References
- A. Porvali, M. Aaltonen, S. Ojanen, O. Velazquez-Martinez,
E. Eronen, F. Liu, B.P. Wilson, R. Serna-Guerrero, M. Lundström,
Mechanical and hydrometallurgical processes in HCl media
for the recycling of valuable metals from Li-ion battery waste,
Resour. Conserv. Recycl., 142 (2019) 257–266.
- S.-j. Gao, W.-f. Liu, D.-j. Fu, X.-g. Liu, Research progress on
recovering the components of spent Li-ion batteries, New
Carbon Mater., 37 (2022) 435–460.
- C. Peng, J. Hamuyuni, B.P. Wilson, M. Lundström, Selective
reductive leaching of cobalt and lithium from industrially
crushed waste Li-ion batteries in sulfuric acid system, Waste
Manage., 76 (2018) 582–590.
- J. Wang, Y. Zhang, L. Yu, K. Cui, T. Fu, H. Mao, Effective
separation and recovery of valuable metals from waste
Ni-based batteries: a comprehensive review, Chem. Eng. J.,
430 (2022) 135767, doi: 10.1016/j.cej.2022.135767.
- W. Mrozik, M.A. Rajaeifar, O. Heidrich, P. Christensen,
Environmental impacts, pollution sources and pathways of
spent lithium-ion batteries, Energy Environ. Sci., 14 (2021)
6099–6121.
- G. Mishra, R. Jha, A. Meshram, K.K. Singh, A review on recycling
of lithium-ion batteries to recover critical metals, J. Environ.
Chem. Eng., 10 (2022) 108534, doi: 10.1016/j.jece.2022.108534.
- A. Pražanová, V. Knap, D.-I. Stroe, Literature review, recycling
of lithium-ion batteries from electric vehicles, Part I: recycling
technology, Energies, 15 (2022) 1086, doi: 10.3390/en15031086.
- O. Velázquez-Martínez, J. Valio, A. Santasalo-Aarnio, M. Reuter,
R. Serna-Guerrero, A critical review of lithium-ion battery
recycling processes from a circular economy perspective,
Batteries, 5 (2019) 68, doi: 10.3390/batteries5040068.
- M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon,
Y. Wang, Recycling end-of-life electric vehicle lithium-ion
batteries, Joule, 3 (2019) 2622, doi: 10.1016/j.joule.2019.09.014.
- N. Bolan, S.A. Hoang, M. Tanveer, L. Wang, S. Bolan,
P. Sooriyakumar, B. Robinson, H. Wijesekara, M. Wijesooriya,
S. Keerthanan, M. Vithanage, B. Markert, S. Fränzle,
S. Wünschmann, B. Sarkar, A. Vinu, M.B. Kirkham,
K.H.M. Siddique, J. Rinklebe, From mine to mind and mobiles
– lithium contamination and its risk management, Environ.
Pollut., 290 (2021) 118067, doi: 10.1016/j.envpol.2021.118067.
- D. Lisbona, T. Snee, A review of hazards associated with
primary lithium and lithium-ion batteries, Process Saf. Environ.
Prot., 89 (2011) 434–442.
- S. Rarotra, S. Sahu, P. Kumar, K.H. Kim, Y.F. Tsang, V. Kumar,
P. Kumar, M. Srinivasan, A. Veksha, G. Lisak, Progress and
challenges on battery waste management: a critical review,
Chemistry, 5 (2020) 6182–6193.
- F. Thibon, M. Metian, F.O. Oberhänsli, M. Montanes,
E. Vassileva, A.M. Orani, P. Telouk, P. Swarzenski, N. Vigier,
Bioaccumulation of lithium isotopes in mussel soft tissues and
implications for coastal environments, ACS Earth Space Chem.,
5 (2021) 1407–1417.
- A.T. Chow, Proactive approach to minimize lithium pollution,
J. Environ. Qual., 51 (2022) 872–876.
- Y. Bai, N. Muralidharan, Y.K. Sun, S. Passerini, M. Stanley
Whittingham, I. Belharouak, Energy and environmental
aspects in recycling lithium-ion batteries: concept of battery
identity global passport, Mater. Today, 41 (2020) 304.
- R.K. Rai, S.S. Lee, M. Zhang, Y.F. Tsang, K.H. Kim, Heavy metals
in food crops: health risks, fate, mechanisms, and management,
Environ. Int., 125 (2019) 365–385.
- E.M. Melchor-Martínez, R. Macias-Garbett, A. Malacara-
Becerra, M.N.H. Iqbal, J.E. Sosa-Hernández,
R. Parra-Saldívar,
Environmental impact of emerging contaminants from
battery waste: a mini review, Case Stud. Chem. Environ. Eng.,
3 (2021) 100104, doi: 10.1016/j.cscee.2021.100104.
- X. Zhu, J. Xiao, Q. Mao, Z. Zhang, Z. You, L. Tang, Q. Zhong,
A promising regeneration of waste carbon residue from
spent lithium-ion batteries via low-temperature fluorination
roasting and water leaching, Chem. Eng. J., 430 (2022) 132703,
doi: 10.1016/j.cej.2021.132703.
- F. Larouche, F. Tedjar, K. Amouzegar, G. Houlachi, P. Bouchard,
G.P. Demopoulos, K. Zaghib, Progress and status of
hydrometallurgical and direct recycling of Li-ion batteries and
beyond, Materials, 13 (2020) 801, doi: 10.3390/ma13030801.
- P. Meshram, B.D. Pandey, T.R. Mankhand, Recovery of valuable
metals from cathodic active material of spent lithium-ion
batteries: leaching and kinetic aspects, Waste Manage., 45 (2015)
306–313.
- W. Urbańska, Recovery of Co, Li, and Ni from spent Li-ion
batteries by the inorganic and/or organic reducer assisted
leaching method, Minerals, 10 (2020) 555, doi: 10.3390/min10060555.
- W. Urbańska, M. Osial, Investigation of the physico-chemical
properties of the products obtained after mixed organicinorganic
leaching of spent Li-ion batteries, Energies, 13 (2020)
6732, doi: 10.3390/en13246732.
- R. Golmohammadzadeh, F. Faraji, F. Rashchi, Recovery of
lithium and cobalt from spent lithium-ion batteries (LiBs) using
organic acids as leaching reagents: a review, Resour. Conserv.
Recycl., 136 (2018) 418–435.
- A. Benedetto Mas, S. Fiore, S. Fiorilli, F. Smeacetto, M. Santarelli,
I. Schiavi, Analysis of lanthanum and cobalt leaching
aimed at effective recycling strategies of solid oxide cells,
Sustainability, 14 (2022) 3335, doi: 10.3390/su14063335.
- X. Chen, H. Huang, L. Pan, T. Liu, M. Niederberger, Fully
integrated design of a stretchable solid-state lithium-ion
full battery, Adv. Mater., 31 (2019) 1904648, doi: 10.1002/adma.201904648.
- G. Zhang, X. Yuan, Y. He, H. Wang, W. Xie, T. Zhang, Organics
removal combined with in situ thermal-reduction for enhancing
the liberation and metallurgy efficiency of LiCoO2 derived
from spent lithium-ion batteries, Waste Manage., 115 (2020)
113–120.
- Y. Wang, Z. Xu, X. Zhang, E. Yang, T. Yanan, A green process
to recover valuable metals from the spent ternary lithium-ion
batteries, Sep. Purif. Technol., 299 (2022) 121782, doi: 10.1016/j.seppur.2022.121782.
- M. Baniasadi, F. Vakilchap, N. Bahaloo-Horeh, S.N. Mousavi,
S. Farnaud, Advances in bioleaching as a sustainable method
for metal recovery from e-waste: a review, J. Ind. Eng. Chem.,
76 (2019) 75–90.
- J.J. Roy, B. Cao, S. Madhavi, A review on the recycling
of spent lithium-ion batteries (LiBs) by the bioleaching
approach, Chemosphere, 282 (2021) 130944, doi: 10.1016/j.chemosphere.2021.130944.
- P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang, M. Li, Y. Chen,
K. An, Y.S. Meng, P. Liu, Y. Li, S.J. Spangenberger, L. Gaines,
J. Lu, Z. Chen, Efficient direct recycling of lithium-ion battery
cathodes by targeted healing, Joule, 4 (2020) 2609–2626.
- Y. Zhao, O. Pohl, A.I. Bhatt, G.E. Collis, P.J. Mahon, T. Rüther,
A.F. Hollenkamp, A review on battery market trends, secondlife
reuse, and recycling, Sustainable Chem., 2 (2021) 167–205.
- L. Olsson, S. Fallahi, M. Schnurr, D. Diener, P. Van Loon,
Circular business models for extended EV battery life,
Batteries, 4 (2018) 57, doi: 10.3390/batteries4040057.
- J.J. Roy, S. Rarotra, V. Krikstolaityte, K.W. Zhuoran, Y.D.-I. Cindy,
X.Y. Tan, M. Carboni, D. Meyer, Q. Yan, M. Srinivasan, Green
recycling methods to treat lithium-ion batteries e-waste: a
circular approach to sustainability, Adv. Mater., 34 (2022)
2103346, doi: 10.1002/adma.202103346.
- A. De, Nanomaterial synthesis from end-of-cycle products:
a sustainable way of waste valorisation, ChemBioEng Rev.,
9 (2022) 337–350.
- K.K. Brar, S. Magdouli, A. Othmani, J. Ghanei, V. Narisetty,
R. Sindhu, P. Binod, A. Pugazhendhi, M.K. Awasthi, A. Pandey,
Green route for recycling of low-cost waste resources for
the biosynthesis of nanoparticles (NPs) and nanomaterials
(NMs)-a review, Environ. Res., 207 (2022) 112202, doi: 10.1016/j.envres.2021.112202.
- H. Hao, G. Liu, Y. Wang, B. Shi, K. Han, Y. Zhuang, Y. Kong,
Simultaneous cationic Cu(II)‒anionic Sb(III) removal by
NH2-Fe3O4-NTA core-shell magnetic nanoparticle sorbents
synthesized via a facile one-pot approach, J. Hazard. Mater.,
362 (2019) 246–257.
- M. Rouhani, S.D. Ashrafi, K. Taghavi, M. Naimi Joubani,
J. Jaafari, Evaluation of tetracycline removal by adsorption
method using magnetic iron oxide nanoparticles (Fe3O4) and
clinoptilolite from aqueous solutions, J. Mol. Liq., 356 (2022)
119040, doi: 10.1016/j.molliq.2022.119040.
- C. Cepan, A.-E. Segneanu, O. Grad, M. Mihailescu, M. Cepan,
I. Grozescu, Assessment of the different type of materials
used for removing phosphorus from wastewater, Materials,
14 (2021) 4371, doi: 10.3390/ma14164371.
- S. Wei, R. Kamali, Trifunctional mesoporous magnetic
adsorbent-photocatalyst nanocomposite for efficient removal
of potassium ethyl xanthate from mining wastewater, J. Water
Process. Eng., 49 (2022) 103067, doi: 10.1016/j.jwpe.2022.103067.
- S. Wei, A. Kamali, Waste plastic derived Co3Fe7/CoFe2O4@carbon
magnetic nanostructures for efficient dye adsorption, J. Alloys
Compd., 886 (2021) 161201, doi: 10.1016/j.jallcom.2021.161201.
- A. Dehghan, A. Zarei, J. Jaafari, M. Shams, A. Mousavi
Khaneghah, Tetracycline removal from aqueous solutions using
zeolitic imidazolate frameworks with different morphologies:
a
mathematical modeling, Chemosphere, 217 (2019) 250–260.
- C. Das, S. Singh, S. Bhakta, P. Mishra, G. Biswas, Bio-modified
magnetic nanoparticles with Terminalia arjuna bark extract for
the removal of methylene blue and lead(II) from simulated
wastewater, Chemosphere, 291 (2022) 132673, doi: 10.1016/j.chemosphere.2021.132673.
- L.B. Beltran, A.C. Ribeiro, E. da Costa Neves Fernandes de
Almeida Duarte, R. Bergamasco,
A. Marquetotti Salcedo
Vieira, Green Magnetic Nanoparticles in Industrial Wastewater
Treatment: An Overview, T. Karchiyappan, R.R. Karri,
M.H. Dehghani, Eds., Industrial Wastewater Treatment,
Springer, Cham, 2022, pp. 187–207.
- J. Barasarathi, P.S. Abdullah, E.C. Uche, Application of magnetic
carbon nanocomposite from agro-waste for the removal
of pollutants from water and wastewater, Chemosphere,
305 (2022) 135384, doi: 10.1016/j.chemosphere.2022.135384.
- I.J. Sahib, L.S. Jasim, A.F. Alkaim, Synthesis of a rGO/Fe3O4
nanoparticle composites and its use as a surface for Alizarin
Red S (ARS) dye removal from polluted water, AIP Conf. Proc.,
2386 (2022) 030029, doi: 10.1063/5.0069097.
- Md. G. Azam, Md. H. Kabir, Md. A.A. Shaikh, S. Ahmed,
M. Mahmud, S. Yasmin, A rapid and efficient adsorptive
removal of lead from water using graphene oxide prepared
from waste dry cell battery, J. Water Process Eng., 46 (2022)
102597, doi: 10.1016/j.jwpe.2022.102597.
- W. Zou, X. Feng, W. Wei, Y. Zhou, R. Wang, R. Zheng, J. Li,
S. Luo, H. Mi, H. Chen, Converting spent LiFePO4 battery into
zeolitic phosphate for highly efficient heavy metal adsorption,
Inorg. Chem., 60 (2021) 9496–9503.
- A. Masudi, G.E. Harimisa, N.A. Ghafar, N.W.C Jusoh,
Magnetite-based catalysts for wastewater treatment, Environ.
Sci. Pollut. Res. Int., 27 (2020) 4664–4682.
- S.M. Rahimi, A.H. Panahi, N.S. Mazari Moghaddam, E. Allahyari,
N. Nasseh, Breaking down of low-biodegradation Acid Red 206
dye using bentonite/Fe3O4/ZnO magnetic nanocomposite as a
novel photo-catalyst in presence of UV light, Chem. Phys. Lett.,
794 (2022) 139480, doi: 10.1016/j.cplett.2022.139480.
- H.T. Do, P.H. Nguyen, C.X. Phan, H.N. Nguyen, P.T. Le,
T.T.T. Nguyen, T.T. Nguyen, T.N. Pham, M. Osial,
T.M.T. Dinh,
Hydroxyapatite/superparamagnetic iron oxide nanoparticles
nanocomposite for Congo red adsorption, Desal. Water. Treat.,
(2023) 1–15.
- N. AbouSeada, M.A. Ahmed, M.G. Elmahgary, Synthesis
and characterization of novel magnetic nanoparticles for
photocatalytic degradation of indigo carmine dye, Mater. Sci.
Energy Technol., 5 (2022) 116–124.
- M. Khodadadi, S. Rodriguez-Couto, F.S. Arghavan, A.H. Panahi,
Synthesis and characterization of FeNi3@SiO2TiO2 nanocomposite
and its application as a catalyst in a photochemical
oxidation process to decompose tetracycline, Desal. Water
Treat., 195 (2020) 435–449.
- N. Nasseh, M.T. Samadi, M. Ghadirian, A. Hossein Panahi,
A. Rezaie, Photo-catalytic degradation of tamoxifen by using a
novel synthesized magnetic nanocomposite of FeCl2@AC@ZnO:
a study on the pathway, modeling, and sensitivity analysis
using artificial neural network (AAN), J. Environ. Chem. Eng.,
10 (2022) 107450, doi: 10.1016/j.jece.2022.107450.
- S.J. Olusegun, N.D.S. Mohallem, V.S.T. Ciminelli, Reducing
the negative impact of ceftriaxone and doxycycline in
aqueous solutions using ferrihydrite/plant-based composites:
mechanism pathway, Environ. Sci. Pollut. Res., 29 (2022)
66547–66561.
- P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.N. Vo, T.S. AlGarni,
Mu. Naushad, Z.A. ALOthman, Nanostructured magnetic
inverse spinel Ni–Zn ferrite as environmental friendly visible
light driven photo-degradation of levofloxacin, Chem. Eng.
Res. Des., 175 (2021) 85–101.
- B. Kakavandi, E. Dehghanifard, P. Gholami, M. Noorisepehr,
B.M. Hedayat, Photocatalytic activation of peroxydisulfate
by magnetic Fe3O4@SiO2@TiO2/rGO core–shell towards
degradation and mineralization of metronidazole, Appl. Surf.
Sci., 570 (2021) 151145, doi: 10.1016/j.apsusc.2021.151145.
- F. Hayati, M.R. Khodabakhshi, A.A. Isari, S. Moradi,
B. Kakavandi, LED-assisted sonocatalysis of sulfathiazole
and pharmaceutical wastewater using N,Fe co-doped TiO2@SWCNT: optimization, performance and reaction mechanism
studies, J. Water Process Eng., 38 (2020) 101693, doi: 10.1016/j.jwpe.2020.101693.
- F.S. Arghavan, A. Hossein Panahi, N. Nasseh, M. Ghadirian,
Adsorption-photocatalytic processes for removal of
pentachlorophenol contaminant using FeNi3/SiO2/ZnO
magnetic nanocomposite under simulated solar light
irradiation, Environ. Sci. Pollut. Res., 28 (2021) 7462–7475.
- M. Nikazar, M. Alizadeh, R. Lalavi, M. Hossein Rostami,
The optimum conditions for synthesis of Fe3O4/ZnO
core/shell magnetic nanoparticles for photodegradation
of phenol, J. Environ. Health Sci. Eng., 12 (2014) 21,
doi: 10.1186/2052-336X-12-21.
- S. Akhtar, W. An, X. Niu, K. Li, S. Anwar, K. Maaz, M. Maqbool,
L. Gao, Toxicity of PEG-coated CoFe2O4 nanoparticles with
treatment effect of curcumin, Nanoscale. Res. Lett., 13 (2018) 52,
doi: 10.1186/s11671-018-2468-7.
- M. Jouyandeh, M.R. Ganjali, A. Ali, M.J. Aghazadeh, F.J. Stadler,
M.R. Saeb, Curing epoxy with electrochemically synthesized
CoxFe3–xO4 magnetic nanoparticles, Prog. Org. Coat., 137 (2019)
105252, doi: 10.1016/j.porgcoat.2019.105252.
- M.B. Vraneš, S.M. Papović, S.B. Gadžurić, Spectrophotometric
investigation of cobalt chloride complex formation in aqueous
calcium nitrate–ammonium nitrate melts at T = 328.15 K:
influence of water content, J. Solution Chem., 48 (2019)
1364–1377.
- Q. Wang, H. Gao, X. Qin, J. Dai, W. Li, Fabrication of
NiFe2O4@CoFe2O4 core-shell nanofibers for high-performance
supercapacitors, Mater. Res. Express, 7 (2020) 015020,
doi: 10.1088/2053-1591/ab61ba.
- S. Zhao, D. Ma, Preparation of CoFe2O4 nanocrystallites by
solvothermal process and its catalytic activity on the thermal
decomposition of ammonium perchlorate, J. Nanomater.,
2010 (2010) 842816, doi: 10.1155/2010/842816.
- N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin, H. Tang, Sonoassisted
preparation of highly-efficient peroxidase-like Fe3O4
magnetic nanoparticles for catalytic removal of organic
pollutants with H2O2, Ultrason. Sonochem., 17 (2010) 526–533.
- S.Y. Zhao, D.-G. Lee, C.-W. Kim, H.-G. Cha, Y.-H. Kim,
Y.-S. Kang, Synthesis of magnetic nanoparticles of Fe3O4
and CoFe2O4 and their surface modification by surfactant
adsorption, Bull. Korean Chem. Soc., 27 (2006) 237–242.
- S. Ayyappan, S. Mahadevan, P. Chandramohan, P. Srinivasan,
J. Philip, B. Raj, Influence of Co2+ ion concentration on the
size, magnetic properties, and purity of CoFe2O4 spinel ferrite
nanoparticles, J. Phys. Chem. C, 114 (2010) 6334–6341.
- K. Kartha, M. Pai, A. Banerjee, R. Pai, S. Meena, S. Bharadwaj,
Modified surface and bulk properties of
Fe-substituted
lanthanum titanates enhances catalytic activity for CO + N2O
reaction, J. Mol. Catal. A: Chem., 335 (2011) 158–168.
- A.H. Rezayan, M. Mousavi, S. Kheirjou, G. Amoabediny,
M.S. Ardestani, J. Mohammadnejad, Monodisperse magnetite
(Fe3O4) nanoparticles modified with water soluble polymers for
the diagnosis of breast cancer by MRI method, J. Magn. Magn.
Mater., 420 (2016) 210–217.
- H.R. Dehghanpour, The effects of surfactant changing on
physical properties of Fe3O4 nanoparticles produced in
coprecipitation method, Russ. J. Inorg. Chem., 65 (2020)
1282–1286.
- Y. Li, W. Qiu, F. Qin, H. Fang, V.G. Hadjiev, D. Litvinov, J. Bao,
Identification of cobalt oxides with Raman scattering and
Fourier transform infrared spectroscopy, J. Phys. Chem. C,
120 (2016) 4511–4516.
- M. Ristic, S. Krehula, M. Reissner, M. Jean, B. Hannoyer,
S. Musić, Synthesis and properties of precipitated cobalt ferrite
nanoparticles, J. Mol. Struct., 1140 (2017) 32–38.
- S. Mitra, P.S. Veluri, A. Chakraborthy, R.K. Petla, Electrochemical
properties of spinel cobalt ferrite nanoparticles with sodium
alginate as interactive binder, ChemElectroChem, 1 (2014)
1068–1074.
- R. Rahmani, M. Gharanfoli, M. Gholamin, M. Darroudi,
J. Chamani, K. Sadri, A. Hashemzadeh, Plant-mediated
synthesis of superparamagnetic iron oxide nanoparticles
(SPIONs) using aloe vera and flaxseed extracts and evaluation
of their cellular toxicities, Ceram. Int., 46 (2020) 3051–3058.
- P. Pietrzyk, N.T. Phuong, S.J. Olusegun, N. Hong Nam,
D.T.M. Thanh, M. Giersig, P. Krysiński, M. Osial, Titan yellow
and Congo red removal with superparamagnetic iron-oxidebased
nanoparticles doped with zinc, Magnetochemistry,
8 (2022) 91, doi: 10.3390/magnetochemistry8080091.
- D.T.M. Thanh, N.T. Phuong, D.T. Hai, H.N. Giang, N.T. Thom,
P.T. Nam, N.T. Dung, M. Giersig, M. Osial, Influence of experimental
conditions during synthesis on the physicochemical
properties of the SPION/hydroxyapatite nanocomposite
for magnetic hyperthermia application, Magnetochemistry,
8 (2022) 90, doi: 10.3390/magnetochemistry8080090.
- J. Kundu, D. Pradhan, Controlled synthesis and catalytic
activity of copper sulfide nanostructured assemblies with
different morphologies, ACS Appl. Mater. Interfaces, 6 (2014)
1823–1834.
- A.J. Deotale, R.V. Nandedkar, Correlation between particle
size, strain and band gap of iron oxide nanoparticles, Mater.
Today Proc., 3 (2016) 2069–2076.
- V.S. Kirankumar, S. Sumathi, Photocatalytic and antibacterial
activity of bismuth and copper co-doped cobalt ferrite
nanoparticles, J. Mater. Sci. - Mater. Electron., 29 (2018)
8738–8746.
- Y. Yao, G. Wu, F. Lu, S. Wang, Y. Hu, J. Zhang, W. Huang,
F. Wei, Enhanced photo-Fenton-like process over
Z-scheme
CoFe2O4/g-C3N4 heterostructures under natural indoor light,
Environ. Sci. Pollut. Res., 23 (2016) 21833–21845.
- P.J. Costa, The halogen bond: nature and applications,
Phys. Sci. Rev., 2 (2017) 1–16.
- R.G. Pearson, Hard and soft acids and bases-the evolution of
a chemical concept, Coord. Chem. Rev., 100 (1990) 403–425.
- I. Fleming, Molecular Orbitals and Organic Chemical Reactions,
John Wiley & Sons, London, 1976.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, Gaussian 09, Revision C.02, Gaussian Inc.,
Wallingford CT, 2010.
- A.O. Elzupir, R.K. Hussein, K.H. Ibnaouf, Intermolecular
CH-π electrons interaction in
poly(9,9-dioctylfluorenyl-2,7-
diyl) (PFO): an experimental and theoretical study, Molecules,
27 (2022) 1488, doi: 10.3390/molecules27051488.
- K. Raghavachari, Perspective on “Density functional
thermochemistry. III. The role of exact exchange”, Theor. Chem.
Acc., 103 (2000) 361–363.
- S.K. Alghamdi, F. Abbas, R.K. Hussein, A.G. Alhamzani,
N.T. El‐Shamy, Spectroscopic characterization
(IR, UV-Vis), and
HOMO-LUMO, MEP, NLO, NBO analysis and the antifungal
activity for
4-bromo-N-(2-nitrophenyl) benzamide; using DFT
modeling and in silico molecular docking, J. Mol. Struct.,
1271 (2023) 13400.
- S. Swapna Priya, K.V. Radha, A review on the adsorption
studies of tetracycline onto various types of adsorbents,
Chem. Eng. Commun., 204 (2017) 821–839.
- S.J. Olusegun, G. Larrea, M. Osial, K. Jackowska, P. Krysinski,
Photocatalytic degradation of antibiotics by superparamagnetic
iron oxide nanoparticles, Tetracycline case, Catalysts,
11 (2021) 1243, doi: 10.3390/catal11101243.
- Y. Wang, J. Xiu, T. Gan, H. Zou, F. Li, Photocatalytic degradation
of tetracycline hydrochloride by lanthanum doped TiO2@g-C3N4 activated persulfate under visible light irradiation,
RSC Adv., 13 (2023) 8383–8393.
- A. Hemmi, M. Belmedani, E. Mekatel, R. Brahimi, M. Trari,
Kinetic and mechanism studies of tetracycline photodegradation
using synthesized ZnAl2O4, React. Kinet. Mech. Catal.,
134 (2021) 1039–1054.
- W. Piasecki, K. Szymanek, R. Charmas, Fe2+ adsorption on
iron oxide: the importance of the redox potential of the
adsorption system, Adsorption, 25 (2019) 613–619.
- M.E. Peralta, R. Nisticò, F. Franzoso, G. Magnacca, L. Fernandez,
M.E. Parolo, E.G. León, L. Carlos, Highly efficient removal
of heavy metals from waters by magnetic chitosan‑based
composite, Adsorption, 25 (2019) 1337–1347.
- H. Wang, C. Fang, Q. Wang, Y. Chu, Y. Song, Y. Chen, X. Xue,
Sorption of tetracycline on biochar derived from rice straw
and swine manure, RSC Adv., 8 (2018) 16260–16268.
- A. Samadi-Maybodi, R. Khabazifard, Photodegradation of
tetracycline and doxycycline under visible radiation using
MIL-MIL101 Fe(NH2)@g-C3N4@CoFe2O4/GO as photocatalyst,
Optik, 262 (2022) 168934, doi: 10.1016/j.ijleo.2022.168934.
- L. Zhang, X. Song, X. Liu, L. Yang, F. Pan, J. Lv, Studies on
the removal of tetracycline by multiwalled carbon nanotubes,
Chem. Eng. J., 178 (2011) 26–33.
- J.-Z. Kong, A.-D. Li, X.-Y. Li, H.-F. Zhai, W.-Q. Zhang, Y.-P. Gong,
H. Li, D. Wu, Photo-degradation of methylene blue using
Ta-doped ZnO nanoparticle, J. Solid State Chem., 183 (2010)
1359–1364.
- H. Yuan, Q. Su, Y. Wang, J. Li, B. Liu, Y. Li, P. Wu, Tetracycline
catalytic photodegradation with mesoporous phosphated
TiO2: characterization, process optimization and degradation
pathway, RSC Adv., 11 (2021) 10975–10985.
- A.P. Farheen, Enhanced visible light energy harvesting and
efficient photocatalytic antibiotic drug degradation over egg
albumen mediated Sr doped Fe2O3 nanoparticles, Mater.
Sci. Semicond. Process., 148 (2022) 106804, doi: 10.1016/j.mssp.2022.106804.
- M. Nagamine, M. Osial, K. Jackowska, P. Krysinski, J. Widera-Kalinowska, Tetracycline photocatalytic degradation under
CdS treatment, J. Mar. Sci. Eng., 8 (2020) 483, doi: 10.3390/jmse8070483.
- S.-Y. Liu, A. Zada, X. Yu, F. Liu, G. Jin, NiFe2O4/g-C3N4
heterostructure with an enhanced ability for photocatalytic
degradation of tetracycline hydrochloride and antibacterial
performance, Chemosphere, 307 (2022) 135717, doi: 10.1016/j.chemosphere.2022.135717.
- C. Lai, F. Xu, M. Zhang, B. Li, S. Liu, H. Yi, L. Li, L. Qin,
X. Liu, Y. Fu, Y. An, N. An, H. Yang, X. Huo, X. Yang, H. Yan,
Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme
heterojunction for improved visible-light photocatalytic
performance: photodegradation of tetracycline and
photocatalytic mechanism, J. Colloid Interface Sci., 588 (2021)
283–294.
- S.J. Singh, P. Chinnamuthu, Magnetically recoverable Cu(1–x)CexO nanoparticles for photodegradation of tetracycline,
Colloids Surf., A, 656 (2023) 130404, doi: 10.1016/j.
colsurfa.2022.130404.
- P. Semeraro, S. Bettini, S. Sawalha, S. Pal, A. Licciulli,
F. Marzo, N. Lovergine, L. Valli, G. Giancane, Photocatalytic
degradation of tetracycline by ZnO/γ-Fe2O3 paramagnetic
nanocomposite material, Nanomaterials, 10 (2020) 1458,
doi: 10.3390/nano10081458.
- B. Kakavandi, S. Alavi, F. Ghanbari, M. Ahmadi, Bisphenol
A degradation by peroxymonosulfate photo-activation
coupled with carbon-based cobalt ferrite nanocomposite:
performance, upgrading synergy and mechanistic
pathway, Chemosphere, 287 (2022) 132024, doi: 10.1016/j.chemosphere.2021.132024.
- A.A. Isari, S. Moradi, S.S. Rezaei, F. Ghanbari, E. Dehghanifard,
B. Kakavandi, Peroxymonosulfate catalyzed by core/shell
magnetic ZnO photocatalyst towards malathion degradation:
enhancing synergy, catalytic performance and mechanism,
Sep. Purif. Technol., 275 (2021), 119163, doi: 10.1016/j.seppur.2021.119163.
- J. Wang, F. Osterloh, Limiting factors for photochemical charge
separation in BiVO4/Co3O4, a highly active photocatalyst
for water oxidation in sunlight, J. Mater. Chem. A, 2 (2014)
9405–9411.
- F. Hu, W. Luo, C. Liu, H. Dai, X. Xu, Q. Yue, L. Xu, G. Xu,
Y. Jian, X. Peng, Fabrication of graphitic carbon nitride
functionalized P–CoFe2O4 for the removal of tetracycline
under visible light: optimization, degradation pathways and
mechanism evaluation, Chemosphere, 274 (2021) 129783,
doi: 10.1016/j.chemosphere.2021.129783.
- S. Giannakis, S. Liu, A. Carratalà, S. Rtimi, M.T. Amiri,
M. Bensimon, C. Pulgarin, Iron oxide-mediated semiconductor
photocatalysis vs. heterogeneous photo-Fenton treatment
of viruses in wastewater. Impact of the oxide particle size,
J. Hazard. Mater., 339 (2017) 223–231.
- Y. Nosaka, A. Nosaka, Understanding hydroxyl radical (•OH)
generation processes in photocatalysis, ACS Energy Lett.,
1 (2016) 356–359.
- D. Lawless, N. Serpone, D. Meisel, Role of hydroxyl radicals
and trapped holes in photocatalysis. A pulse radiolysis
study, J. Phys. Chem., 95 (1991) 5166–5170.
- M.L. Kremer, Mechanism of the Fenton reaction. Evidence
for a new intermediate, Phys. Chem. Chem. Phys., 1 (1999)
3595–3605.
- A.V. Vorontsov, Advancing Fenton and photo-Fenton water
treatment through the catalyst design, J. Hazard. Mater.,
372 (2019) 103–112.
- K. Du, E.H. Ang, X. Wu, Y. Liu, Progresses in sustainable
recycling technology of spent lithium-ion batteries, Energy
Environ. Mater., 5 (2022) 1012–1036.
- X. He, T. Kai, P. Ding, Heterojunction photocatalysts for
degradation of the tetracycline antibiotic: a review, Environ.
Chem. Lett., 19 (2021) 4563–4601.
- P. Meshram, A. Mishra, Abhilash, R. Sahu, Environmental
impact of spent lithium ion batteries and green recycling
perspectives by organic acids – a review, Chemosphere,
242 (2020) 125291, doi: 10.1016/j.chemosphere.2019.125291.
- Z. Dobó, T. Dinh, T. Kulcsár, A review on recycling of spent
lithium-ion batteries, Energy Rep., 9 (2023) 6362–6395.
- J. Zhang, Chapter 10 – Application of Hydrometallurgy in
Spent Lithium-Ion Battery Recycling, S. Farhad, R.K. Gupta,
G. Yasin, T.A. Nguyen, Micro and Nano Technologies, Nano
Technology for Battery Recycling, Remanufacturing, and
Reusing, Elsevier, Denmark, 2022, pp. 183–216.
- Y. Ma, J. Tang, R. Wanaldi, X. Zhou, H.C. Wang, Zhou, J. Yang,
A promising selective recovery process of valuable metals
from spent lithium-ion batteries via reduction roasting and
ammonia leaching, J. Hazard. Mater., 402 (2021) 123491,
doi: 10.1016/j.jhazmat.2020.123491.
- S.T. Yan, R.Z. Wang, C.Y. Shao, Z.Q. Tong, T. Li, L.J. Yuan,
G.H. Sheng, K.X. Xu, The strategy of entire recovery: from
spent cathode material with high nickel content to new
LiNi0.5Co0.2Mn0.3O2 and Li2CO3 powders, J. Power Sources,
440 (2019) 227140, doi: 10.1016/j.jpowsour.2019.227140.
- D. Patil, S. Chikkamath, S. Keny, V. Tripathi, J. Manjanna,
Rapid dissolution and recovery of Li and Co from spent
LiCoO2 using mild organic acids under microwave irradiation,
J. Environ. Manage., 15 (2020) 109935, doi: 10.1016/j.jenvman.2019.109935.
- Y. Zhang, Recycling of cathode material from spent lithiumion
batteries using an ultrasound-assisted DL-malic acid
leaching system, Waste Manage., 15 (2020) 52–60.
- Y.P. Fu, Y.Q. He, Y. Yang, L.L. Qu, J.L. Li, R. Zhou, Microwave
reduction enhanced leaching of valuable metals from spent
lithium-ion batteries, J. Alloys Compd., 832 (2020) 154920,
doi: 10.1016/j.jallcom.2020.154920.
- Y. Zhao, B. Liu, L. Zhang, S. Guo, Microwave pyrolysis of
macadamia shells for efficiently recycling lithium from spent
lithium-ion batteries, J. Hazard. Mater., 5 (2020) 122740,
doi: 10.1016/j.jhazmat.2020.122740.
- P. Giorgio Schiavi, P. Altimari, M. Branchi, R. Zanoni,
G. Simonetti, M. Assunta Navarra, F. Pagnanelli, Selective
recovery of cobalt from mixed lithium-ion battery wastes
using deep eutectic solvent, Chem. Eng. J., 417 (2021) 129249,
doi: 10.1016/j.cej.2021.129249.
- A. Pręgowska, M. Osial, W. Urbańska, The application of
artificial intelligence in the effective battery life cycle in the
closed circular economy model—a perspective, Recycling,
7 (2022) 81, doi: 10.3390/recycling7060081.
- C. Ruhatiya, S. Shaosen, C.-T. Wang, A.K. Jishnu, Y. Bhalerao,
Optimization of process conditions for maximum metal
recovery from spent zinc-manganese batteries: illustration
of statistical based automated neural network approach,
Energy Storage, Special Issue: Renewable Energy and Energy
Storage Systems, 2 (2020) e111, doi: 10.1002/est2.111.
- M. Noor, M.H. Wong, S. Ngadi, I.M. Inuwa, L.A. Opotu,
Assessing the effectiveness of magnetic nanoparticles
coagulation/flocculation in water treatment: a systematic
literature review, Int. J. Environ. Sci. Technol., 19 (2020)
6935–6956.
- S. Shukla, R. Khan, A. Daverey, Synthesis and characterization
of magnetic nanoparticles, and their applications in
wastewater treatment: a review, Environ. Technol. Innovation,
24 (2021) 10192, doi: 10.1016/j.eti.2021.101924.
- F. Gao, An overview of surface-functionalized magnetic
nanoparticles: preparation and application for wastewater
treatment, ChemistrySelect, 4 (2019) 6805–6811.
- A.E. Vasu, A.P. Mary Sri Archana, A.C. Sagayaraj,
F.F Reymond, V.A. Jasmine, A.T. Elizabeth, Magnetic
nanocomposite fabrication
using banana leaf sheath biofluid:
enhanced Fenton catalytic activity towards tetracycline
degradation, Inorg. Chem. Commun., 141 (2022) 109541,
doi: 10.1016/j.inoche.2022.109541.
- Y.C. Sharma, V. Srivastava, Comparative studies of removal
of Cr(VI) and Ni(II) from aqueous solutions by magnetic
nanoparticles, J. Chem. Eng. Data, 56 (2011) 819–825.
- S. Zhang, Y. Zhang, G. Bi, J. Liu, Z. Wang, Q. Xu, H. Xu, X. Li,
Mussel-inspired polydopamine biopolymer decorated with
magnetic nanoparticles for multiple pollutants removal,
J. Hazard. Mater., 270 (2014) 27–34.
- K. Chen, J. He, Y. Li, X. Cai, K. Zhang, T. Liu, Y. Hu, D. Lin,
L. Kong, J. Liu, Removal of cadmium and lead ions from water
by sulfonated magnetic nanoparticle adsorbents, J. Colloid
Interface Sci., 494 (2017) 307–316.
- G.T. Tee, X.T. Gok, W.F. Yong, Adsorption of pollutants in
wastewater via biosorbents, nanoparticles and magnetic
biosorbents: a review, Environ. Res., 212 (2022) 113248,
doi: 10.1016/j.envres.2022.113248.
- S. Karimi, H. Namazi, Magnetic alginate/glycodendrimer
beads for efficient removal of tetracycline and amoxicillin
from aqueous solutions, Int. J. Biol. Macromol., 205 (2022)
128–140.
- Z. Alizadeh, A. Rezaee, Tetracycline removal using microbial
cellulose@nano-Fe3O4 by adsorption and heterogeneous
Fenton-like processes, J. Mol. Liq., 366 (2022) 120199,
doi: 10.1016/j.molliq.2022.120199.
- L. Zhang, Y. Wang, Y. Shi, Y. Zhu, Heterogeneous catalytic
oxidation of tetracycline hydrochloride based on persulfate
activated by Fe3O4/MC composite, Chem. Eng. J., 447 (2022)
137406, doi: 10.1016/j.cej.2022.137406.
- A. Nasiri, S. Rajabi, A. Amiri, M. Fattahizade, O. Hasani,
A. Lalehzari, M. Hashemi, Adsorption of tetracycline
using CuCoFe2O4@chitosan as a new and green magnetic
nanohybrid adsorbent from aqueous solutions: isotherm,
kinetic and thermodynamic study, Arabian J. Chem., 15 (2022)
104014, doi: 10.1016/j.arabjc.2022.104014.
- H. Zhu, A. Guo, S. Wang, Y. Long, G. Fan, X. Yu, Efficient
tetracycline degradation via peroxymonosulfate activation by
magnetic Co/N co-doped biochar: emphasizing the important
role of biochar graphitization, Chem. Eng. J., 450 (2022)
138428, doi: 10.1016/j.cej.2022.138428.
- M. Usman, A. Ahmed, Z. Ji, B. Yu, M. Rafiq, Y. Shen,
H. Cong, Enhanced heterogenous photo-Fenton degradation
of tetracycline in aqueous medium by visible light responsive
sulphur dopped zinc ferrite nanoparticles, Mater. Today
Chem., 26 (2022) 101003, doi: 10.1016/j.mtchem.2022.101003.
- U. Kumar, J. Kuntail, A. Kumar, R. Prakash, M.R. Pai, I. Sinha,
In-situ H2O2 production for tetracycline degradation on
Ag/s-(Co3O4/NiFe2O4) visible light magnetically recyclable
photocatalyst, Appl. Surf. Sci., 589 (2022) 153013, doi: 10.1016/j.apsusc.2022.153013.