References

  1. A. Porvali, M. Aaltonen, S. Ojanen, O. Velazquez-Martinez, E. Eronen, F. Liu, B.P. Wilson, R. Serna-Guerrero, M. Lundström, Mechanical and hydrometallurgical processes in HCl media for the recycling of valuable metals from Li-ion battery waste, Resour. Conserv. Recycl., 142 (2019) 257–266.
  2. S.-j. Gao, W.-f. Liu, D.-j. Fu, X.-g. Liu, Research progress on recovering the components of spent Li-ion batteries, New Carbon Mater., 37 (2022) 435–460.
  3. C. Peng, J. Hamuyuni, B.P. Wilson, M. Lundström, Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system, Waste Manage., 76 (2018) 582–590.
  4. J. Wang, Y. Zhang, L. Yu, K. Cui, T. Fu, H. Mao, Effective separation and recovery of valuable metals from waste Ni-based batteries: a comprehensive review, Chem. Eng. J., 430 (2022) 135767, doi: 10.1016/j.cej.2022.135767.
  5. W. Mrozik, M.A. Rajaeifar, O. Heidrich, P. Christensen, Environmental impacts, pollution sources and pathways of spent lithium-ion batteries, Energy Environ. Sci., 14 (2021) 6099–6121.
  6. G. Mishra, R. Jha, A. Meshram, K.K. Singh, A review on recycling of lithium-ion batteries to recover critical metals, J. Environ. Chem. Eng., 10 (2022) 108534, doi: 10.1016/j.jece.2022.108534.
  7. A. Pražanová, V. Knap, D.-I. Stroe, Literature review, recycling of lithium-ion batteries from electric vehicles, Part I: recycling technology, Energies, 15 (2022) 1086, doi: 10.3390/en15031086.
  8. O. Velázquez-Martínez, J. Valio, A. Santasalo-Aarnio, M. Reuter, R. Serna-Guerrero, A critical review of lithium-ion battery recycling processes from a circular economy perspective, Batteries, 5 (2019) 68, doi: 10.3390/batteries5040068.
  9. M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, Y. Wang, Recycling end-of-life electric vehicle lithium-ion batteries, Joule, 3 (2019) 2622, doi: 10.1016/j.joule.2019.09.014.
  10. N. Bolan, S.A. Hoang, M. Tanveer, L. Wang, S. Bolan, P. Sooriyakumar, B. Robinson, H. Wijesekara, M. Wijesooriya, S. Keerthanan, M. Vithanage, B. Markert, S. Fränzle, S. Wünschmann, B. Sarkar, A. Vinu, M.B. Kirkham, K.H.M. Siddique, J. Rinklebe, From mine to mind and mobiles – lithium contamination and its risk management, Environ. Pollut., 290 (2021) 118067, doi: 10.1016/j.envpol.2021.118067.
  11. D. Lisbona, T. Snee, A review of hazards associated with primary lithium and lithium-ion batteries, Process Saf. Environ. Prot., 89 (2011) 434–442.
  12. S. Rarotra, S. Sahu, P. Kumar, K.H. Kim, Y.F. Tsang, V. Kumar, P. Kumar, M. Srinivasan, A. Veksha, G. Lisak, Progress and challenges on battery waste management: a critical review, Chemistry, 5 (2020) 6182–6193.
  13. F. Thibon, M. Metian, F.O. Oberhänsli, M. Montanes, E. Vassileva, A.M. Orani, P. Telouk, P. Swarzenski, N. Vigier, Bioaccumulation of lithium isotopes in mussel soft tissues and implications for coastal environments, ACS Earth Space Chem., 5 (2021) 1407–1417.
  14. A.T. Chow, Proactive approach to minimize lithium pollution, J. Environ. Qual., 51 (2022) 872–876.
  15. Y. Bai, N. Muralidharan, Y.K. Sun, S. Passerini, M. Stanley Whittingham, I. Belharouak, Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport, Mater. Today, 41 (2020) 304.
  16. R.K. Rai, S.S. Lee, M. Zhang, Y.F. Tsang, K.H. Kim, Heavy metals in food crops: health risks, fate, mechanisms, and management, Environ. Int., 125 (2019) 365–385.
  17. E.M. Melchor-Martínez, R. Macias-Garbett, A. Malacara- Becerra, M.N.H. Iqbal, J.E. Sosa-Hernández,
    R. Parra-Saldívar, Environmental impact of emerging contaminants from battery waste: a mini review, Case Stud. Chem. Environ. Eng., 3 (2021) 100104, doi: 10.1016/j.cscee.2021.100104.
  18. X. Zhu, J. Xiao, Q. Mao, Z. Zhang, Z. You, L. Tang, Q. Zhong, A promising regeneration of waste carbon residue from spent lithium-ion batteries via low-temperature fluorination roasting and water leaching, Chem. Eng. J., 430 (2022) 132703, doi: 10.1016/j.cej.2021.132703.
  19. F. Larouche, F. Tedjar, K. Amouzegar, G. Houlachi, P. Bouchard, G.P. Demopoulos, K. Zaghib, Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond, Materials, 13 (2020) 801, doi: 10.3390/ma13030801.
  20. P. Meshram, B.D. Pandey, T.R. Mankhand, Recovery of valuable metals from cathodic active material of spent lithium-ion batteries: leaching and kinetic aspects, Waste Manage., 45 (2015) 306–313.
  21. W. Urbańska, Recovery of Co, Li, and Ni from spent Li-ion batteries by the inorganic and/or organic reducer assisted leaching method, Minerals, 10 (2020) 555, doi: 10.3390/min10060555.
  22. W. Urbańska, M. Osial, Investigation of the physico-chemical properties of the products obtained after mixed organicinorganic leaching of spent Li-ion batteries, Energies, 13 (2020) 6732, doi: 10.3390/en13246732.
  23. R. Golmohammadzadeh, F. Faraji, F. Rashchi, Recovery of lithium and cobalt from spent lithium-ion batteries (LiBs) using organic acids as leaching reagents: a review, Resour. Conserv. Recycl., 136 (2018) 418–435.
  24. A. Benedetto Mas, S. Fiore, S. Fiorilli, F. Smeacetto, M. Santarelli, I. Schiavi, Analysis of lanthanum and cobalt leaching aimed at effective recycling strategies of solid oxide cells, Sustainability, 14 (2022) 3335, doi: 10.3390/su14063335.
  25. X. Chen, H. Huang, L. Pan, T. Liu, M. Niederberger, Fully integrated design of a stretchable solid-state lithium-ion full battery, Adv. Mater., 31 (2019) 1904648, doi: 10.1002/adma.201904648.
  26. G. Zhang, X. Yuan, Y. He, H. Wang, W. Xie, T. Zhang, Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO2 derived from spent lithium-ion batteries, Waste Manage., 115 (2020) 113–120.
  27. Y. Wang, Z. Xu, X. Zhang, E. Yang, T. Yanan, A green process to recover valuable metals from the spent ternary lithium-ion batteries, Sep. Purif. Technol., 299 (2022) 121782, doi: 10.1016/j.seppur.2022.121782.
  28. M. Baniasadi, F. Vakilchap, N. Bahaloo-Horeh, S.N. Mousavi, S. Farnaud, Advances in bioleaching as a sustainable method for metal recovery from e-waste: a review, J. Ind. Eng. Chem., 76 (2019) 75–90.
  29. J.J. Roy, B. Cao, S. Madhavi, A review on the recycling of spent lithium-ion batteries (LiBs) by the bioleaching approach, Chemosphere, 282 (2021) 130944, doi: 10.1016/j.chemosphere.2021.130944.
  30. P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang, M. Li, Y. Chen, K. An, Y.S. Meng, P. Liu, Y. Li, S.J. Spangenberger, L. Gaines, J. Lu, Z. Chen, Efficient direct recycling of lithium-ion battery cathodes by targeted healing, Joule, 4 (2020) 2609–2626.
  31. Y. Zhao, O. Pohl, A.I. Bhatt, G.E. Collis, P.J. Mahon, T. Rüther, A.F. Hollenkamp, A review on battery market trends, secondlife reuse, and recycling, Sustainable Chem., 2 (2021) 167–205.
  32. L. Olsson, S. Fallahi, M. Schnurr, D. Diener, P. Van Loon, Circular business models for extended EV battery life, Batteries, 4 (2018) 57, doi: 10.3390/batteries4040057.
  33. J.J. Roy, S. Rarotra, V. Krikstolaityte, K.W. Zhuoran, Y.D.-I. Cindy, X.Y. Tan, M. Carboni, D. Meyer, Q. Yan, M. Srinivasan, Green recycling methods to treat lithium-ion batteries e-waste: a circular approach to sustainability, Adv. Mater., 34 (2022) 2103346, doi: 10.1002/adma.202103346.
  34. A. De, Nanomaterial synthesis from end-of-cycle products: a sustainable way of waste valorisation, ChemBioEng Rev., 9 (2022) 337–350.
  35. K.K. Brar, S. Magdouli, A. Othmani, J. Ghanei, V. Narisetty, R. Sindhu, P. Binod, A. Pugazhendhi, M.K. Awasthi, A. Pandey, Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-a review, Environ. Res., 207 (2022) 112202, doi: 10.1016/j.envres.2021.112202.
  36. H. Hao, G. Liu, Y. Wang, B. Shi, K. Han, Y. Zhuang, Y. Kong, Simultaneous cationic Cu(II)‒anionic Sb(III) removal by NH2-Fe3O4-NTA core-shell magnetic nanoparticle sorbents synthesized via a facile one-pot approach, J. Hazard. Mater., 362 (2019) 246–257.
  37. M. Rouhani, S.D. Ashrafi, K. Taghavi, M. Naimi Joubani, J. Jaafari, Evaluation of tetracycline removal by adsorption method using magnetic iron oxide nanoparticles (Fe3O4) and clinoptilolite from aqueous solutions, J. Mol. Liq., 356 (2022) 119040, doi: 10.1016/j.molliq.2022.119040.
  38. C. Cepan, A.-E. Segneanu, O. Grad, M. Mihailescu, M. Cepan, I. Grozescu, Assessment of the different type of materials used for removing phosphorus from wastewater, Materials, 14 (2021) 4371, doi: 10.3390/ma14164371.
  39. S. Wei, R. Kamali, Trifunctional mesoporous magnetic adsorbent-photocatalyst nanocomposite for efficient removal of potassium ethyl xanthate from mining wastewater, J. Water Process. Eng., 49 (2022) 103067, doi: 10.1016/j.jwpe.2022.103067.
  40. S. Wei, A. Kamali, Waste plastic derived Co3Fe7/CoFe2O4@carbon magnetic nanostructures for efficient dye adsorption, J. Alloys Compd., 886 (2021) 161201, doi: 10.1016/j.jallcom.2021.161201.
  41. A. Dehghan, A. Zarei, J. Jaafari, M. Shams, A. Mousavi Khaneghah, Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: a mathematical modeling, Chemosphere, 217 (2019) 250–260.
  42. C. Das, S. Singh, S. Bhakta, P. Mishra, G. Biswas, Bio-modified magnetic nanoparticles with Terminalia arjuna bark extract for the removal of methylene blue and lead(II) from simulated wastewater, Chemosphere, 291 (2022) 132673, doi: 10.1016/j.chemosphere.2021.132673.
  43. L.B. Beltran, A.C. Ribeiro, E. da Costa Neves Fernandes de Almeida Duarte, R. Bergamasco,
    A. Marquetotti Salcedo Vieira, Green Magnetic Nanoparticles in Industrial Wastewater Treatment: An Overview, T. Karchiyappan, R.R. Karri, M.H. Dehghani, Eds., Industrial Wastewater Treatment, Springer, Cham, 2022, pp. 187–207.
  44. J. Barasarathi, P.S. Abdullah, E.C. Uche, Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater, Chemosphere, 305 (2022) 135384, doi: 10.1016/j.chemosphere.2022.135384.
  45. I.J. Sahib, L.S. Jasim, A.F. Alkaim, Synthesis of a rGO/Fe3O4 nanoparticle composites and its use as a surface for Alizarin Red S (ARS) dye removal from polluted water, AIP Conf. Proc., 2386 (2022) 030029, doi: 10.1063/5.0069097.
  46. Md. G. Azam, Md. H. Kabir, Md. A.A. Shaikh, S. Ahmed, M. Mahmud, S. Yasmin, A rapid and efficient adsorptive removal of lead from water using graphene oxide prepared from waste dry cell battery, J. Water Process Eng., 46 (2022) 102597, doi: 10.1016/j.jwpe.2022.102597.
  47. W. Zou, X. Feng, W. Wei, Y. Zhou, R. Wang, R. Zheng, J. Li, S. Luo, H. Mi, H. Chen, Converting spent LiFePO4 battery into zeolitic phosphate for highly efficient heavy metal adsorption, Inorg. Chem., 60 (2021) 9496–9503.
  48. A. Masudi, G.E. Harimisa, N.A. Ghafar, N.W.C Jusoh, Magnetite-based catalysts for wastewater treatment, Environ. Sci. Pollut. Res. Int., 27 (2020) 4664–4682.
  49. S.M. Rahimi, A.H. Panahi, N.S. Mazari Moghaddam, E. Allahyari, N. Nasseh, Breaking down of low-biodegradation Acid Red 206 dye using bentonite/Fe3O4/ZnO magnetic nanocomposite as a novel photo-catalyst in presence of UV light, Chem. Phys. Lett., 794 (2022) 139480, doi: 10.1016/j.cplett.2022.139480.
  50. H.T. Do, P.H. Nguyen, C.X. Phan, H.N. Nguyen, P.T. Le, T.T.T. Nguyen, T.T. Nguyen, T.N. Pham, M. Osial,
    T.M.T. Dinh, Hydroxyapatite/superparamagnetic iron oxide nanoparticles nanocomposite for Congo red adsorption, Desal. Water. Treat., (2023) 1–15.
  51. N. AbouSeada, M.A. Ahmed, M.G. Elmahgary, Synthesis and characterization of novel magnetic nanoparticles for photocatalytic degradation of indigo carmine dye, Mater. Sci. Energy Technol., 5 (2022) 116–124.
  52. M. Khodadadi, S. Rodriguez-Couto, F.S. Arghavan, A.H. Panahi, Synthesis and characterization of FeNi3@SiO2TiO2 nanocomposite and its application as a catalyst in a photochemical oxidation process to decompose tetracycline, Desal. Water Treat., 195 (2020) 435–449.
  53. N. Nasseh, M.T. Samadi, M. Ghadirian, A. Hossein Panahi, A. Rezaie, Photo-catalytic degradation of tamoxifen by using a novel synthesized magnetic nanocomposite of FeCl2@AC@ZnO: a study on the pathway, modeling, and sensitivity analysis using artificial neural network (AAN), J. Environ. Chem. Eng., 10 (2022) 107450, doi: 10.1016/j.jece.2022.107450.
  54. S.J. Olusegun, N.D.S. Mohallem, V.S.T. Ciminelli, Reducing the negative impact of ceftriaxone and doxycycline in aqueous solutions using ferrihydrite/plant-based composites: mechanism pathway, Environ. Sci. Pollut. Res., 29 (2022) 66547–66561.
  55. P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.N. Vo, T.S. AlGarni, Mu. Naushad, Z.A. ALOthman, Nanostructured magnetic inverse spinel Ni–Zn ferrite as environmental friendly visible light driven photo-degradation of levofloxacin, Chem. Eng. Res. Des., 175 (2021) 85–101.
  56. B. Kakavandi, E. Dehghanifard, P. Gholami, M. Noorisepehr, B.M. Hedayat, Photocatalytic activation of peroxydisulfate by magnetic Fe3O4@SiO2@TiO2/rGO core–shell towards degradation and mineralization of metronidazole, Appl. Surf. Sci., 570 (2021) 151145, doi: 10.1016/j.apsusc.2021.151145.
  57. F. Hayati, M.R. Khodabakhshi, A.A. Isari, S. Moradi, B. Kakavandi, LED-assisted sonocatalysis of sulfathiazole and pharmaceutical wastewater using N,Fe co-doped TiO2@SWCNT: optimization, performance and reaction mechanism studies, J. Water Process Eng., 38 (2020) 101693, doi: 10.1016/j.jwpe.2020.101693.
  58. F.S. Arghavan, A. Hossein Panahi, N. Nasseh, M. Ghadirian, Adsorption-photocatalytic processes for removal of pentachlorophenol contaminant using FeNi3/SiO2/ZnO magnetic nanocomposite under simulated solar light irradiation, Environ. Sci. Pollut. Res., 28 (2021) 7462–7475.
  59. M. Nikazar, M. Alizadeh, R. Lalavi, M. Hossein Rostami, The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol, J. Environ. Health Sci. Eng., 12 (2014) 21, doi: 10.1186/2052-336X-12-21.
  60. S. Akhtar, W. An, X. Niu, K. Li, S. Anwar, K. Maaz, M. Maqbool, L. Gao, Toxicity of PEG-coated CoFe2O4 nanoparticles with treatment effect of curcumin, Nanoscale. Res. Lett., 13 (2018) 52,
    doi: 10.1186/s11671-018-2468-7.
  61. M. Jouyandeh, M.R. Ganjali, A. Ali, M.J. Aghazadeh, F.J. Stadler, M.R. Saeb, Curing epoxy with electrochemically synthesized CoxFe3–xO4 magnetic nanoparticles, Prog. Org. Coat., 137 (2019) 105252, doi: 10.1016/j.porgcoat.2019.105252.
  62. M.B. Vraneš, S.M. Papović, S.B. Gadžurić, Spectrophotometric investigation of cobalt chloride complex formation in aqueous calcium nitrate–ammonium nitrate melts at T = 328.15 K: influence of water content, J. Solution Chem., 48 (2019) 1364–1377.
  63. Q. Wang, H. Gao, X. Qin, J. Dai, W. Li, Fabrication of NiFe2O4@CoFe2O4 core-shell nanofibers for high-performance supercapacitors, Mater. Res. Express, 7 (2020) 015020, doi: 10.1088/2053-1591/ab61ba.
  64. S. Zhao, D. Ma, Preparation of CoFe2O4 nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate, J. Nanomater., 2010 (2010) 842816, doi: 10.1155/2010/842816.
  65. N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin, H. Tang, Sonoassisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2, Ultrason. Sonochem., 17 (2010) 526–533.
  66. S.Y. Zhao, D.-G. Lee, C.-W. Kim, H.-G. Cha, Y.-H. Kim, Y.-S. Kang, Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption, Bull. Korean Chem. Soc., 27 (2006) 237–242.
  67. S. Ayyappan, S. Mahadevan, P. Chandramohan, P. Srinivasan, J. Philip, B. Raj, Influence of Co2+ ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles, J. Phys. Chem. C, 114 (2010) 6334–6341.
  68. K. Kartha, M. Pai, A. Banerjee, R. Pai, S. Meena, S. Bharadwaj, Modified surface and bulk properties of
    Fe-substituted lanthanum titanates enhances catalytic activity for CO + N2O reaction, J. Mol. Catal. A: Chem., 335 (2011) 158–168.
  69. A.H. Rezayan, M. Mousavi, S. Kheirjou, G. Amoabediny, M.S. Ardestani, J. Mohammadnejad, Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method, J. Magn. Magn. Mater., 420 (2016) 210–217.
  70. H.R. Dehghanpour, The effects of surfactant changing on physical properties of Fe3O4 nanoparticles produced in coprecipitation method, Russ. J. Inorg. Chem., 65 (2020) 1282–1286.
  71. Y. Li, W. Qiu, F. Qin, H. Fang, V.G. Hadjiev, D. Litvinov, J. Bao, Identification of cobalt oxides with Raman scattering and Fourier transform infrared spectroscopy, J. Phys. Chem. C, 120 (2016) 4511–4516.
  72. M. Ristic, S. Krehula, M. Reissner, M. Jean, B. Hannoyer, S. Musić, Synthesis and properties of precipitated cobalt ferrite nanoparticles, J. Mol. Struct., 1140 (2017) 32–38.
  73. S. Mitra, P.S. Veluri, A. Chakraborthy, R.K. Petla, Electrochemical properties of spinel cobalt ferrite nanoparticles with sodium alginate as interactive binder, ChemElectroChem, 1 (2014) 1068–1074.
  74. R. Rahmani, M. Gharanfoli, M. Gholamin, M. Darroudi, J. Chamani, K. Sadri, A. Hashemzadeh, Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities, Ceram. Int., 46 (2020) 3051–3058.
  75. P. Pietrzyk, N.T. Phuong, S.J. Olusegun, N. Hong Nam, D.T.M. Thanh, M. Giersig, P. Krysiński, M. Osial, Titan yellow and Congo red removal with superparamagnetic iron-oxidebased nanoparticles doped with zinc, Magnetochemistry, 8 (2022) 91, doi: 10.3390/magnetochemistry8080091.
  76. D.T.M. Thanh, N.T. Phuong, D.T. Hai, H.N. Giang, N.T. Thom, P.T. Nam, N.T. Dung, M. Giersig, M. Osial, Influence of experimental conditions during synthesis on the physicochemical properties of the SPION/hydroxyapatite nanocomposite for magnetic hyperthermia application, Magnetochemistry, 8 (2022) 90, doi: 10.3390/magnetochemistry8080090.
  77. J. Kundu, D. Pradhan, Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies, ACS Appl. Mater. Interfaces, 6 (2014) 1823–1834.
  78. A.J. Deotale, R.V. Nandedkar, Correlation between particle size, strain and band gap of iron oxide nanoparticles, Mater. Today Proc., 3 (2016) 2069–2076.
  79. V.S. Kirankumar, S. Sumathi, Photocatalytic and antibacterial activity of bismuth and copper co-doped cobalt ferrite nanoparticles, J. Mater. Sci. - Mater. Electron., 29 (2018) 8738–8746.
  80. Y. Yao, G. Wu, F. Lu, S. Wang, Y. Hu, J. Zhang, W. Huang, F. Wei, Enhanced photo-Fenton-like process over
    Z-scheme CoFe2O4/g-C3N4 heterostructures under natural indoor light, Environ. Sci. Pollut. Res., 23 (2016) 21833–21845.
  81. P.J. Costa, The halogen bond: nature and applications, Phys. Sci. Rev., 2 (2017) 1–16.
  82. R.G. Pearson, Hard and soft acids and bases-the evolution of a chemical concept, Coord. Chem. Rev., 100 (1990) 403–425.
  83. I. Fleming, Molecular Orbitals and Organic Chemical Reactions, John Wiley & Sons, London, 1976.
  84. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, Gaussian 09, Revision C.02, Gaussian Inc., Wallingford CT, 2010.
  85. A.O. Elzupir, R.K. Hussein, K.H. Ibnaouf, Intermolecular CH-π electrons interaction in
    poly(9,9-dioctylfluorenyl-2,7- diyl) (PFO): an experimental and theoretical study, Molecules, 27 (2022) 1488, doi: 10.3390/molecules27051488.
  86. K. Raghavachari, Perspective on “Density functional thermochemistry. III. The role of exact exchange”, Theor. Chem. Acc., 103 (2000) 361–363.
  87. S.K. Alghamdi, F. Abbas, R.K. Hussein, A.G. Alhamzani, N.T. El‐Shamy, Spectroscopic characterization
    (IR, UV-Vis), and HOMO-LUMO, MEP, NLO, NBO analysis and the antifungal activity for
    4-bromo-N-(2-nitrophenyl) benzamide; using DFT modeling and in silico molecular docking, J. Mol. Struct., 1271 (2023) 13400.
  88. S. Swapna Priya, K.V. Radha, A review on the adsorption studies of tetracycline onto various types of adsorbents, Chem. Eng. Commun., 204 (2017) 821–839.
  89. S.J. Olusegun, G. Larrea, M. Osial, K. Jackowska, P. Krysinski, Photocatalytic degradation of antibiotics by superparamagnetic iron oxide nanoparticles, Tetracycline case, Catalysts, 11 (2021) 1243, doi: 10.3390/catal11101243.
  90. Y. Wang, J. Xiu, T. Gan, H. Zou, F. Li, Photocatalytic degradation of tetracycline hydrochloride by lanthanum doped TiO2@g-C3N4 activated persulfate under visible light irradiation, RSC Adv., 13 (2023) 8383–8393.
  91. A. Hemmi, M. Belmedani, E. Mekatel, R. Brahimi, M. Trari, Kinetic and mechanism studies of tetracycline photodegradation using synthesized ZnAl2O4, React. Kinet. Mech. Catal., 134 (2021) 1039–1054.
  92. W. Piasecki, K. Szymanek, R. Charmas, Fe2+ adsorption on iron oxide: the importance of the redox potential of the adsorption system, Adsorption, 25 (2019) 613–619.
  93. M.E. Peralta, R. Nisticò, F. Franzoso, G. Magnacca, L. Fernandez, M.E. Parolo, E.G. León, L. Carlos, Highly efficient removal of heavy metals from waters by magnetic chitosan‑based composite, Adsorption, 25 (2019) 1337–1347.
  94. H. Wang, C. Fang, Q. Wang, Y. Chu, Y. Song, Y. Chen, X. Xue, Sorption of tetracycline on biochar derived from rice straw and swine manure, RSC Adv., 8 (2018) 16260–16268.
  95. A. Samadi-Maybodi, R. Khabazifard, Photodegradation of tetracycline and doxycycline under visible radiation using MIL-MIL101 Fe(NH2)@g-C3N4@CoFe2O4/GO as photocatalyst, Optik, 262 (2022) 168934, doi: 10.1016/j.ijleo.2022.168934.
  96. L. Zhang, X. Song, X. Liu, L. Yang, F. Pan, J. Lv, Studies on the removal of tetracycline by multiwalled carbon nanotubes, Chem. Eng. J., 178 (2011) 26–33.
  97. J.-Z. Kong, A.-D. Li, X.-Y. Li, H.-F. Zhai, W.-Q. Zhang, Y.-P. Gong, H. Li, D. Wu, Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle, J. Solid State Chem., 183 (2010) 1359–1364.
  98. H. Yuan, Q. Su, Y. Wang, J. Li, B. Liu, Y. Li, P. Wu, Tetracycline catalytic photodegradation with mesoporous phosphated TiO2: characterization, process optimization and degradation pathway, RSC Adv., 11 (2021) 10975–10985.
  99. A.P. Farheen, Enhanced visible light energy harvesting and efficient photocatalytic antibiotic drug degradation over egg albumen mediated Sr doped Fe2O3 nanoparticles, Mater. Sci. Semicond. Process., 148 (2022) 106804, doi: 10.1016/j.mssp.2022.106804.
  100. M. Nagamine, M. Osial, K. Jackowska, P. Krysinski, J. Widera-Kalinowska, Tetracycline photocatalytic degradation under CdS treatment, J. Mar. Sci. Eng., 8 (2020) 483, doi: 10.3390/jmse8070483.
  101. S.-Y. Liu, A. Zada, X. Yu, F. Liu, G. Jin, NiFe2O4/g-C3N4 heterostructure with an enhanced ability for photocatalytic degradation of tetracycline hydrochloride and antibacterial performance, Chemosphere, 307 (2022) 135717, doi: 10.1016/j.chemosphere.2022.135717.
  102. C. Lai, F. Xu, M. Zhang, B. Li, S. Liu, H. Yi, L. Li, L. Qin, X. Liu, Y. Fu, Y. An, N. An, H. Yang, X. Huo, X. Yang, H. Yan, Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme heterojunction for improved visible-light photocatalytic performance: photodegradation of tetracycline and photocatalytic mechanism, J. Colloid Interface Sci., 588 (2021) 283–294.
  103. S.J. Singh, P. Chinnamuthu, Magnetically recoverable Cu(1–x)CexO nanoparticles for photodegradation of tetracycline, Colloids Surf., A, 656 (2023) 130404, doi: 10.1016/j. colsurfa.2022.130404.
  104. P. Semeraro, S. Bettini, S. Sawalha, S. Pal, A. Licciulli, F. Marzo, N. Lovergine, L. Valli, G. Giancane, Photocatalytic degradation of tetracycline by ZnO/γ-Fe2O3 paramagnetic nanocomposite material, Nanomaterials, 10 (2020) 1458, doi: 10.3390/nano10081458.
  105. B. Kakavandi, S. Alavi, F. Ghanbari, M. Ahmadi, Bisphenol A degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: performance, upgrading synergy and mechanistic pathway, Chemosphere, 287 (2022) 132024, doi: 10.1016/j.chemosphere.2021.132024.
  106. A.A. Isari, S. Moradi, S.S. Rezaei, F. Ghanbari, E. Dehghanifard, B. Kakavandi, Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: enhancing synergy, catalytic performance and mechanism, Sep. Purif. Technol., 275 (2021), 119163, doi: 10.1016/j.seppur.2021.119163.
  107. J. Wang, F. Osterloh, Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight, J. Mater. Chem. A, 2 (2014) 9405–9411.
  108. F. Hu, W. Luo, C. Liu, H. Dai, X. Xu, Q. Yue, L. Xu, G. Xu, Y. Jian, X. Peng, Fabrication of graphitic carbon nitride functionalized P–CoFe2O4 for the removal of tetracycline under visible light: optimization, degradation pathways and mechanism evaluation, Chemosphere, 274 (2021) 129783, doi: 10.1016/j.chemosphere.2021.129783.
  109. S. Giannakis, S. Liu, A. Carratalà, S. Rtimi, M.T. Amiri, M. Bensimon, C. Pulgarin, Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size, J. Hazard. Mater., 339 (2017) 223–231.
  110. Y. Nosaka, A. Nosaka, Understanding hydroxyl radical (•OH) generation processes in photocatalysis, ACS Energy Lett., 1 (2016) 356–359.
  111. D. Lawless, N. Serpone, D. Meisel, Role of hydroxyl radicals and trapped holes in photocatalysis. A pulse radiolysis study, J. Phys. Chem., 95 (1991) 5166–5170.
  112. M.L. Kremer, Mechanism of the Fenton reaction. Evidence for a new intermediate, Phys. Chem. Chem. Phys., 1 (1999) 3595–3605.
  113. A.V. Vorontsov, Advancing Fenton and photo-Fenton water treatment through the catalyst design, J. Hazard. Mater., 372 (2019) 103–112.
  114. K. Du, E.H. Ang, X. Wu, Y. Liu, Progresses in sustainable recycling technology of spent lithium-ion batteries, Energy Environ. Mater., 5 (2022) 1012–1036.
  115. X. He, T. Kai, P. Ding, Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review, Environ. Chem. Lett., 19 (2021) 4563–4601.
  116. P. Meshram, A. Mishra, Abhilash, R. Sahu, Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids – a review, Chemosphere, 242 (2020) 125291, doi: 10.1016/j.chemosphere.2019.125291.
  117. Z. Dobó, T. Dinh, T. Kulcsár, A review on recycling of spent lithium-ion batteries, Energy Rep., 9 (2023) 6362–6395.
  118. J. Zhang, Chapter 10 – Application of Hydrometallurgy in Spent Lithium-Ion Battery Recycling, S. Farhad, R.K. Gupta, G. Yasin, T.A. Nguyen, Micro and Nano Technologies, Nano Technology for Battery Recycling, Remanufacturing, and Reusing, Elsevier, Denmark, 2022, pp. 183–216.
  119. Y. Ma, J. Tang, R. Wanaldi, X. Zhou, H.C. Wang, Zhou, J. Yang, A promising selective recovery process of valuable metals from spent lithium-ion batteries via reduction roasting and ammonia leaching, J. Hazard. Mater., 402 (2021) 123491, doi: 10.1016/j.jhazmat.2020.123491.
  120. S.T. Yan, R.Z. Wang, C.Y. Shao, Z.Q. Tong, T. Li, L.J. Yuan, G.H. Sheng, K.X. Xu, The strategy of entire recovery: from spent cathode material with high nickel content to new LiNi0.5Co0.2Mn0.3O2 and Li2CO3 powders, J. Power Sources, 440 (2019) 227140, doi: 10.1016/j.jpowsour.2019.227140.
  121. D. Patil, S. Chikkamath, S. Keny, V. Tripathi, J. Manjanna, Rapid dissolution and recovery of Li and Co from spent LiCoO2 using mild organic acids under microwave irradiation, J. Environ. Manage., 15 (2020) 109935, doi: 10.1016/j.jenvman.2019.109935.
  122. Y. Zhang, Recycling of cathode material from spent lithiumion batteries using an ultrasound-assisted DL-malic acid leaching system, Waste Manage., 15 (2020) 52–60.
  123. Y.P. Fu, Y.Q. He, Y. Yang, L.L. Qu, J.L. Li, R. Zhou, Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries, J. Alloys Compd., 832 (2020) 154920, doi: 10.1016/j.jallcom.2020.154920.
  124. Y. Zhao, B. Liu, L. Zhang, S. Guo, Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries, J. Hazard. Mater., 5 (2020) 122740, doi: 10.1016/j.jhazmat.2020.122740.
  125. P. Giorgio Schiavi, P. Altimari, M. Branchi, R. Zanoni, G. Simonetti, M. Assunta Navarra, F. Pagnanelli, Selective recovery of cobalt from mixed lithium-ion battery wastes using deep eutectic solvent, Chem. Eng. J., 417 (2021) 129249, doi: 10.1016/j.cej.2021.129249.
  126. A. Pręgowska, M. Osial, W. Urbańska, The application of artificial intelligence in the effective battery life cycle in the closed circular economy model—a perspective, Recycling, 7 (2022) 81, doi: 10.3390/recycling7060081.
  127. C. Ruhatiya, S. Shaosen, C.-T. Wang, A.K. Jishnu, Y. Bhalerao, Optimization of process conditions for maximum metal recovery from spent zinc-manganese batteries: illustration of statistical based automated neural network approach, Energy Storage, Special Issue: Renewable Energy and Energy Storage Systems, 2 (2020) e111, doi: 10.1002/est2.111.
  128. M. Noor, M.H. Wong, S. Ngadi, I.M. Inuwa, L.A. Opotu, Assessing the effectiveness of magnetic nanoparticles coagulation/flocculation in water treatment: a systematic literature review, Int. J. Environ. Sci. Technol., 19 (2020) 6935–6956.
  129. S. Shukla, R. Khan, A. Daverey, Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: a review, Environ. Technol. Innovation, 24 (2021) 10192, doi: 10.1016/j.eti.2021.101924.
  130. F. Gao, An overview of surface-functionalized magnetic nanoparticles: preparation and application for wastewater treatment, ChemistrySelect, 4 (2019) 6805–6811.
  131. A.E. Vasu, A.P. Mary Sri Archana, A.C. Sagayaraj, F.F Reymond, V.A. Jasmine, A.T. Elizabeth, Magnetic nanocomposite fabrication using banana leaf sheath biofluid: enhanced Fenton catalytic activity towards tetracycline degradation, Inorg. Chem. Commun., 141 (2022) 109541, doi: 10.1016/j.inoche.2022.109541.
  132. Y.C. Sharma, V. Srivastava, Comparative studies of removal of Cr(VI) and Ni(II) from aqueous solutions by magnetic nanoparticles, J. Chem. Eng. Data, 56 (2011) 819–825.
  133. S. Zhang, Y. Zhang, G. Bi, J. Liu, Z. Wang, Q. Xu, H. Xu, X. Li, Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal, J. Hazard. Mater., 270 (2014) 27–34.
  134. K. Chen, J. He, Y. Li, X. Cai, K. Zhang, T. Liu, Y. Hu, D. Lin, L. Kong, J. Liu, Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents, J. Colloid Interface Sci., 494 (2017) 307–316.
  135. G.T. Tee, X.T. Gok, W.F. Yong, Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: a review, Environ. Res., 212 (2022) 113248, doi: 10.1016/j.envres.2022.113248.
  136. S. Karimi, H. Namazi, Magnetic alginate/glycodendrimer beads for efficient removal of tetracycline and amoxicillin from aqueous solutions, Int. J. Biol. Macromol., 205 (2022) 128–140.
  137. Z. Alizadeh, A. Rezaee, Tetracycline removal using microbial cellulose@nano-Fe3O4 by adsorption and heterogeneous Fenton-like processes, J. Mol. Liq., 366 (2022) 120199, doi: 10.1016/j.molliq.2022.120199.
  138. L. Zhang, Y. Wang, Y. Shi, Y. Zhu, Heterogeneous catalytic oxidation of tetracycline hydrochloride based on persulfate activated by Fe3O4/MC composite, Chem. Eng. J., 447 (2022) 137406, doi: 10.1016/j.cej.2022.137406.
  139. A. Nasiri, S. Rajabi, A. Amiri, M. Fattahizade, O. Hasani, A. Lalehzari, M. Hashemi, Adsorption of tetracycline using CuCoFe2O4@chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: isotherm, kinetic and thermodynamic study, Arabian J. Chem., 15 (2022) 104014, doi: 10.1016/j.arabjc.2022.104014.
  140. H. Zhu, A. Guo, S. Wang, Y. Long, G. Fan, X. Yu, Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N co-doped biochar: emphasizing the important role of biochar graphitization, Chem. Eng. J., 450 (2022) 138428, doi: 10.1016/j.cej.2022.138428.
  141. M. Usman, A. Ahmed, Z. Ji, B. Yu, M. Rafiq, Y. Shen, H. Cong, Enhanced heterogenous photo-Fenton degradation of tetracycline in aqueous medium by visible light responsive sulphur dopped zinc ferrite nanoparticles, Mater. Today Chem., 26 (2022) 101003, doi: 10.1016/j.mtchem.2022.101003.
  142. U. Kumar, J. Kuntail, A. Kumar, R. Prakash, M.R. Pai, I. Sinha, In-situ H2O2 production for tetracycline degradation on Ag/s-(Co3O4/NiFe2O4) visible light magnetically recyclable photocatalyst, Appl. Surf. Sci., 589 (2022) 153013, doi: 10.1016/j.apsusc.2022.153013.