References
- EC, Council Directive 91/271/EEC of 21 May 1991 Concerning
Urban Wastewater Treatment, European Commission,
Brussels, Belgium, 1991.
- M. Vítězová, A. Kohoutová, T. Vítěz, N. Hanišáková,
I. Kushkevych, Methanogenic microorganisms in industrial
wastewater anaerobic treatment, Processes, 8 (2020) 1546,
doi: 10.3390/pr8121546.
- B. Yadav, S. Chavan, A. Atmakuri, R.D. Tyagi, P. Drogui,
A review on recovery of proteins from industrial wastewaters
with special emphasis on PHA production process: sustainable
circular bioeconomy process development, Bioresour.
Technol., 317 (2020) 124006, doi: 10.1016/j.biortech.2020.124006.
- M. Tariq, A. Anayat, M. Waseem, M.H. Rasool, M.A. Zahoor,
S. Ali, S. Alkahtani, Physicochemical and bacteriological
characterization of industrial wastewater being discharged
to surface water bodies: significant threat to environmental
pollution and human health, J. Chem., 9067436 (2020) 1–10.
- M. Ilyas, W. Ahmad, H. Khan, S. Yousaf, M. Yasir, A. Khan,
Environmental and health impacts of industrial wastewater
effluents in Pakistan: a review, Rev. Environ. Health, 34 (2019)
171–186.
- A.A. Franco, J.M. Arellano, G. Albendín, R. Rodríguez-Barroso,
S. Zahedi, J.M. Quiroga, M.D. Coello, Mapping microplastics
in Cadiz (Spain): occurrence of microplastics in municipal
and industrial wastewaters, J. Water Process Eng., 38 (2020)
101596, doi: 10.1016/j.jwpe.2020.101596.
- E. Vaiopoulou, P. Gikas, Regulations for chromium emissions
to the aquatic environment in Europe and elsewhere,
Chemosphere, 254 (2020) 126876, doi: 10.1016/j.chemosphere.2020.126876.
- A. Botturi, E.G. Ozbayram, K. Tondera, N.I. Gilbert, P. Rouault,
N. Caradot, F. Fatone, Combined sewer overflows: a critical
review on best practice and innovative solutions to mitigate
impacts on environment and human health, Crit. Rev. Env. Sci.
Technol., 5 (2021) 1585–1618.
- P. Zawadzki, E. Kudlek, M. Dudziak, Influence of the type of
photocatalyst on photocatalytic oxidation of triclosan in the
aquatic environment, Int. J. Global Environ. Issues, 20 (2021)
1–17.
- E. Kamińska, A. Marszałek, E. Kudlek, M. Adamczak,
E. Puszczało, Innovative treatment of wastewater containing
of triclosan – SBR followed by ultrafiltration/adsorption/advanced oxidation processes, J. Water Process Eng., 50 (2022)
103282, doi: 10.1016/j.jwpe.2022.103282.
- European Commission, Directive 2010/75/EU of the European
Parliament and of the Council of 24 November 2010 on
Industrial Emissions (Integrated Pollution Prevention and
Control), 2010.
- European Commission, Communication From the Commission:
The European Green Deal, 2019 (COM No. 640, 2019).
- C. Wolf, S. Teitge, J. Mielke, J. Schütze, F. Jaeger, The European
Green Deal—more than climate neutrality, Intereconomics,
56 (2021) 99–107.
- J.B. Skjærseth, Towards a European Green Deal: the evolution
of EU climate and energy policy mixes, Int. Environ.
Agreements Polit. Law Econ., 21 (2021) 25–41.
- European Commission, Communication From the
Commission: A New Industrial Strategy for Europe, 2020
(COM No. 102, 2020).
- M. Smol, Is the green deal a global strategy? Revision of the
green deal definitions, strategies and importance in post-COVID recovery plans in various regions of the world, Energy
Policy, 169 (2022) 113152, doi: 10.1016/j.enpol.2022.113152.
- P.S. Varbanov, T.G. Walmsley, Circular economy and
engineering concepts for technology and policy development,
Clean Technol. Environ. Policy, 21 (2019) 479–480.
- E.R. Rene, R. Khanongnuch, M. Race, F. Di Capua,
A. Pugazhendhi, Eco-technologies for waste to energy
conversion: applying the concepts of cleaner production,
circular economy, and biorefinery, Clean Technol. Environ.
Policy, 25 (2023) 311–312.
- M. Smol, C. Adam, O. Krüger, Use of nutrients from
wastewater for the fertilizer industry – approaches towards
the implementation of the circular economy (CE), Desal.
Water Treat., 186 (2020) 1–9.
- European Commission, Communication from the Commission
– Towards a Circular Economy: A Zero Waste Programme
for Europe, 2014 (COM No. 398, 2014).
- European Commission, Communication from the Commission.
Circular Economy Action Plan for a Cleaner and More
Competitive Europe, 2020 (COM No. 98, 2020).
- A. Braun, R. Toth, Circular economy: national and global policy —
overview, Clean Technol. Environ. Policy, 23 (2020) 301–304.
- D.K.R. Robinson, A. Simone, M. Mazzonetto, RRI legacies:
co-creation for responsible, equitable and fair innovation in
Horizon Europe, J. Responsible Innov., 8 (2021) 209–216.
- M. Yaqub, W. Lee, Zero-liquid discharge (ZLD) technology
for resource recovery from wastewater: a review, Sci. Total
Environ., 681 (2019) 551–563.
- C. Arena, M. Genco, M.R. Mazzola, Environmental benefits
and economical sustainability of urban wastewater reuse
for irrigation—a cost-benefit analysis of an existing reuse
project in Puglia, Italy, Water (Switzerland), 12 (2020) 2926,
doi: 10.3390/w12102926.
- Veolia, https://www.veoliawatertechnologies.pl/, 2023.
- J. Zdarta, T. Jesionowski, M. Pinelo, A.S. Meyer, H.M. Iqbal,
M. Bilal, L.D. Nghiem, Free and immobilized biocatalysts for
removing micropollutants from water and wastewater: recent
progress and challenges, Bioresour. Technol., 344 (2022) 126201,
doi: 10.1016/j.biortech.2021.126201.
- C. Wang, Y. Liu, M. Huang, W. Xiang, Z. Wang, X. Wu,
T. Zhou, A rational strategy of combining Fenton oxidation
and biological processes for efficient nitrogen removal in toxic
coking wastewater, Bioresour. Technol., 363 (2022) 127897,
doi: 10.1016/j.biortech.2022.127897.
- M. Smol, M. Włodarczyk-Makuła, Effectiveness in the
removal of polycyclic aromatic hydrocarbons from industrial
wastewater by ultrafiltration technique, Arch. Environ. Prot.,
38 (2012) 49–58.
- K. Mielczarek, J. Bohdziewicz, M. Włodarczyk-Makuła,
M. Smol, Comparison of post-process coke wastewater
treatment effectiveness in integrated and hybrid systems that
combine coagulation, ultrafiltration, and reverse osmosis,
Desal. Water Treat., 52 (2014) 3879–3888.
- BAT, Best Available Techniques (BAT) Guidelines for the
Coking Industry, 2005.
- W.M. Bajdur, M. Włodarczyk-Makuła, A. Idzikowski,
A new synthetic polymers used in removal of pollutants from
industrial effluents, Desal. Water Treat., 57 (2016) 1038–1049.
- M. Hein, M. Kaiser, Environmental control and emission
reduction for coking plants, Air Pollut., 10 (2012) 235–280.
- M. Bodzek, Membrane separation techniques: removal of
inorganic and organic admixtures and impurities from water
environment, Arch. Environ. Prot., 45 (2019) 4–19.
- X. Bai, M. Nie, Z. Diwu, L. Wang, H. Nie, Y. Wang, B. Zhang,
Simultaneous
biodegradation of phenolics and petroleum
hydrocarbons
from semi-coking wastewater: construction of
bacterial consortium and their metabolic division of labor,
Bioresour. Technol., 347 (2022) 126377, doi: 10.1016/j.biortech.
2021.126377.
- H. Machowska, Cooking making industry with relation to
environment protection, Proc. ECOpole, 5 (2011) 269–274.
- R. Kwiecińska, A. Lajnert, R. Bigda, Coke oven wastewaterformation,
treatment and utilization methods-a review,
Proc. ECOpole, 11 (2017) 19–28.
- M. Taniewski, Sustainable chemical technologies – development
trends and tools, Chem. Eng. Technol., 29 (2006) 1397–1403.
- BREF, Best Available Techniques Reference Document on
the Production of Iron and Steel, Seville, 2000.
- BAT, Best Available Techniques (BAT) Reference Document
for Iron and Steel Production, Jt. Res. Cent. Rep., 2013.
- Q.I. Rong, Y. Kun, Z.X. Yu, Treatment of coke plant wastewater
by SND fixed biofilm hybrid system, J. Environ. Sci.,
19 (2007) 153–159.
- L. Mishra, K.K. Paul, S. Jena, Coke wastewater treatment
methods: mini review, J. Indian Chem. Soc., 98 (2021) 100133,
doi: 10.1016/j.jics.2021.100133.
- V.V. Ranade, V.M. Bhandari, Industrial Wastewater Treatment,
Recycling and Reuse, Butterworth-Heinemann, Oxford, UK,
2014.
- K. Mielczarek, J. Bohdziewicz, M. Włodarczyk-Makuła,
M. Smol, Modeling performance of commercial membranes
in the low-pressure filtration coking wastewater treatment
based on mathematical filtration models, Desal. Water Treat.,
52 (2014) 3743–3752.
- P. Sindera, E. Felis, J. Wiszniowski, Assessment of genotoxicity
of coke wastewater, Sci. Rev. - Eng. Environ. Dev.,
53 (2011) 217–225.
- K. Mielczarek, J. Bohdziewicz, M. Włodarczyk-Makuła,
M. Smol, Comparison of post-process coke wastewater
treatment effectiveness in integrated and hybrid systems that
combine coagulation, ultrafiltration, and reverse osmosis,
Desal. Water Treat., 52 (2014) 3879–3888.
- M. Smol, The Use of Integrated Membrane Systems for the
Removal of Polycyclic Aromatic Hydrocarbons (PAHs) From
Industrial Wastewater, Publ. Miner. Energy Econ. Res. Inst.
Polish Acad. Sci., 2015.
- E. Maranon, I. Vazquez, J. Rodriguez, L. Castrillon, Y. Fernandez,
H. Lopez, Treatment of coke wastewater in a sequential
batch reactor (SBR) at pilot plant scale, Bioresour. Technol.,
99 (2008) 4192–4198.
- B. Macherzynski, M. Włodarczyk-Makuła, Biochemical
neutralization of coke excess sewage sludge during anaerobic
digestion process, Chem. Biochem. Eng. Q., 32 (2018) 239–246.
- I. Vázquez, J. Rodríguez, E. Marañón, L. Castrillón,
Y. Fernández, Simultaneous removal of phenol, ammonium
and thiocyanate from coke wastewater by aerobic biodegradation,
J. Hazard. Mater., 137 (2006) 1773–1780.
- Z.Y. Wu, W.P. Zhu, Y. Liu, L.L. Zhou, P.X. Liu, J. Xu, An
integrated biological-electrocatalytic process for highlyefficient
treatment of coking wastewater, Bioresour. Technol.,
339 (2021) 125584, doi: 10.1016/j.biortech.2021.125584.
- M. Smol, M. Włodarczyk-Makuła, Effectiveness in the removal
of organic compounds from municipal landfill leachate
in integrated membrane systems: coagulation–NF/RO,
Polycyclic Aromat. Compd., 37 (2017) 456–474.
- W. Zhang, C. Wei, X. Chai, J. He, Y. Cai, M. Ren, J. Fu, The
behaviors and fate of polycyclic aromatic hydrocarbons
(PAHs) in a coking wastewater treatment plant, Chemosphere,
88 (2012) 174–182.
- A. Turek, M. Włodarczyk-Makuła, Removal of priority PAHs
from cooking wastewater, Civ. Environ. Eng. Rep., 10 (2013)
139–147.
- J. Kozak, M. Włodarczyk-Makuła, Comparison of the PAHs
degradation effectiveness using CaO2 or H2O2 under photo-
Fenton reaction, Desal. Water Treat., 134 (2018) 57–65.
- M. Cheng, D. Guangming, D. Huang, C. Lai, P. Xu, C. Zhang,
Y. Liu, Hydroxyl radicals based advanced oxidation processes
(AOPs) for remediation of soils contaminated with organic
compounds: a review, Chem. Eng. J., 284 (2016) 582–598.
- J. Kozak, M. Włodarczyk-Makuła, Photo-oxidation of
PAHs with calcium peroxide as a source of the hydroxyl
radicals, E3S Web Conf., 30 (2018) 02009, doi: 10.1051/e3sconf/20183002009.
- J. Kozak, M. Włodarczyk-Makuła, The use of sodium
percarbonate in the Fenton reaction for the PAHs oxidation,
Civ. Environ. Eng. Rep., 28 (2018) 124–139.
- L. Chu, J. Wang, J. Dong, H. Liu, X. Sun, Treatment of coking
wastewater by an advanced Fenton oxidation process using
iron powder and hydrogen peroxide, Chemosphere, 86 (2012)
409–414.
- A. Krzywicka, A. Kwarciak-Kozłowska, Advanced oxidation
processes with coke plant wastewater treatment, Water Sci.
Technol., 69 (2014) 1875–1878.
- P. Oulego, S. Collado, L. Garrido, A. Laca, M. Rendueles,
M. Diaz, Wet oxidation of real coke wastewater containing high
thiocyanate concentration, J. Environ. Manage., 132 (2014) 16–23.
- J. Li, S. Wang, Y. Li, Z. Jiang, T. Xu, Y. Zhang, Supercritical water
oxidation and process enhancement of nitrogen-containing
organics and ammonia, Water Res., 185 (2020) 116222,
doi: 10.1016/j.watres.2020.116222.
- O.G. Apul, T. Karanfil, Adsorption of synthetic organic
contaminants by carbon nanotubes: a critical review, Water
Res., 68 (2015) 34–55.
- M. Zhang, Q. Zhao, X. Bai, Z. Ye, Adsorption of organic
pollutants from coking wastewater by activated coke,
Colloids Surf., A, 362 (2010) 140–146.
- L. Lihui, S. Li, Y. Wang, H. Sun, Organic pollution removal from
coke plant wastewater using coking coal, Water Sci. Technol.,
72 (2015) 158–163.
- I. Vázquez, J. Rodríguez-Iglesias, E. Maranon, L. Castrillon,
M. Alvarez, Removal of residual phenols from coke wastewater
by adsorption, J. Hazard. Mater., 147 (2007) 395–400.
- R.C. Brandli, T. Hartnik, T. Henriksen, G. Cornelissen, Sorption
of native polyaromatic hydrocarbons (PAH) to black carbon
and amended activated carbon in soil, Chemosphere, 73 (2008)
1805–1810.
- L. Dąbek, E. Ozimina, A. Picheta-Oleś, Application of
combined sorption and oxidation processes to remove
p-chlorophenol from the water environment, Proc. ECOpole,
6 (2012) 343–348.
- P. Lai, H.Z. Zhao, C. Wang, J. Ni, Advanced treatment of coking
wastewater by coagulation and zero-valent iron processes,
J. Hazard. Mater., 147 (2007) 232–239.
- J. Li, X. Yuan, H. Zhao, F. Li, Z. Lei, Z. Zhang, Highly efficient
one-step advanced treatment of biologically pretreated
coking wastewater by an integration of coagulation and
adsorption process, Bioresour. Technol., 247 (2018) 1206–1209.
- S. Liu, Q. Wang, T. Sun, C. Wu, Y. Shi, The effect of
different types of micro‐bubbles on the performance of the
coagulation flotation process for coke wastewater, J. Chem.
Technol. Biotechnol., 87 (2012) 206–215.
- M. Smol, M. Włodarczyk-Makuła, The treatment of industrial
wastewater in accordance to ‘zero waste’ strategy, Acta
Innov., 16 (2015) 5–11.
- J. Wang, Y. Ji, F. Zhang, D. Wang, X. He, C. Wang, Treatment
of coking wastewater using oxic-anoxic-oxic process followed
by coagulation and ozonation, Carbon Resour. Convers.,
2 (2019) 151–156.
- M. Smol, M. Włodarczyk-Makuła, J. Bohdziewicz, K. Mielczarek,
The use of integrated membrane systems in the removal of
selected pollutants from pre-treated wastewater in coke plant,
Membr. Membr. Process. Environ. Prot. Monogr. Environ. Eng.
Comm. Polish Acad. Sci., 119 (2014) 143–152.
- M. Smol, D. Włóka, M. Włodarczyk-Makuła, Influence of
integrated membrane treatment on the phytotoxicity of
wastewater from the coke industry, Water Air Soil Pollut.,
229 (2018) 154, doi: 10.1007/s11270-018-3794-1.
- R. Kumar, P. Bhakta, S. Chakraborty, P. Pal, Separating cyanide
from coke wastewater by cross flow nanofiltration, Sep. Sci.
Technol., 46 (2011) 2119–2127.
- R. Kumar, S. Chakrabortty, P. Pal, Membrane-integrated
physico-chemical treatment of coke-oven wastewater:
transport modelling and economic evaluation, Environ. Sci.
Pollut. Res., 22 (2015) 6010–6023.