References
- J. Czerwiński, A. Kłonica, J. Ozonek, Endocrine disrupting
compounds (EDCs) in the aquatic environment and methods of
their removal, J. Civ. Eng. Environ. Archit. XXXII, (2015) 27–42,
doi: 10.7862/rb.2015.3.
- M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman Jr.,
D. Mohan, Pharmaceuticals of emerging concern in aquatic
systems: chemistry, occurrence, effects, and removal methods,
Chem. Rev., 119 (2019) 3510–3673.
- B.T. Company, Decolorization of Textile Wastewater by
Advanced Oxidation Processes (AOPs) Under Industrial
Conditions Decolorization of Textile Wastewater by Advanced
Oxidation Processes (AOPs) Under Industrial Conditions
Zastosowanie Metod Pogłębionego Utleniania, 2018.
- E. Bezak-Mazur, W. Surga, D. Adamczyk, Badania skuteczności
usuwania wybranych barwników ze ścieków farbiarskich
na wȩglu aktywnym regenerowanym reagentem Fentona
(Research on the effectiveness of removing selected dyes from
dyeing wastewater on activated carbon with regenerated
Fenton’s reage, Ochr. Sr., 39 (2017) 3–9.
- World Health Organization - Chemical Safety: Pesticides,
2020. Available at https://www.who.int/news-room/
questions-and-answers/item/chemical-safety-pesticides
- European Commission - A European Green Deal Striving
to be the First Climate-Neutral Continent, (n.d.). Available
at https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
- E. Wiśniowska, K. Moraczewska-Majkut, W. Nocoń, Efficiency
of microplastics removal in selected wastewater treatment
plants – preliminary studies, Desal. Water Treat., 134 (2018)
316–323.
- A. Puckowski, W. Cwięk, K. Mioduszewska, P. Stępnowski,
A. Białk-Bielińska, Sorption of pharmaceuticals on the surface
of microplastics, Chemosphere, 263 (2021) 127976, doi: 10.1016/j.chemosphere.2020.127976.
- P. Ormaniec, J. Mikosz, Przegląd metod identyfikacji
mikroplastików w ściekach komunalnych (A review of methods
for identification of microplastics in municipal wastewater),
(2022), doi: 10.36119/15.2022.7-8.7.
- I.A. Ricardo, E.A. Alberto, A.H. Silva Júnior, D.L.P. Macuvele,
N. Padoin, C. Soares, H.G. Riella, M.C.V.M. Starling,
A.G. Trovó, A critical review on microplastics, interaction with
organic and inorganic pollutants, impacts and effectiveness
of advanced oxidation processes applied for their removal
from aqueous matrices, Chem. Eng. J., 424 (2021) 130282,
doi: 10.1016/j.cej.2021.130282.
- E. Neczaj, Ultradźwiękowe wspomaganie biologicznego
oczyszczania odcieków wysypiskowych (Ultrasonic Support
for Biological Treatment of Landfill Effluents), Wydawnictwo
Politechniki Częstochowskiej, Częstochowa, 2010.
- Politechnika Gdańska, Chemiczne metody oczyszczania ścieków
ze składowisk - reakcja Fentona i fotochemiczna degradacja
zanieczyszczeń (Chemical methods of wastewater treatment
from landfills - Fenton reaction and photochemical degradation
of pollutants), (2019). Available at https://chem.pg.edu.pl
- A.O. Oluwole, E.O. Omotola, O.S. Olatunji, Pharmaceuticals
and personal care products in water and wastewater: a review
of treatment processes and use of photocatalyst immobilized
on functionalized carbon in AOP degradation, BMC Chem.,
14 (2020) 1–29.
- C.H.S. Palit, Advanced Oxidation Processes as Nonconventional
Environmental Engineering Techniques for Water Treatment
and Groundwater Remediation, in: Handb. Adv. Approaches
Towar. Pollut. Prev. Control, Elsevier, Netherlands, 2021:
pp. 33–44.
- Y. Lee, U. von Gunten, Oxidative transformation of
micropollutants during municipal wastewater treatment:
comparison of kinetic aspects of selective (chlorine, chlorine
dioxide, ferrate VI, and ozone) and non-selective oxidants
(hydroxyl radical), Water Res., 44 (2010) 555–566.
- A. Phaniendra, D.B. Jestadi, L. Periyasamy, Free radicals:
properties, sources, targets, and their implication in various
diseases, Indian J. Clin. Biochem., 30 (2015) 11–26.
- R. Apak, A. Calokerinos, S. Gorinstein, M.A. Segundo,
D.B. Hibbert, İ. Gülçin, S.D. Çekiç, K. Güçlü, M. Özyürek,
S.E. Çelik, L.M. Magalhães, P. Arancibia-Avila, Methods to
evaluate the scavenging activity of antioxidants toward reactive
oxygen and nitrogen species (IUPAC Technical Report),
Pure Appl. Chem., 94 (2021), doi: 10.1515/pac-2020-0902.
- C.V. Rekhate, J.K. Srivastava, Recent advances in ozone-based
advanced oxidation processes for treatment of wastewater –
a review, Chem. Eng. J. Adv., 3 (2020) 100031, doi: 10.1016/j.ceja.2020.100031.
- A. Ried, J. Mielcke, A. Wieland, The potential use of ozone in
municipal wastewater, Ozone Sci. Eng.: J. Int. Ozone Assoc.,
31 (2009) 415–421.
- Ch. Peyrelasse, M. Jacob, A. Lallement, Comparison and
predesign cost assessment of ozonation, membrane filtration
and activated carbon for the treatment of recalcitrant organics,
a conceptual study, Prepr. (Version 1) Res. Square, (2021) 1–19,
doi: 10.21203/rs.3.rs-802348/v1.
- H. Ateş, M.E. Argun, Advanced oxidation of landfill
leachate: removal of micropollutants and identification of
by-products, J. Hazard. Mater., 413 (2021) 125326, doi: 10.1016/j.jhazmat.2021.125326.
- Q. Yan, J. Zhang, M. Xing, Cocatalytic Fenton reaction for
pollutant control, Cell Rep. Phys. Sci., 1 (2020) 100149,
doi: 10.1016/j.xcrp.2020.100149.
- F. Kastanek, M. Spacilova, P. Krystynik, M. Dlaskova, O. Solcova,
Advantages and Disadvantages of Fenton Process, Encycl.
Web., 2023. Available at https://encyclopedia.pub/entry/41472
(Accessed on 13 April 2023).
- M. Zhang, H. Dong, L. Zhao, D. Wang, D. Meng, A review
on Fenton process for organic wastewater treatment based
on optimization perspective, Sci. Total Environ., 670 (2019)
110–121.
- K. Barbusiński, Fenton reaction - controversy concerning the
chemistry, Ecol. Chem. Eng. S, 16 (2009) 347–358.
- V. Pawar, S. Gawande, An overview of the Fenton process for
industrial wastewater, IOSR J. Mech. Civ. Eng. (IOSR-JMCE),
(2015) 127–136.
- D. Krzemińska, E. Neczaj, K. Parkitna, Zastosowanie reakcji
fentona do wspomagania biologicznego oczyszczania ścieków
z przemysłu mleczarskiego (Application of Fenton reaction
for supporting biological wastewater treatment from the
dairy industry), Rocz. Ochr. Sr., 15 (2013) 2381–2397.
- C.A. Martínez-Huitle, M. Panizza, Electrochemical oxidation
of organic pollutants for wastewater treatment, Curr. Opin.
Electrochem., 11 (2018) 62–71.
- Next-Generation Electrochemical Technology for the
Treatment of Hospital Wastewater: Electrogenerated
Sulfate Radicals for Complete Destruction of Persistent
Pollutants, 2014. Available at https://www.icra.cat/projects/next-generation-electrochemical-technology-treatment/78
- A. Tungler, E. Szabados, A.M. Hosseini, Wet Air Oxidation
of Aqueous Wastes, M. Samer, Ed., Wastewater Treatment
Engineering, InTechOpen, 2015. doi: 10.5772/60935
- Mokre utlenianie jako innowacyjna metoda utylizacji ścieków
organicznych (Wet Oxidation as an Innovative Method of
Organic Waste Disposal), (n.d.) https://proekojp.pl/mokreutlenianie-jako-innowacyjna-metoda-utylizacji-sciekoworganicznych/
- S.V. Prasad Mylapilli, S.N. Reddy, Sub and supercritical water
oxidation of pharmaceutical wastewater, J. Environ. Chem.
Eng., 7 (2019) 103165, doi: 10.1016/j.jece.2019.103165.
- Y. Li, S. Wang, Supercritical Water Oxidation for Environmentally
Friendly Treatment of Organic Wastes, I. Pioro, Ed.,
Advanced Supercritical Fluids Technologies, InTechOpen, 2020,
doi: 10.5772/intechopen.89591.
- S. Jallouli, A. Wali, A. Buonerba, T. Zarra, V. Belgiorno,
V. Naddeo, M. Ksibi, Efficient and sustainable treatment of
tannery wastewater by a sequential electrocoagulation-UV
photolytic process, J. Water Process Eng., 38 (2020) 101642,
doi: 10.1016/j.jwpe.2020.101642.
- Y. Ding, W. Jiang, B. Liang, J. Han, H. Cheng, M.R. Haider,
H. Wang, W. Liu, S. Liu, A. Wang, UV photolysis as an efficient
pretreatment method for antibiotics decomposition and their
antibacterial activity elimination, J. Hazard. Mater., 392 (2020)
122321, doi: 10.1016/j.jhazmat.2020.122321.
- P.M.I. Skoczko, J. Piekutin, N. Woroniecka, Inżynieria
środowiska - młodym okiem (Environmental engineering -
with a young eye), Monogr. TOM 31 Ścieki i Osady Ściekowe,
2017.
- N. Evelin Paucar, I. Kim, H. Tanaka, C. Sato, Effect of O3
dose on the O3/UV treatment process for the removal of
pharmaceuticals and personal care products in secondary
effluent, ChemEngineering, 3 (2019) 53, doi: 10.3390/chemengineering3020053.
- J.G. Speight, Redox Transformations, 2018, doi: 10.1016/b978-0-12-804422-3.00007-9.
- Q. Zhao, N. Li, C. Liao, L. Tian, J. An, X. Wang, The UV/H2O2
process based on H2O2 in-situ generation for water disinfection,
J. Hazard. Mater. Lett., 2 (2021) 100020, doi: 10.1016/j.hazl.2021.100020.
- D.B. Miklos, R. Hartl, P. Michel, K.G. Linden, J.E. Drewes,
U. Hübner, UV/H2O2 process stability and pilot-scale validation
for trace organic chemical removal from wastewater
treatment plant effluents, Water Res., 136 (2018) 169–179.
- R. Zyłła, J. Sójka-Ledakowicz, K. Michalska, L. Kos,
S. Ledakowicz, Effect of UV/H2O2 oxidation on fouling in
textile wastewater nanofiltration, Fibres Text. East. Eur.,
90 (2012) 99–104.
- H. Demir-Duz, L.A. Perez-Estrada, M.G. Álvarez, M.G. El-Din,
S. Contreras, O3/H2O2 and UV-C light irradiation treatment of
oil sands process water, Sci. Total Environ., 832 (2022) 154804,
doi: 10.1016/j.scitotenv.2022.154804.
- T. Prostějovský, A. Kulišťáková, M. Reli, R. Žebrák, K. Kočí,
Photochemical treatment (UV/O3+UV/H2O2) of waste gas
emissions containing organic pollutants in pilot plant unit,
Process Saf. Environ. Prot., 163 (2022) 274–282.
- Ch. Wang, H. Liu, Z. Sun, Heterogeneous photo-Fenton reaction
catalyzed by nanosized iron oxides for water treatment, Int. J.
Photoenergy, 2012 (2012) 801694, doi: 10.1155/2012/801694.
- L. Dąbek, A. Picheta-Oleś, B. Szeląg, J. Szulżyk-Cieplak,
G. Łagód, Modeling and optimization of pollutants removal
during simultaneous adsorption onto activated carbon with
advanced oxidation in aqueous environment, Materials (Basel),
13 (2020) 4220, doi: 10.3390/MA13194220.
- J. Długosz, Fenton method and its modifications in the
treatment leachate - for review, Arch. Waste Manage. Environ.
Prot., 16 (2014) 33–42.
- B.R. Shah, U.D. Patel, Mechanistic aspects of photocatalytic
degradation of Lindane by TiO2 in the presence of Oxalic acid
and EDTA as hole-scavengers, J. Environ. Chem. Eng., 9 (2021)
105458, doi: 10.1016/j.jece.2021.105458.
- J. Fenoll, P. Hellín, P. Flores, C.M. Martínez, S. Navarro,
Photocatalytic degradation of five sulfonylurea herbicides in
aqueous semiconductor suspensions under natural sunlight,
Chemosphere, 87 (2012) 954–961.
- H. Mahvi, Application of ultrasonic technology for water and
wastewater treatment, Iran. J. Public Health, 38 (2009) 1–17.
- P. Liu, Z. Wu, A.V. Abramova, G. Cravotto, Sonochemical
processes for the degradation of antibiotics in aqueous
solutions: a review, Ultrason. Sonochem., 74 (2021) 105566,
doi: 10.1016/j.ultsonch.2021.105566.
- M. Boroń, K. Pawlas, Farmaceutyki w środowisku wodnym –
przegląd literatury. Pharmaceuticals in Aquatic Environment
- Literature Review (Pharmaceuticals in the Aquatic
Environment - Literature Review. Pharmaceuticals in Aquatic
Environment - Literature Review), Probl. Hig. i Epidemiol.,
96 (2015) 357–363.
- K. Wontorska, J. Wąsowski, Problematyka usuwania
farmaceutyków w procesach oczyszczania ścieków (Problems
of removing pharmaceuticals in wastewater treatment
processes), Gaz, Woda I Tech. Sanit., 1 (2018) 32–38.
- GUS, Ochrona zdrowia w gospodarstwach domowych
w 2020 r. (Health Care in Households in 2020), 2020.
Available at: https://stat.gov.pl
- P. Medycyny, Polska w pierwszej dziesiątce krajów OECD,
w których stosuje się najwięcej antybiotyków (Poland in the
Top Ten OECD Countries Where the Most Antibiotics are
Used), 2022. Available at https://pulsmedycyny.pl
- P. Sathishkumar, R.A.A. Meena, T. Palanisami, V. Ashokkumar,
T. Palvannan, F.L. Gu, Occurrence, interactive effects and
ecological risk of diclofenac in environmental compartments
and biota - a review, Sci. Total Environ., 698 (2020) 134057,
doi: 10.1016/j.scitotenv.2019.134057.
- B. Czech, Usuwanie farmaceutyków z wód i ścieków
z wykorzystaniem metod adsorpcyjnych i fotokatalitycznych
(Removal of pharmaceuticals from water and wastewater using
adsorption and photocatalytic methods), Nauk. Dla Gospod.,
2 (2012) 443–452.
- Y. Praveenkumarreddy, K. Vimalkumar, B.R. Ramaswamy,
V. Kumar, R.K. Singhal, H. Basu, Ch.M. Gopal, K.E. Vandana,
K. Bhat, H.N. Udayashankar, K. Balakrish, Assessment of nonsteroidal
anti-inflammatory drugs from selected wastewater
treatment plants of Southwestern India, Emerg. Contam.,
7 (2021) 43–51.
- N.N. Koopaei, M. Abdollahi, Health risks associated with the
pharmaceuticals in wastewater, DARU, J. Pharm. Sci., 25 (2017)
1–7. doi: 10.1186/s40199-017-0176-y
- M. Kosiniak, R. Muszański, Analizy skuteczności usuwania
farmaceutyków ze ścieków oczyszczonych z wykorzystaniem
technologii ozonowania (Analyzes of the effectiveness of
removing pharmaceuticals from treated wastewater using
ozonation technology), 2 (2021) 46–51.
- D. Sinthuchai, S.K. Boontanon, N. Boontanon, Ch. Polprasert,
Evaluation of removal efficiency of human antibiotics in
wastewater treatment plants in Bangkok, Thailand, Water Sci.
Technol., 73 (2016) 182–191.
- K.G. Karthikeyan, M.T. Meyer, Occurrence of antibiotics in
wastewater treatment facilities in Wisconsin, USA, Sci. Total
Environ., 361 (2006) 196–207.
- I. Baranauskaite-Fedorova, J. Dvarioniene, Management
of macrolide antibiotics (erythromycin, clarithromycin
and azithromycin) in the environment: a case study of
environmental pollution in Lithuania, Water (Switzerland),
15 (2023) 10, doi: 10.3390/w15010010.
- F.I. Hai, S. Yang, M.B. Asif, V. Sencadas, S. Shawkat,
M. Sanderson-Smith, J. Gorman, Z.-Q. Xu, K. Yamamoto,
Carbamazepine as a possible anthropogenic marker in water:
occurrences, toxicological effects, regulations and removal
by wastewater treatment technologies, Water (Switzerland),
10 (2018) 107, doi: 10.3390/w10020107.
- V.-I. Iancu, G.-L. Radu, R. Scutariu, A new analytical method
for the determination of beta-blockers and one metabolite
in the influents and effluents of three urban wastewater
treatment plants, Anal. Methods. 11 (2019) 4668–4680.
- W.B.P. Rezka, Beta-Adrenergic Drugs (β-blockers) in the
Environment ‒ New Methods of Removal Leki Beta-
Adrenolityczne (Β-Blokery) W Środowisku ‒ Nowe
Metody Eliminacji, Tech. Trans., 2015,
doi: 10.4467/2353737XCT.15.187.4392.
- R. Jiang, J. Liu, B. Huang, X. Wang, T. Luan, K. Yuan,
Assessment of the potential ecological risk of residual
endocrine-disrupting chemicals from wastewater treatment
plants, Sci. Total Environ., 714 (2020) 136689, doi: 10.1016/j.scitotenv.2020.136689.
- A. Mohagheghian, R. Nabizadeh, A. Mesdghinia, N. Rastkari,
A.H. Mahvi, M. Alimohammadi, M. Yunesian, R. Ahmadkhaniha,
S. Nazmara, Distribution of estrogenic steroids in municipal
wastewater treatment plants in Tehran, Iran, J. Environ. Health
Sci. Eng., 12 (2014) 97, doi: 10.1186/2052-336X-12-97.
- P. Bourke, D. Ziuzina, L. Han, P.J. Cullen, B.F. Gilmore,
Microbiological interactions with cold plasma, J. Appl.
Microbiol., 123 (2017) 308–324.
- S.P.S. Mathew, P. Ganguly, V. Kumaravel, J. Bartlett, Solar
Light-Induced Photocatalytic Degradation of Pharmaceuticals
in Wastewater Treatment, Elsevier Inc., Netherlands, 2019.
doi: 10.1016/B978-0-12-818598-8.00004-3
- A. Bogdanowicz, J. Wąsowski, Efektywność usuwania
farmaceutyków i ich metabolitów w procesach uzdatniania
wody (Efficiency of removing pharmaceuticals and their
metabolites in water treatment processes), Gaz, Woda I Tech.
Sanit., 1 (2018) 29–37.
- V.J. Pereira, J. Galinha, M.T. Barreto Crespo, C.T. Matos,
J.G. Crespo, Integration of nanofiltration, UV photolysis, and
advanced oxidation processes for the removal of hormones
from surface water sources, Sep. Purif. Technol., 95 (2012)
89–96.
- A. Kumar, M. Khan, X. Zeng, I.M.C. Lo, Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol-gel route: a magnetically
recyclable direct contact Z-scheme nanophotocatalyst for
enhanced photocatalytic removal of ibuprofen from real
sewage effluent under visible light, Chem. Eng. J., 353 (2018)
645–656.
- E. Méndez, M.A. González-Fuentes, G. Rebollar-Perez,
A. Méndez-Albores, E. Torres, Emerging pollutant treatments
in wastewater: cases of antibiotics and hormones, J. Environ.
Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 52 (2017)
235–253.
- Y. Lester, D. Avisar, I. Gozlan, H. Mamane, Removal of
pharmaceuticals using combination of UV/H2O2/O3 advanced
oxidation proces, Water Sci. Technol., 64 (2011) 2230–2238.
- C.P. Katsumata, M.P.S. Parizi, A.M. Lastre-Acosta,
A.C.S. Teixeira, Low pressure UV photolysis of the
pharmaceutical compounds acetaminophen, atenolol,
bezafibrate, diclofenac and ibuprofen, Water (Switzerland),
14 (2022) 3165, doi: 10.3390/w14193165.
- F. Mansouri, K. Chouchene, N. Roche, M. Ksibi, Removal of
pharmaceuticals from water by adsorption and advanced
oxidation processes: state of the art and trends, Appl. Sci.,
11 (2021) 6659, doi: 10.3390/app11146659.
- A. Kaplan, H. Mamane, Y. Lester, D. Avisar, Trace organic
compound removal from wastewater reverse-osmosis concentrate
by advanced oxidation processes with UV/O3/H2O2,
Materials (Basel), 13 (2020) 2785, doi: 10.3390/ma13122785.
- R.R. Chowdhury, P. Charpentier, M.B. Ray, Photodegradation
of estrone in solar irradiation, Ind. Eng. Chem. Res., 49 (2010)
6923–6930.
- A. Tufail, W.E. Price, F.I. Hai, A critical review on advanced
oxidation processes for the removal of trace organic
contaminants: a voyage from individual to integrated
processes, Chemosphere, 260 (2020) 127460, doi: 10.1016/j.chemosphere.2020.127460.
- N. Vishnuteja Amruth, P. Chinnaiyan, N. Krishna Sridhar,
R.B. Akshaya, P. Prasitha, Modelling of AOP removal of
β - blocker atenolol from wastewater, Mater. Today Proc.,
49 (2022) 2301–2305.
- O. Rodríguez-Nava, H. Ramírez-Saad, O. Loera, I. González,
Evaluation of the simultaneous removal of recalcitrant drugs
(bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole)
and biodegradable organic matter from synthetic wastewater
by electro-oxidation coupled with a biological system,
Environ. Technol. (United Kingdom), 37 (2016) 2964–2974.
- N. Taoufik, W. Boumya, M. Achak, M. Sillanpaa, N. Barka,
Comparative overview of advanced oxidation processes
and biological approaches for the removal pharmaceuticals,
J. Environ. Manage., 288 (2021) 112404, doi: 10.1016/j.
jenvman.2021.112404.
- A.A. Werkneh, S.B. Gebru, G.H. Redae, A.G. Tsige, Removal
of endocrine disrupters from the contaminated environment:
public health concerns, treatment strategies and future
perspectives - a review, Heliyon, 8 (2022) e09206, doi: 10.1016/j.heliyon.2022.e09206.
- Z. Ye, G.E.M. Schukraft, A. L’Hermitte, Y. Xiong, E. Brillas,
C. Petit, I. Sirés, Mechanism and stability of a Fe-based 2D
MOF during the photoelectro-Fenton treatment of organic
micropollutants under UVA and visible light irradiation, Water
Res., 184 (2020) 115986, doi: 10.1016/j.watres.2020.115986.
- A.M. Gorito, J.F.J.R. Pesqueira, N.F.F. Moreira, A.R. Ribeiro,
M.F.R. Pereira, O.C. Nunes, C.M.R. Almeida,
A.M.T. Silva,
Ozone-based water treatment (O3, O3/UV, O3/H2O2) for
removal of organic micropollutants, bacteria inactivation and
regrowth prevention, J. Environ. Chem. Eng., 9 (2021) 105315,
doi: 10.1016/j.jece.2021.105315.
- A. Kurt, B.K. Mert, N. Özengin, Ö. Sivrioğlu, T. Yonar, Treatment
of Antibiotics in Wastewater Using Advanced Oxidation
Processes (AOPs), R. Farooq, Z. Ahmad, Eds., Physico-Chemical
Wastewater Treatment and Resource Recovery, InTechOpen,
2017, pp. 175–211.
- E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fernández-
González, Advanced Oxidation Processes for the Removal of
Antibiotics from Water. An Overview, Water, 12 (2019) 102,
doi: 10.3390/w12010102.
- A. Jaén-Gil, G. Buttiglieri, A. Benito, J.A. Mir-Tutusaus,
R. Gonzalez-Olmos, G. Caminal, D. Barceló, M. Sarrà,
S. Rodriguez-Mozaz, Combining biological processes with UV/H2O2 for metoprolol and metoprolol acid removal in hospital
wastewater, Chem. Eng. J., 404 (2021) 126482, doi: 10.1016/j.cej.2020.126482.
- J. Perkowski, M. Szadkowska-Nicze, K. Blus, P. Wroński,
Zastosowanie promieniowania ultrafioletowego do rozkładu
barwników wroztworach wodnych (The use of ultraviolet
radiation for the decomposition of dyes in aqueous solutions),
(2012) 93–108.
- M. Pourgholi, R.M. Jahandizi, M.B. Miranzadeh, O.H. Beigi,
S. Dehghan, Removal of dye and COD from textile wastewater
using AOP (UV/O3, UV/H2O2, O3/H2O2 and UV/H2O2/O3),
J. Environ. Health Sustainable Dev., 3 (2018) 630–636.
- L. Dąbek, E. Ozimina, A. Piechta Oleś, Badania nad usuwaniem
barwnych związków organicznych ze ścieków z przemysłu
włókienniczego (Research on the removal of colored organic
compounds from wastewater from the textile industry),
Annu. Set Environ. Prot., 15 (2013) 1164–1176.
- M. Thanavel, S.K. Kadam, S.P. Biradar, S.P. Govindwar,
B.-H. Jeon, S.K. Sadasivam, Combined biological and
advanced oxidation process for decolorization of textile dyes,
SN Appl. Sci., 1 (2019) 1–16.
- T.G. Ambaye, K. Hagos, Photocatalytic and biological oxidation
treatment of real textile wastewater, Nanotechnol. Environ.
Eng., 5 (2020) 28, doi: 10.1007/s41204-020-00094-w.
- M. Malakootian, J. Smith, M.A. Gharaghani, H. Mahdizadeh,
A. Nasiri, G. Yazdanpanah, Decoloration of textile Acid Red
18 dye by hybrid UV/COP advanced oxidation process using
ZnO as a catalyst immobilized on a stone surface, Desal. Water
Treat., 182 (2020) 385–394.
- E. Kudlek, Identyfikacja ubocznych produktów rozkładu
wybranych pestycydów w trakcie zaawansowanych procesów
utleniania (Identification of by-products of decomposition
of selected pesticides during advanced oxidation processes),
Proc. ECOpole, 12 (2018) 10–13.
- M. Malakootian, A. Shahesmaeili, M. Faraji, H. Amiri, S. Silva
Martinez, Advanced oxidation processes for the removal of
organophosphorus pesticides in aqueous matrices: a systematic
review and meta-analysis, Process Saf. Environ. Prot.,
134 (2020) 292–307.
- I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides
from water and wastewater: chemical, physical and biological
treatment approaches, Environ. Technol. Innovation, 19 (2020)
101026, doi: 10.1016/j.eti.2020.101026.
- S. Akinapally, B. Dheeravath, K.K. Panga, H. Vurimindi,
S. Sanaga, Treatment of pesticide intermediate industrial
wastewater using hybrid methodologies, Appl. Water Sci.,
11 (2021) 1–7,
doi: 10.1007/s13201-021-01387-4.
- E. Brillas, Recent development of electrochemical advanced
oxidation of herbicides. A review on its application to
wastewater treatment and soil remediation, J. Cleaner Prod.,
290 (2021) 125841, doi: 10.1016/j.jclepro.2021.125841.
- A.S. Jatoi, Z. Hashmi, R. Adriyani, A. Yuniarto, S.A. Mazari,
F. Akhter, N.M. Mubarak, Recent trends and future challenges
of pesticide removal techniques – a comprehensive review,
J. Environ. Chem. Eng., 9 (2021) 105571, doi: 10.1016/j.jece.2021.105571.
- M. Radović Vučić, R. Baošić, J. Mitrović, M. Petrović,
N. Velinov, M. Kostić, A. Bojić, Comparison of the advanced
oxidation processes in the degradation of pharmaceuticals
and pesticides in simulated urban wastewater: principal
component analysis and energy requirements, Process Saf.
Environ. Prot., 149 (2021) 786–793.
- Z. Zheng, K. Zhang, C.Y. Toe, R. Amal, X. Zhang,
D.T. McCarthy, A. Deletic, Stormwater herbicides removal
with a solar-driven advanced oxidation process: a feasibility
investigation, Water Res., 190 (2021) 116783, doi: 10.1016/j.watres.2020.116783.
- D. Kučić Grgić i M. Cvetnić Š. Ukić, Plastika – ekološki aspekti,
70 (2021) 450–451.
- A.S. Tagg, J.P. Harrison, Y. Ju-Nam, M. Sapp, E.L. Bradley,
C.J. Sinclair, J.J. Ojeda, Fenton’s reagent for the rapid
and efficient isolation of microplastics from wastewater,
Chem. Commun., 53 (2017) 372–375.
- J. Chen, J. Wu, P.C. Sherrell, J. Chen, H. Wang, W. Zhang,
J. Yang, How to build a microplastics-free environment:
strategies for microplastics degradation and plastics recycling,
Adv. Sci., 9 (2022) 1–36.
- T. Easton, V. Koutsos, E. Chatzisymeon, Removal of polyester
fibre microplastics from wastewater using a UV/H2O2
oxidation process, J. Environ. Chem. Eng., 11 (2023) 109057,
doi: 10.1016/j.jece.2022.109057.
- Y. Zhang, K. Shaad, D. Vollmer, C. Ma, Treatment of textile
wastewater by advanced oxidation processes – a review,
Global Nest J., 13 (2021) 1–22.