkar, Diet, exposure to polycyclic aromatic hydrocarbons during pregnancy, and fetal growth: a comparative study of mothers and their fetuses in industrial and urban areas in Southwest Iran, Environ. Pollut., 276 (2021) 116668, doi: 10.1016/j.envpol.2021.116668.
  19. U.S. EPA, Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet, National Center for Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Washington D.C., 2008.
  20. A. Rubio-Clemente, R. Torres-Palma, G.A. Peñuela, Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review, Sci. Total Environ., 478 (2014) 201–225.
  21. K. Amstaetter, E. Eek, G. Cornelissen, Sorption of PAHs and PCBs to activated carbon: coal versus biomass-based quality, Chemosphere, 87 (2012) 573–578.
  22. Z. Gong, K. Alef, B.-M. Wilke, P. Li, Activated carbon adsorption of PAHs from vegetable oil used in soil remediation, J. Hazard. Mater., 143 (2007) 372–378.
  23. J. Tang, W. Zhu, R. Kookana, A. Katayama, Characteristics of biochar and its application in remediation of contaminated soil, J. Biosci. Bioeng., 116 (2013) 653–659.
  24. Y.X. Seow, Y.H. Tan, N.M. Mubrak, J. Kansedo, M. Khalid, M.L. Ibrahim, M. Ghasemi, A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications, J. Environ. Chem. Eng., 10 (2022) 107017, doi: 10.1016/j.jece.2021.107017.
  25. P. Oleszczuk, S.E. Hale, J. Lehmann, G. Cornelissen, Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge, Bioresour. Technol., 111 (2012) 84–91.
  26. L. Beesley, E. Moreno-Jimenez, J.L. Gomez-Eyles, Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil, Environ. Pollut., 158 (2010) 2282–2287.
  27. S.E. Hale, K. Hanley, J. Lehmann, A. Zimmerman, G. Cornelissen, Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar, Environ. Sci. Technol., 45 (2011) 10445–10453.
  28. W. Yang, T. Qu, M. Flury, X. Zhang, S. Gabriel, J. Shang, B. Li, PAHs sorption to biochar colloids changes their mobility over time, J. Hydrol., 603 (2021) 126839, doi: 10.1016/j.jhydrol.2021.126839.
  29. X. Wang, T. Sato, B. Xing, Competitive sorption of pyrene on wood chars, Environ. Sci. Technol., 40 (2005) 3267–3272.
  30. W. Zheng, M. Guo, T. Chow, D.N. Bennett, N. Rajagopalan, Sorption properties of greenwaste biochar for two triazine pesticides, J. Hazard. Mater., 181 (2010) 121–126.
  31. M. Ahmad, S.S. Le, X. Dou, D. Mohan, J.K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stoverand peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol., 2012 (118) 536–544.
  32. Ch. Anyika, Z.A. Majid, Z. Ibrahim, M.P. Zakaria, A. Yahya, The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review, Environ. Sci. Pollut. Res., 22 (2014) 3314–3341.
  33. G. Cornelissen, Ö. Gustafsson, T.D. Bucheli, M.T.O. Jonker, A.A. Koelmans, P.C.M. van Noort, Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environ. Sci. Technol., 39 (2005) 6881–6895.
  34. M. Sander, J.J. Pignatello, Characterization of charcoal adsorption sites for aromatic compounds: insights drawn from single-solute and bi-solute competitive experiments, Environ. Sci. Technol., 39 (2005) 1606–1615.
  35. R.M. Allen-King, P. Grathwohl, W.P. Ball, New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks, Adv. Water Resour., 25 (2002) 985–1016.
  36. M.W.I. Schmidt, A.G. Noack, Black carbon in soils and sediments: analysis, distribution, implications, and current challenges, Global Biogeochem. Cycles, 14 (2000) 777–793.
  37. M.M. Titirici, A. Thomas, S.H. Yu, J.O. Müller, M. Antonietti, A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization, Chem. Mater., 19 (2007) 4205–4212.
  38. A. Gopinath, G. Divyapriya, V. Srivastava, A.R. Laiju, P.V. Nidheesh, M. Suresh Kumar, Conversion of sewage sludge into biochar: a potential resource in water and wastewater treatment, Environ. Res., 194 (2021) 110656, doi: 10.1016/j.envres.2020.110656.
  39. K. Malińska, Biochar - a response to current environmental issues, Eng. Prot. Environ., 15 (2012) 384–403.
  40. H. Lu, W. Zhang, S. Wang, L. Shuang, Y. Yang, R. Qiu, Characterization of sewage sludge derived biochar from different feedstocks and pyrolysis temperatures, J. Anal. Appl. Pyrolysis, 102 (2013) 137–143.
  41. J. Alvarez, M. Amutio, G. Lopez, I. Barbarias, J. Bilbao, M. Olazar, Sewage sludge valorization by flash pyrolysis in a conical pouted bed reactor, Chem. Eng. J., 273 (2015) 173–183.
  42. A. Zielińska, P. Oleszczuk, Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene, Bioresour. Technol., 192 (2015) 618–626.
  43. Z. Bis, R. Kobyłecki, M. Ścisłowska, R. Zarzycki., Biochar – potential tool to combat climate change and drought, Ecohydrol. Hydrobiol., 18 (2018) 441–453.
  44. M. Ścisłowska, R. Włodarczyk, R. Kobyłecki, Z. Bis, biochar to improve the quality and productivity of soils, J. Ecol. Eng., 16 (2015) 31–35.
  45. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast) (Text with EEA Relevance), 2020.
  46. Regulation of the Minister of Health of 7 December 2017 on the Quality of Water Intended for Human Consumption (Journal of Laws Item 2294), 2017.
  47. K.T. Semple, K.J. Doick, L.Y. Wick, H. Harms, Microbial interactions with organic contaminants in soil: definitions, processes and measurement, Environ. Pollut., 150 (2007) 166–176.
  48. Z.C. Zeledon-Toruno, C. Lao-Luque, F.X. de Las Heras, M. Sole- Sardans, Removal of PAHs from water using an immature coal (leonardite), Chemosphere, 67 (2007) 505–512.
  49. Y. Hu, Y. He, X. Wang, C. Wei, Efficient adsorption of phenanthrene by simply synthesized hydrophobic MCM-41 molecular sieves, Appl. Surf. Sci., 311 (2014) 825–830.
  50. H. Gupta, Removal of phenanthrene from water using activated carbon developed from orange rind, Int. J. Sci. Res. Environ. Sci., 3 (2015) 248–255.
  51. M. Smol, M. Włodarczyk-Makuła, D. Włóka, The effectiveness adsorption of carcinogenic PAHs on mineral and on organic sorbents, Sci. J. Higher School Labor Prot. Manage. Katowice, 10 (2014) 5–18.
  52. M. Wolska, A. Sambor, M. Pawłowska, The effect of the water pre-treatment method on the adsorption process in a surface water treatment system, Desal. Water Treat., 199 (2020) 234–240.
  53. C. Valderrama, X. Gamisans, A. de las Heras, A. Farran, J.L. Cortina, Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: intraparticle diffusion coefficients, J. Hazard. Mater., 157 (2008) 386–396.
  54. I. Hilber, F. Blum, H.-P. Schmidt, T.D. Bucheli, Current analytical methods to quantify PAHs in activated carbon and vegetable carbon (E153) are not fit for purpose, Environ. Pollut., 309 (2022) 119599, doi: 10.1016/j.envpol.2022.119599.
  55. A. Krzyszczak, M.P. Dybowski, M. Kończak, B. Czech, Low bioavailability of derivatives of polycyclic aromatic hydrocarbons in biochar obtained from different feedstock, Environ. Res., 214 (2022) 113787, doi: 10.1016/j.envres.2022.113787.
  56. A. Zielińska, P. Oleszczuk, Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils, Environ. Sci. Pollut. Res., 23 (2016) 21822–21832.