References

  1. EC, Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Wastewater Treatment, European Commission, Brussels, Belgium, 1991.
  2. M. Vítězová, A. Kohoutová, T. Vítěz, N. Hanišáková, I. Kushkevych, Methanogenic microorganisms in industrial wastewater anaerobic treatment, Processes, 8 (2020) 1546, doi: 10.3390/pr8121546.
  3. B. Yadav, S. Chavan, A. Atmakuri, R.D. Tyagi, P. Drogui, A review on recovery of proteins from industrial wastewaters with special emphasis on PHA production process: sustainable circular bioeconomy process development, Bioresour. Technol., 317 (2020) 124006, doi: 10.1016/j.biortech.2020.124006.
  4. M. Tariq, A. Anayat, M. Waseem, M.H. Rasool, M.A. Zahoor, S. Ali, S. Alkahtani, Physicochemical and bacteriological characterization of industrial wastewater being discharged to surface water bodies: significant threat to environmental pollution and human health, J. Chem., 9067436 (2020) 1–10.
  5. M. Ilyas, W. Ahmad, H. Khan, S. Yousaf, M. Yasir, A. Khan, Environmental and health impacts of industrial wastewater effluents in Pakistan: a review, Rev. Environ. Health, 34 (2019) 171–186.
  6. A.A. Franco, J.M. Arellano, G. Albendín, R. Rodríguez-Barroso, S. Zahedi, J.M. Quiroga, M.D. Coello, Mapping microplastics in Cadiz (Spain): occurrence of microplastics in municipal and industrial wastewaters, J. Water Process Eng., 38 (2020) 101596, doi: 10.1016/j.jwpe.2020.101596.
  7. E. Vaiopoulou, P. Gikas, Regulations for chromium emissions to the aquatic environment in Europe and elsewhere, Chemosphere, 254 (2020) 126876, doi: 10.1016/j.chemosphere.2020.126876.
  8. A. Botturi, E.G. Ozbayram, K. Tondera, N.I. Gilbert, P. Rouault, N. Caradot, F. Fatone, Combined sewer overflows: a critical review on best practice and innovative solutions to mitigate impacts on environment and human health, Crit. Rev. Env. Sci. Technol., 5 (2021) 1585–1618.
  9. P. Zawadzki, E. Kudlek, M. Dudziak, Influence of the type of photocatalyst on photocatalytic oxidation of triclosan in the aquatic environment, Int. J. Global Environ. Issues, 20 (2021) 1–17.
  10. E. Kamińska, A. Marszałek, E. Kudlek, M. Adamczak, E. Puszczało, Innovative treatment of wastewater containing of triclosan – SBR followed by ultrafiltration/adsorption/advanced oxidation processes, J. Water Process Eng., 50 (2022) 103282, doi: 10.1016/j.jwpe.2022.103282.
  11. European Commission, Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control), 2010.
  12. European Commission, Communication From the Commission: The European Green Deal, 2019 (COM No. 640, 2019).
  13. C. Wolf, S. Teitge, J. Mielke, J. Schütze, F. Jaeger, The European Green Deal—more than climate neutrality, Intereconomics, 56 (2021) 99–107.
  14. J.B. Skjærseth, Towards a European Green Deal: the evolution of EU climate and energy policy mixes, Int. Environ. Agreements Polit. Law Econ., 21 (2021) 25–41.
  15. European Commission, Communication From the Commission: A New Industrial Strategy for Europe, 2020 (COM No. 102, 2020).
  16. M. Smol, Is the green deal a global strategy? Revision of the green deal definitions, strategies and importance in post-COVID recovery plans in various regions of the world, Energy Policy, 169 (2022) 113152, doi: 10.1016/j.enpol.2022.113152.
  17. P.S. Varbanov, T.G. Walmsley, Circular economy and engineering concepts for technology and policy development, Clean Technol. Environ. Policy, 21 (2019) 479–480.
  18. E.R. Rene, R. Khanongnuch, M. Race, F. Di Capua, A. Pugazhendhi, Eco-technologies for waste to energy conversion: applying the concepts of cleaner production, circular economy, and biorefinery, Clean Technol. Environ. Policy, 25 (2023) 311–312.
  19. M. Smol, C. Adam, O. Krüger, Use of nutrients from wastewater for the fertilizer industry – approaches towards the implementation of the circular economy (CE), Desal. Water Treat., 186 (2020) 1–9.
  20. European Commission, Communication from the Commission – Towards a Circular Economy: A Zero Waste Programme for Europe, 2014 (COM No. 398, 2014).
  21. European Commission, Communication from the Commission. Circular Economy Action Plan for a Cleaner and More Competitive Europe, 2020 (COM No. 98, 2020).
  22. A. Braun, R. Toth, Circular economy: national and global policy — overview, Clean Technol. Environ. Policy, 23 (2020) 301–304.
  23. D.K.R. Robinson, A. Simone, M. Mazzonetto, RRI legacies: co-creation for responsible, equitable and fair innovation in Horizon Europe, J. Responsible Innov., 8 (2021) 209–216.
  24. M. Yaqub, W. Lee, Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review, Sci. Total Environ., 681 (2019) 551–563.
  25. C. Arena, M. Genco, M.R. Mazzola, Environmental benefits and economical sustainability of urban wastewater reuse for irrigation—a cost-benefit analysis of an existing reuse project in Puglia, Italy, Water (Switzerland), 12 (2020) 2926, doi: 10.3390/w12102926.
  26. Veolia, https://www.veoliawatertechnologies.pl/, 2023.
  27. J. Zdarta, T. Jesionowski, M. Pinelo, A.S. Meyer, H.M. Iqbal, M. Bilal, L.D. Nghiem, Free and immobilized biocatalysts for removing micropollutants from water and wastewater: recent progress and challenges, Bioresour. Technol., 344 (2022) 126201, doi: 10.1016/j.biortech.2021.126201.
  28. C. Wang, Y. Liu, M. Huang, W. Xiang, Z. Wang, X. Wu, T. Zhou, A rational strategy of combining Fenton oxidation and biological processes for efficient nitrogen removal in toxic coking wastewater, Bioresour. Technol., 363 (2022) 127897, doi: 10.1016/j.biortech.2022.127897.
  29. M. Smol, M. Włodarczyk-Makuła, Effectiveness in the removal of polycyclic aromatic hydrocarbons from industrial wastewater by ultrafiltration technique, Arch. Environ. Prot., 38 (2012) 49–58.
  30. K. Mielczarek, J. Bohdziewicz, M. Włodarczyk-Makuła, M. Smol, Comparison of post-process coke wastewater treatment effectiveness in integrated and hybrid systems that combine coagulation, ultrafiltration, and reverse osmosis, Desal. Water Treat., 52 (2014) 3879–3888.
  31. BAT, Best Available Techniques (BAT) Guidelines for the Coking Industry, 2005.
  32. W.M. Bajdur, M. Włodarczyk-Makuła, A. Idzikowski, A new synthetic polymers used in removal of pollutants from industrial effluents, Desal. Water Treat., 57 (2016) 1038–1049.
  33. M. Hein, M. Kaiser, Environmental control and emission reduction for coking plants, Air Pollut., 10 (2012) 235–280.
  34. M. Bodzek, Membrane separation techniques: removal of inorganic and organic admixtures and impurities from water environment, Arch. Environ. Prot., 45 (2019) 4–19.
  35. X. Bai, M. Nie, Z. Diwu, L. Wang, H. Nie, Y. Wang, B. Zhang, Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater: construction of bacterial consortium and their metabolic division of labor, Bioresour. Technol., 347 (2022) 126377, doi: 10.1016/j.biortech. 2021.126377.
  36. H. Machowska, Cooking making industry with relation to environment protection, Proc. ECOpole, 5 (2011) 269–274.
  37. R. Kwiecińska, A. Lajnert, R. Bigda, Coke oven wastewaterformation, treatment and utilization methods-a review, Proc. ECOpole, 11 (2017) 19–28.
  38. M. Taniewski, Sustainable chemical technologies – development trends and tools, Chem. Eng. Technol., 29 (2006) 1397–1403.
  39. BREF, Best Available Techniques Reference Document on the Production of Iron and Steel, Seville, 2000.
  40. BAT, Best Available Techniques (BAT) Reference Document for Iron and Steel Production, Jt. Res. Cent. Rep., 2013.
  41. Q.I. Rong, Y. Kun, Z.X. Yu, Treatment of coke plant wastewater by SND fixed biofilm hybrid system, J. Environ. Sci., 19 (2007) 153–159.
  42. L. Mishra, K.K. Paul, S. Jena, Coke wastewater treatment methods: mini review, J. Indian Chem. Soc., 98 (2021) 100133, doi: 10.1016/j.jics.2021.100133.
  43. V.V. Ranade, V.M. Bhandari, Industrial Wastewater Treatment, Recycling and Reuse, Butterworth-Heinemann, Oxford, UK, 2014.
  44. K. Mielczarek, J. Bohdziewicz, M. Włodarczyk-Makuła, M. Smol, Modeling performance of commercial membranes in the low-pressure filtration coking wastewater treatment based on mathematical filtration models, Desal. Water Treat., 52 (2014) 3743–3752.
  45. P. Sindera, E. Felis, J. Wiszniowski, Assessment of genotoxicity of coke wastewater, Sci. Rev. - Eng. Environ. Dev., 53 (2011) 217–225.
  46. K. Mielczarek, J. Bohdziewicz, M. Włodarczyk-Makuła, M. Smol, Comparison of post-process coke wastewater treatment effectiveness in integrated and hybrid systems that combine coagulation, ultrafiltration, and reverse osmosis, Desal. Water Treat., 52 (2014) 3879–3888.
  47. M. Smol, The Use of Integrated Membrane Systems for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) From Industrial Wastewater, Publ. Miner. Energy Econ. Res. Inst. Polish Acad. Sci., 2015.
  48. E. Maranon, I. Vazquez, J. Rodriguez, L. Castrillon, Y. Fernandez, H. Lopez, Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale, Bioresour. Technol., 99 (2008) 4192–4198.
  49. B. Macherzynski, M. Włodarczyk-Makuła, Biochemical neutralization of coke excess sewage sludge during anaerobic digestion process, Chem. Biochem. Eng. Q., 32 (2018) 239–246.
  50. I. Vázquez, J. Rodríguez, E. Marañón, L. Castrillón, Y. Fernández, Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation, J. Hazard. Mater., 137 (2006) 1773–1780.
  51. Z.Y. Wu, W.P. Zhu, Y. Liu, L.L. Zhou, P.X. Liu, J. Xu, An integrated biological-electrocatalytic process for highlyefficient treatment of coking wastewater, Bioresour. Technol., 339 (2021) 125584, doi: 10.1016/j.biortech.2021.125584.
  52. M. Smol, M. Włodarczyk-Makuła, Effectiveness in the removal of organic compounds from municipal landfill leachate in integrated membrane systems: coagulation–NF/RO, Polycyclic Aromat. Compd., 37 (2017) 456–474.
  53. W. Zhang, C. Wei, X. Chai, J. He, Y. Cai, M. Ren, J. Fu, The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant, Chemosphere, 88 (2012) 174–182.
  54. A. Turek, M. Włodarczyk-Makuła, Removal of priority PAHs from cooking wastewater, Civ. Environ. Eng. Rep., 10 (2013) 139–147.
  55. J. Kozak, M. Włodarczyk-Makuła, Comparison of the PAHs degradation effectiveness using CaO2 or H2O2 under photo- Fenton reaction, Desal. Water Treat., 134 (2018) 57–65.
  56. M. Cheng, D. Guangming, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review, Chem. Eng. J., 284 (2016) 582–598.
  57. J. Kozak, M. Włodarczyk-Makuła, Photo-oxidation of PAHs with calcium peroxide as a source of the hydroxyl radicals, E3S Web Conf., 30 (2018) 02009, doi: 10.1051/e3sconf/20183002009.
  58. J. Kozak, M. Włodarczyk-Makuła, The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation, Civ. Environ. Eng. Rep., 28 (2018) 124–139.
  59. L. Chu, J. Wang, J. Dong, H. Liu, X. Sun, Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide, Chemosphere, 86 (2012) 409–414.
  60. A. Krzywicka, A. Kwarciak-Kozłowska, Advanced oxidation processes with coke plant wastewater treatment, Water Sci. Technol., 69 (2014) 1875–1878.
  61. P. Oulego, S. Collado, L. Garrido, A. Laca, M. Rendueles, M. Diaz, Wet oxidation of real coke wastewater containing high thiocyanate concentration, J. Environ. Manage., 132 (2014) 16–23.
  62. J. Li, S. Wang, Y. Li, Z. Jiang, T. Xu, Y. Zhang, Supercritical water oxidation and process enhancement of nitrogen-containing organics and ammonia, Water Res., 185 (2020) 116222, doi: 10.1016/j.watres.2020.116222.
  63. O.G. Apul, T. Karanfil, Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review, Water Res., 68 (2015) 34–55.
  64. M. Zhang, Q. Zhao, X. Bai, Z. Ye, Adsorption of organic pollutants from coking wastewater by activated coke, Colloids Surf., A, 362 (2010) 140–146.
  65. L. Lihui, S. Li, Y. Wang, H. Sun, Organic pollution removal from coke plant wastewater using coking coal, Water Sci. Technol., 72 (2015) 158–163.
  66. I. Vázquez, J. Rodríguez-Iglesias, E. Maranon, L. Castrillon, M. Alvarez, Removal of residual phenols from coke wastewater by adsorption, J. Hazard. Mater., 147 (2007) 395–400.
  67. R.C. Brandli, T. Hartnik, T. Henriksen, G. Cornelissen, Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil, Chemosphere, 73 (2008) 1805–1810.
  68. L. Dąbek, E. Ozimina, A. Picheta-Oleś, Application of combined sorption and oxidation processes to remove p-chlorophenol from the water environment, Proc. ECOpole, 6 (2012) 343–348.
  69. P. Lai, H.Z. Zhao, C. Wang, J. Ni, Advanced treatment of coking wastewater by coagulation and zero-valent iron processes, J. Hazard. Mater., 147 (2007) 232–239.
  70. J. Li, X. Yuan, H. Zhao, F. Li, Z. Lei, Z. Zhang, Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process, Bioresour. Technol., 247 (2018) 1206–1209.
  71. S. Liu, Q. Wang, T. Sun, C. Wu, Y. Shi, The effect of different types of micro‐bubbles on the performance of the coagulation flotation process for coke wastewater, J. Chem. Technol. Biotechnol., 87 (2012) 206–215.
  72. M. Smol, M. Włodarczyk-Makuła, The treatment of industrial wastewater in accordance to ‘zero waste’ strategy, Acta Innov., 16 (2015) 5–11.
  73. J. Wang, Y. Ji, F. Zhang, D. Wang, X. He, C. Wang, Treatment of coking wastewater using oxic-anoxic-oxic process followed by coagulation and ozonation, Carbon Resour. Convers., 2 (2019) 151–156.
  74. M. Smol, M. Włodarczyk-Makuła, J. Bohdziewicz, K. Mielczarek, The use of integrated membrane systems in the removal of selected pollutants from pre-treated wastewater in coke plant, Membr. Membr. Process. Environ. Prot. Monogr. Environ. Eng. Comm. Polish Acad. Sci., 119 (2014) 143–152.
  75. M. Smol, D. Włóka, M. Włodarczyk-Makuła, Influence of integrated membrane treatment on the phytotoxicity of wastewater from the coke industry, Water Air Soil Pollut., 229 (2018) 154, doi: 10.1007/s11270-018-3794-1.
  76. R. Kumar, P. Bhakta, S. Chakraborty, P. Pal, Separating cyanide from coke wastewater by cross flow nanofiltration, Sep. Sci. Technol., 46 (2011) 2119–2127.
  77. R. Kumar, S. Chakrabortty, P. Pal, Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation, Environ. Sci. Pollut. Res., 22 (2015) 6010–6023.