References

  1. J. Czerwiński, A. Kłonica, J. Ozonek, Endocrine disrupting compounds (EDCs) in the aquatic environment and methods of their removal, J. Civ. Eng. Environ. Archit. XXXII, (2015) 27–42, doi: 10.7862/rb.2015.3.
  2. M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman Jr., D. Mohan, Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods, Chem. Rev., 119 (2019) 3510–3673.
  3. B.T. Company, Decolorization of Textile Wastewater by Advanced Oxidation Processes (AOPs) Under Industrial Conditions Decolorization of Textile Wastewater by Advanced Oxidation Processes (AOPs) Under Industrial Conditions Zastosowanie Metod Pogłębionego Utleniania, 2018.
  4. E. Bezak-Mazur, W. Surga, D. Adamczyk, Badania skuteczności usuwania wybranych barwników ze ścieków farbiarskich na wȩglu aktywnym regenerowanym reagentem Fentona (Research on the effectiveness of removing selected dyes from dyeing wastewater on activated carbon with regenerated Fenton’s reage, Ochr. Sr., 39 (2017) 3–9.
  5. World Health Organization - Chemical Safety: Pesticides, 2020. Available at https://www.who.int/news-room/ questions-and-answers/item/chemical-safety-pesticides
  6. European Commission - A European Green Deal Striving to be the First Climate-Neutral Continent, (n.d.). Available at https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
  7. E. Wiśniowska, K. Moraczewska-Majkut, W. Nocoń, Efficiency of microplastics removal in selected wastewater treatment plants – preliminary studies, Desal. Water Treat., 134 (2018) 316–323.
  8. A. Puckowski, W. Cwięk, K. Mioduszewska, P. Stępnowski, A. Białk-Bielińska, Sorption of pharmaceuticals on the surface of microplastics, Chemosphere, 263 (2021) 127976, doi: 10.1016/j.chemosphere.2020.127976.
  9. P. Ormaniec, J. Mikosz, Przegląd metod identyfikacji mikroplastików w ściekach komunalnych (A review of methods for identification of microplastics in municipal wastewater), (2022), doi: 10.36119/15.2022.7-8.7.
  10. I.A. Ricardo, E.A. Alberto, A.H. Silva Júnior, D.L.P. Macuvele, N. Padoin, C. Soares, H.G. Riella, M.C.V.M. Starling, A.G. Trovó, A critical review on microplastics, interaction with organic and inorganic pollutants, impacts and effectiveness of advanced oxidation processes applied for their removal from aqueous matrices, Chem. Eng. J., 424 (2021) 130282, doi: 10.1016/j.cej.2021.130282.
  11. E. Neczaj, Ultradźwiękowe wspomaganie biologicznego oczyszczania odcieków wysypiskowych (Ultrasonic Support for Biological Treatment of Landfill Effluents), Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2010.
  12. Politechnika Gdańska, Chemiczne metody oczyszczania ścieków ze składowisk - reakcja Fentona i fotochemiczna degradacja zanieczyszczeń (Chemical methods of wastewater treatment from landfills - Fenton reaction and photochemical degradation of pollutants), (2019). Available at https://chem.pg.edu.pl
  13. A.O. Oluwole, E.O. Omotola, O.S. Olatunji, Pharmaceuticals and personal care products in water and wastewater: a review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation, BMC Chem., 14 (2020) 1–29.
  14. C.H.S. Palit, Advanced Oxidation Processes as Nonconventional Environmental Engineering Techniques for Water Treatment and Groundwater Remediation, in: Handb. Adv. Approaches Towar. Pollut. Prev. Control, Elsevier, Netherlands, 2021: pp. 33–44.
  15. Y. Lee, U. von Gunten, Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical), Water Res., 44 (2010) 555–566.
  16. A. Phaniendra, D.B. Jestadi, L. Periyasamy, Free radicals: properties, sources, targets, and their implication in various diseases, Indian J. Clin. Biochem., 30 (2015) 11–26.
  17. R. Apak, A. Calokerinos, S. Gorinstein, M.A. Segundo, D.B. Hibbert, İ. Gülçin, S.D. Çekiç, K. Güçlü, M. Özyürek, S.E. Çelik, L.M. Magalhães, P. Arancibia-Avila, Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report), Pure Appl. Chem., 94 (2021), doi: 10.1515/pac-2020-0902.
  18. C.V. Rekhate, J.K. Srivastava, Recent advances in ozone-based advanced oxidation processes for treatment of wastewater – a review, Chem. Eng. J. Adv., 3 (2020) 100031, doi: 10.1016/j.ceja.2020.100031.
  19. A. Ried, J. Mielcke, A. Wieland, The potential use of ozone in municipal wastewater, Ozone Sci. Eng.: J. Int. Ozone Assoc., 31 (2009) 415–421.
  20. Ch. Peyrelasse, M. Jacob, A. Lallement, Comparison and predesign cost assessment of ozonation, membrane filtration and activated carbon for the treatment of recalcitrant organics, a conceptual study, Prepr. (Version 1) Res. Square, (2021) 1–19, doi: 10.21203/rs.3.rs-802348/v1.
  21. H. Ateş, M.E. Argun, Advanced oxidation of landfill leachate: removal of micropollutants and identification of by-products, J. Hazard. Mater., 413 (2021) 125326, doi: 10.1016/j.jhazmat.2021.125326.
  22. Q. Yan, J. Zhang, M. Xing, Cocatalytic Fenton reaction for pollutant control, Cell Rep. Phys. Sci., 1 (2020) 100149, doi: 10.1016/j.xcrp.2020.100149.
  23. F. Kastanek, M. Spacilova, P. Krystynik, M. Dlaskova, O. Solcova, Advantages and Disadvantages of Fenton Process, Encycl. Web., 2023. Available at https://encyclopedia.pub/entry/41472 (Accessed on 13 April 2023).
  24. M. Zhang, H. Dong, L. Zhao, D. Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective, Sci. Total Environ., 670 (2019) 110–121.
  25. K. Barbusiński, Fenton reaction - controversy concerning the chemistry, Ecol. Chem. Eng. S, 16 (2009) 347–358.
  26. V. Pawar, S. Gawande, An overview of the Fenton process for industrial wastewater, IOSR J. Mech. Civ. Eng. (IOSR-JMCE), (2015) 127–136.
  27. D. Krzemińska, E. Neczaj, K. Parkitna, Zastosowanie reakcji fentona do wspomagania biologicznego oczyszczania ścieków z przemysłu mleczarskiego (Application of Fenton reaction for supporting biological wastewater treatment from the dairy industry), Rocz. Ochr. Sr., 15 (2013) 2381–2397.
  28. C.A. Martínez-Huitle, M. Panizza, Electrochemical oxidation of organic pollutants for wastewater treatment, Curr. Opin. Electrochem., 11 (2018) 62–71.
  29. Next-Generation Electrochemical Technology for the Treatment of Hospital Wastewater: Electrogenerated Sulfate Radicals for Complete Destruction of Persistent Pollutants, 2014. Available at https://www.icra.cat/projects/next-generation-electrochemical-technology-treatment/78
  30. A. Tungler, E. Szabados, A.M. Hosseini, Wet Air Oxidation of Aqueous Wastes, M. Samer, Ed., Wastewater Treatment Engineering, InTechOpen, 2015. doi: 10.5772/60935
  31. Mokre utlenianie jako innowacyjna metoda utylizacji ścieków organicznych (Wet Oxidation as an Innovative Method of Organic Waste Disposal), (n.d.) https://proekojp.pl/mokreutlenianie-jako-innowacyjna-metoda-utylizacji-sciekoworganicznych/
  32. S.V. Prasad Mylapilli, S.N. Reddy, Sub and supercritical water oxidation of pharmaceutical wastewater, J. Environ. Chem. Eng., 7 (2019) 103165, doi: 10.1016/j.jece.2019.103165.
  33. Y. Li, S. Wang, Supercritical Water Oxidation for Environmentally Friendly Treatment of Organic Wastes, I. Pioro, Ed., Advanced Supercritical Fluids Technologies, InTechOpen, 2020, doi: 10.5772/intechopen.89591.
  34. S. Jallouli, A. Wali, A. Buonerba, T. Zarra, V. Belgiorno, V. Naddeo, M. Ksibi, Efficient and sustainable treatment of tannery wastewater by a sequential electrocoagulation-UV photolytic process, J. Water Process Eng., 38 (2020) 101642, doi: 10.1016/j.jwpe.2020.101642.
  35. Y. Ding, W. Jiang, B. Liang, J. Han, H. Cheng, M.R. Haider, H. Wang, W. Liu, S. Liu, A. Wang, UV photolysis as an efficient pretreatment method for antibiotics decomposition and their antibacterial activity elimination, J. Hazard. Mater., 392 (2020) 122321, doi: 10.1016/j.jhazmat.2020.122321.
  36. P.M.I. Skoczko, J. Piekutin, N. Woroniecka, Inżynieria środowiska - młodym okiem (Environmental engineering - with a young eye), Monogr. TOM 31 Ścieki i Osady Ściekowe, 2017.
  37. N. Evelin Paucar, I. Kim, H. Tanaka, C. Sato, Effect of O3 dose on the O3/UV treatment process for the removal of pharmaceuticals and personal care products in secondary effluent, ChemEngineering, 3 (2019) 53, doi: 10.3390/chemengineering3020053.
  38. J.G. Speight, Redox Transformations, 2018, doi: 10.1016/b978-0-12-804422-3.00007-9.
  39. Q. Zhao, N. Li, C. Liao, L. Tian, J. An, X. Wang, The UV/H2O2 process based on H2O2 in-situ generation for water disinfection, J. Hazard. Mater. Lett., 2 (2021) 100020, doi: 10.1016/j.hazl.2021.100020.
  40. D.B. Miklos, R. Hartl, P. Michel, K.G. Linden, J.E. Drewes, U. Hübner, UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents, Water Res., 136 (2018) 169–179.
  41. R. Zyłła, J. Sójka-Ledakowicz, K. Michalska, L. Kos, S. Ledakowicz, Effect of UV/H2O2 oxidation on fouling in textile wastewater nanofiltration, Fibres Text. East. Eur., 90 (2012) 99–104.
  42. H. Demir-Duz, L.A. Perez-Estrada, M.G. Álvarez, M.G. El-Din, S. Contreras, O3/H2O2 and UV-C light irradiation treatment of oil sands process water, Sci. Total Environ., 832 (2022) 154804, doi: 10.1016/j.scitotenv.2022.154804.
  43. T. Prostějovský, A. Kulišťáková, M. Reli, R. Žebrák, K. Kočí, Photochemical treatment (UV/O3+UV/H2O2) of waste gas emissions containing organic pollutants in pilot plant unit, Process Saf. Environ. Prot., 163 (2022) 274–282.
  44. Ch. Wang, H. Liu, Z. Sun, Heterogeneous photo-Fenton reaction catalyzed by nanosized iron oxides for water treatment, Int. J. Photoenergy, 2012 (2012) 801694, doi: 10.1155/2012/801694.
  45. L. Dąbek, A. Picheta-Oleś, B. Szeląg, J. Szulżyk-Cieplak, G. Łagód, Modeling and optimization of pollutants removal during simultaneous adsorption onto activated carbon with advanced oxidation in aqueous environment, Materials (Basel), 13 (2020) 4220, doi: 10.3390/MA13194220.
  46. J. Długosz, Fenton method and its modifications in the treatment leachate - for review, Arch. Waste Manage. Environ. Prot., 16 (2014) 33–42.
  47. B.R. Shah, U.D. Patel, Mechanistic aspects of photocatalytic degradation of Lindane by TiO2 in the presence of Oxalic acid and EDTA as hole-scavengers, J. Environ. Chem. Eng., 9 (2021) 105458, doi: 10.1016/j.jece.2021.105458.
  48. J. Fenoll, P. Hellín, P. Flores, C.M. Martínez, S. Navarro, Photocatalytic degradation of five sulfonylurea herbicides in aqueous semiconductor suspensions under natural sunlight, Chemosphere, 87 (2012) 954–961.
  49. H. Mahvi, Application of ultrasonic technology for water and wastewater treatment, Iran. J. Public Health, 38 (2009) 1–17.
  50. P. Liu, Z. Wu, A.V. Abramova, G. Cravotto, Sonochemical processes for the degradation of antibiotics in aqueous solutions: a review, Ultrason. Sonochem., 74 (2021) 105566, doi: 10.1016/j.ultsonch.2021.105566.
  51. M. Boroń, K. Pawlas, Farmaceutyki w środowisku wodnym – przegląd literatury. Pharmaceuticals in Aquatic Environment - Literature Review (Pharmaceuticals in the Aquatic Environment - Literature Review. Pharmaceuticals in Aquatic Environment - Literature Review), Probl. Hig. i Epidemiol., 96 (2015) 357–363.
  52. K. Wontorska, J. Wąsowski, Problematyka usuwania farmaceutyków w procesach oczyszczania ścieków (Problems of removing pharmaceuticals in wastewater treatment processes), Gaz, Woda I Tech. Sanit., 1 (2018) 32–38.
  53. GUS, Ochrona zdrowia w gospodarstwach domowych w 2020 r. (Health Care in Households in 2020), 2020. Available at: https://stat.gov.pl
  54. P. Medycyny, Polska w pierwszej dziesiątce krajów OECD, w których stosuje się najwięcej antybiotyków (Poland in the Top Ten OECD Countries Where the Most Antibiotics are Used), 2022. Available at https://pulsmedycyny.pl
  55. P. Sathishkumar, R.A.A. Meena, T. Palanisami, V. Ashokkumar, T. Palvannan, F.L. Gu, Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review, Sci. Total Environ., 698 (2020) 134057, doi: 10.1016/j.scitotenv.2019.134057.
  56. B. Czech, Usuwanie farmaceutyków z wód i ścieków z wykorzystaniem metod adsorpcyjnych i fotokatalitycznych (Removal of pharmaceuticals from water and wastewater using adsorption and photocatalytic methods), Nauk. Dla Gospod., 2 (2012) 443–452.
  57. Y. Praveenkumarreddy, K. Vimalkumar, B.R. Ramaswamy, V. Kumar, R.K. Singhal, H. Basu, Ch.M. Gopal, K.E. Vandana, K. Bhat, H.N. Udayashankar, K. Balakrish, Assessment of nonsteroidal anti-inflammatory drugs from selected wastewater treatment plants of Southwestern India, Emerg. Contam., 7 (2021) 43–51.
  58. N.N. Koopaei, M. Abdollahi, Health risks associated with the pharmaceuticals in wastewater, DARU, J. Pharm. Sci., 25 (2017) 1–7. doi: 10.1186/s40199-017-0176-y
  59. M. Kosiniak, R. Muszański, Analizy skuteczności usuwania farmaceutyków ze ścieków oczyszczonych z wykorzystaniem technologii ozonowania (Analyzes of the effectiveness of removing pharmaceuticals from treated wastewater using ozonation technology), 2 (2021) 46–51.
  60. D. Sinthuchai, S.K. Boontanon, N. Boontanon, Ch. Polprasert, Evaluation of removal efficiency of human antibiotics in wastewater treatment plants in Bangkok, Thailand, Water Sci. Technol., 73 (2016) 182–191.
  61. K.G. Karthikeyan, M.T. Meyer, Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA, Sci. Total Environ., 361 (2006) 196–207.
  62. I. Baranauskaite-Fedorova, J. Dvarioniene, Management of macrolide antibiotics (erythromycin, clarithromycin and azithromycin) in the environment: a case study of environmental pollution in Lithuania, Water (Switzerland), 15 (2023) 10, doi: 10.3390/w15010010.
  63. F.I. Hai, S. Yang, M.B. Asif, V. Sencadas, S. Shawkat, M. Sanderson-Smith, J. Gorman, Z.-Q. Xu, K. Yamamoto, Carbamazepine as a possible anthropogenic marker in water: occurrences, toxicological effects, regulations and removal by wastewater treatment technologies, Water (Switzerland), 10 (2018) 107, doi: 10.3390/w10020107.
  64. V.-I. Iancu, G.-L. Radu, R. Scutariu, A new analytical method for the determination of beta-blockers and one metabolite in the influents and effluents of three urban wastewater treatment plants, Anal. Methods. 11 (2019) 4668–4680.
  65. W.B.P. Rezka, Beta-Adrenergic Drugs (β-blockers) in the Environment ‒ New Methods of Removal Leki Beta- Adrenolityczne (Β-Blokery) W Środowisku ‒ Nowe Metody Eliminacji, Tech. Trans., 2015,
    doi: 10.4467/2353737XCT.15.187.4392.
  66. R. Jiang, J. Liu, B. Huang, X. Wang, T. Luan, K. Yuan, Assessment of the potential ecological risk of residual endocrine-disrupting chemicals from wastewater treatment plants, Sci. Total Environ., 714 (2020) 136689, doi: 10.1016/j.scitotenv.2020.136689.
  67. A. Mohagheghian, R. Nabizadeh, A. Mesdghinia, N. Rastkari, A.H. Mahvi, M. Alimohammadi, M. Yunesian, R. Ahmadkhaniha, S. Nazmara, Distribution of estrogenic steroids in municipal wastewater treatment plants in Tehran, Iran, J. Environ. Health Sci. Eng., 12 (2014) 97, doi: 10.1186/2052-336X-12-97.
  68. P. Bourke, D. Ziuzina, L. Han, P.J. Cullen, B.F. Gilmore, Microbiological interactions with cold plasma, J. Appl. Microbiol., 123 (2017) 308–324.
  69. S.P.S. Mathew, P. Ganguly, V. Kumaravel, J. Bartlett, Solar Light-Induced Photocatalytic Degradation of Pharmaceuticals in Wastewater Treatment, Elsevier Inc., Netherlands, 2019.
    doi: 10.1016/B978-0-12-818598-8.00004-3
  70. A. Bogdanowicz, J. Wąsowski, Efektywność usuwania farmaceutyków i ich metabolitów w procesach uzdatniania wody (Efficiency of removing pharmaceuticals and their metabolites in water treatment processes), Gaz, Woda I Tech. Sanit., 1 (2018) 29–37.
  71. V.J. Pereira, J. Galinha, M.T. Barreto Crespo, C.T. Matos, J.G. Crespo, Integration of nanofiltration, UV photolysis, and advanced oxidation processes for the removal of hormones from surface water sources, Sep. Purif. Technol., 95 (2012) 89–96.
  72. A. Kumar, M. Khan, X. Zeng, I.M.C. Lo, Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol-gel route: a magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light, Chem. Eng. J., 353 (2018) 645–656.
  73. E. Méndez, M.A. González-Fuentes, G. Rebollar-Perez, A. Méndez-Albores, E. Torres, Emerging pollutant treatments in wastewater: cases of antibiotics and hormones, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 52 (2017) 235–253.
  74. Y. Lester, D. Avisar, I. Gozlan, H. Mamane, Removal of pharmaceuticals using combination of UV/H2O2/O3 advanced oxidation proces, Water Sci. Technol., 64 (2011) 2230–2238.
  75. C.P. Katsumata, M.P.S. Parizi, A.M. Lastre-Acosta, A.C.S. Teixeira, Low pressure UV photolysis of the pharmaceutical compounds acetaminophen, atenolol, bezafibrate, diclofenac and ibuprofen, Water (Switzerland), 14 (2022) 3165, doi: 10.3390/w14193165.
  76. F. Mansouri, K. Chouchene, N. Roche, M. Ksibi, Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: state of the art and trends, Appl. Sci., 11 (2021) 6659, doi: 10.3390/app11146659.
  77. A. Kaplan, H. Mamane, Y. Lester, D. Avisar, Trace organic compound removal from wastewater reverse-osmosis concentrate by advanced oxidation processes with UV/O3/H2O2, Materials (Basel), 13 (2020) 2785, doi: 10.3390/ma13122785.
  78. R.R. Chowdhury, P. Charpentier, M.B. Ray, Photodegradation of estrone in solar irradiation, Ind. Eng. Chem. Res., 49 (2010) 6923–6930.
  79. A. Tufail, W.E. Price, F.I. Hai, A critical review on advanced oxidation processes for the removal of trace organic contaminants: a voyage from individual to integrated processes, Chemosphere, 260 (2020) 127460, doi: 10.1016/j.chemosphere.2020.127460.
  80. N. Vishnuteja Amruth, P. Chinnaiyan, N. Krishna Sridhar, R.B. Akshaya, P. Prasitha, Modelling of AOP removal of β - blocker atenolol from wastewater, Mater. Today Proc., 49 (2022) 2301–2305.
  81. O. Rodríguez-Nava, H. Ramírez-Saad, O. Loera, I. González, Evaluation of the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole) and biodegradable organic matter from synthetic wastewater by electro-oxidation coupled with a biological system, Environ. Technol. (United Kingdom), 37 (2016) 2964–2974.
  82. N. Taoufik, W. Boumya, M. Achak, M. Sillanpaa, N. Barka, Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals, J. Environ. Manage., 288 (2021) 112404, doi: 10.1016/j. jenvman.2021.112404.
  83. A.A. Werkneh, S.B. Gebru, G.H. Redae, A.G. Tsige, Removal of endocrine disrupters from the contaminated environment: public health concerns, treatment strategies and future perspectives - a review, Heliyon, 8 (2022) e09206, doi: 10.1016/j.heliyon.2022.e09206.
  84. Z. Ye, G.E.M. Schukraft, A. L’Hermitte, Y. Xiong, E. Brillas, C. Petit, I. Sirés, Mechanism and stability of a Fe-based 2D MOF during the photoelectro-Fenton treatment of organic micropollutants under UVA and visible light irradiation, Water Res., 184 (2020) 115986, doi: 10.1016/j.watres.2020.115986.
  85. A.M. Gorito, J.F.J.R. Pesqueira, N.F.F. Moreira, A.R. Ribeiro, M.F.R. Pereira, O.C. Nunes, C.M.R. Almeida,
    A.M.T. Silva, Ozone-based water treatment (O3, O3/UV, O3/H2O2) for removal of organic micropollutants, bacteria inactivation and regrowth prevention, J. Environ. Chem. Eng., 9 (2021) 105315, doi: 10.1016/j.jece.2021.105315.
  86. A. Kurt, B.K. Mert, N. Özengin, Ö. Sivrioğlu, T. Yonar, Treatment of Antibiotics in Wastewater Using Advanced Oxidation Processes (AOPs), R. Farooq, Z. Ahmad, Eds., Physico-Chemical Wastewater Treatment and Resource Recovery, InTechOpen, 2017, pp. 175–211.
  87. E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fernández- González, Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview, Water, 12 (2019) 102, doi: 10.3390/w12010102.
  88. A. Jaén-Gil, G. Buttiglieri, A. Benito, J.A. Mir-Tutusaus, R. Gonzalez-Olmos, G. Caminal, D. Barceló, M. Sarrà, S. Rodriguez-Mozaz, Combining biological processes with UV/H2O2 for metoprolol and metoprolol acid removal in hospital wastewater, Chem. Eng. J., 404 (2021) 126482, doi: 10.1016/j.cej.2020.126482.
  89. J. Perkowski, M. Szadkowska-Nicze, K. Blus, P. Wroński, Zastosowanie promieniowania ultrafioletowego do rozkładu barwników wroztworach wodnych (The use of ultraviolet radiation for the decomposition of dyes in aqueous solutions), (2012) 93–108.
  90. M. Pourgholi, R.M. Jahandizi, M.B. Miranzadeh, O.H. Beigi, S. Dehghan, Removal of dye and COD from textile wastewater using AOP (UV/O3, UV/H2O2, O3/H2O2 and UV/H2O2/O3), J. Environ. Health Sustainable Dev., 3 (2018) 630–636.
  91. L. Dąbek, E. Ozimina, A. Piechta Oleś, Badania nad usuwaniem barwnych związków organicznych ze ścieków z przemysłu włókienniczego (Research on the removal of colored organic compounds from wastewater from the textile industry), Annu. Set Environ. Prot., 15 (2013) 1164–1176.
  92. M. Thanavel, S.K. Kadam, S.P. Biradar, S.P. Govindwar, B.-H. Jeon, S.K. Sadasivam, Combined biological and advanced oxidation process for decolorization of textile dyes, SN Appl. Sci., 1 (2019) 1–16.
  93. T.G. Ambaye, K. Hagos, Photocatalytic and biological oxidation treatment of real textile wastewater, Nanotechnol. Environ. Eng., 5 (2020) 28, doi: 10.1007/s41204-020-00094-w.
  94. M. Malakootian, J. Smith, M.A. Gharaghani, H. Mahdizadeh, A. Nasiri, G. Yazdanpanah, Decoloration of textile Acid Red 18 dye by hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface, Desal. Water Treat., 182 (2020) 385–394.
  95. E. Kudlek, Identyfikacja ubocznych produktów rozkładu wybranych pestycydów w trakcie zaawansowanych procesów utleniania (Identification of by-products of decomposition of selected pesticides during advanced oxidation processes), Proc. ECOpole, 12 (2018) 10–13.
  96. M. Malakootian, A. Shahesmaeili, M. Faraji, H. Amiri, S. Silva Martinez, Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis, Process Saf. Environ. Prot., 134 (2020) 292–307.
  97. I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches, Environ. Technol. Innovation, 19 (2020) 101026, doi: 10.1016/j.eti.2020.101026.
  98. S. Akinapally, B. Dheeravath, K.K. Panga, H. Vurimindi, S. Sanaga, Treatment of pesticide intermediate industrial wastewater using hybrid methodologies, Appl. Water Sci., 11 (2021) 1–7,
    doi: 10.1007/s13201-021-01387-4.
  99. E. Brillas, Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation, J. Cleaner Prod., 290 (2021) 125841, doi: 10.1016/j.jclepro.2021.125841.
  100. A.S. Jatoi, Z. Hashmi, R. Adriyani, A. Yuniarto, S.A. Mazari, F. Akhter, N.M. Mubarak, Recent trends and future challenges of pesticide removal techniques – a comprehensive review, J. Environ. Chem. Eng., 9 (2021) 105571, doi: 10.1016/j.jece.2021.105571.
  101. M. Radović Vučić, R. Baošić, J. Mitrović, M. Petrović, N. Velinov, M. Kostić, A. Bojić, Comparison of the advanced oxidation processes in the degradation of pharmaceuticals and pesticides in simulated urban wastewater: principal component analysis and energy requirements, Process Saf. Environ. Prot., 149 (2021) 786–793.
  102. Z. Zheng, K. Zhang, C.Y. Toe, R. Amal, X. Zhang, D.T. McCarthy, A. Deletic, Stormwater herbicides removal with a solar-driven advanced oxidation process: a feasibility investigation, Water Res., 190 (2021) 116783, doi: 10.1016/j.watres.2020.116783.
  103. D. Kučić Grgić i M. Cvetnić Š. Ukić, Plastika – ekološki aspekti, 70 (2021) 450–451.
  104. A.S. Tagg, J.P. Harrison, Y. Ju-Nam, M. Sapp, E.L. Bradley, C.J. Sinclair, J.J. Ojeda, Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater, Chem. Commun., 53 (2017) 372–375.
  105. J. Chen, J. Wu, P.C. Sherrell, J. Chen, H. Wang, W. Zhang, J. Yang, How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling, Adv. Sci., 9 (2022) 1–36.
  106. T. Easton, V. Koutsos, E. Chatzisymeon, Removal of polyester fibre microplastics from wastewater using a UV/H2O2 oxidation process, J. Environ. Chem. Eng., 11 (2023) 109057, doi: 10.1016/j.jece.2022.109057.
  107. Y. Zhang, K. Shaad, D. Vollmer, C. Ma, Treatment of textile wastewater by advanced oxidation processes – a review, Global Nest J., 13 (2021) 1–22.