References
- L. McKibben, T. Horan, J.I. Tokars, G. Fowler, D.M. Cardo,
M.L. Pearson, P.J. Brennan, Guidance on public reporting of
health care associated infections: recommendations of the
Healthcare Infection Control Practices Advisory Committee,
Am. J. Infect. Control, 33 (2005) 217–226.
- L. Feng, D. Astruc, Nanocatalysts and other nanomaterials for
water remediation from organic pollutants, Coord. Chem. Rev.,
408 (2020) 213180, doi: 10.1016/j.ccr.2020.213180.
- Molinari, P. Argurio, M. Bellardita, L. Palmisano, Photocatalytic
Processes in Membrane Reactors, E. Drioli, L. Giorno, E. Fontananova,
Comprehensive Membrane Science and Engineering,
2nd ed., Elsevier, Oxford, 2017, pp. 101–138.
- P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.H. Kim, T. Akter,
S. Kalagara, Recent advances in photocatalytic treatment of
pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
- X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology
in water and wastewater treatment, Water Res., 47 (2013)
3931–3946.
- E. Friehs, Y. AlSalka, R. Jonczyk, A. Lavrentieva, A. Jochums,
J.G. Walter, F. Stahl, T. Scheper, D. Bahnemann, Toxicity,
phototoxicity and biocidal activity of nanoparticles employed
in photocatalysis, J. Photochem. Photobiol., C, 29 (2016) 1–28.
- F. Petronella, C. Truppi, A. Ingrosso, T. Placido, M. Striccoli,
M.L. Curri, A. Agostiano, R. Comparelli, Nanocomposite
materials for photocatalytic degradation of pollutants,
Catal. Today, 281 (2016) 85–100.
- M. Bodzek, M. Rajca, Photocatalysis in the treatment
and disinfection of water. Pt 1: Theoretical backgrounds,
Ecol. Chem. Eng. S, 19 (2012) 489–512.
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review,
Water Res., 44 (2010) 2997–3027.
- O.K. Dalrymplea, E. Stefanakos, M.A. Trotz, D.Y. Goswami,
A review of the mechanisms and modeling of photocatalytic
disinfection, Appl. Catal., B, 98 (2010) 27–38.
- T. Bora, J. Dutta, Applications of nanotechnology in wastewater
treatment—a review, J. Nanosci. Nanotechnol., 14 (2014)
613–626.
- S.K. Loeb, P.J.J. Alvarez, J.A. Brame, E.L. Cates, W. Choi,
J. Crittenden, D.D. Dionysiou, Q. Li, Gi. Li-Puma, X. Quan,
D.L. Sedlak, T.D. Waite, P. Westerhoff, J.-H. Kim, The technology
horizon for photocatalytic water treatment: sunrise or sunset?,
Environ. Sci. Technol., 53 (2019) 2937–2947.
- M.T. Amin, A.A. Alazba, U. Manzoor, A review of removal
of pollutants from water/wastewater using different types of
nanomaterials, Adv. Mater. Sci. Eng., 2014 (2014) 825910, doi:
10.1155/2014/825910.
- M.L. Zambrano-Zaragoza, R. González-Reza, N. Mendoza-
Muñoz, V. Miranda-Linares, T.F. Bernal-Couoh, S. Mendoza-Elvira, D. Quintanar-Guerrero, Nanosystems in edible
coatings: a novel strategy for food preservation, Int. J. Mol. Sci.,
19 (2018) 705, doi: 10.3390/ijms19030705.
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras,
A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne,
K. O’shea, A review on the visible light active titanium dioxide
photocatalysts for environmental applications, Appl. Catal., B,
125 (2012) 331–349.
- S. Malato, J. Blanco, D.C. Alarcon, M.I. Maldonado, P. Fernandez-Ibanez, W. Gernjak, Photocatalytic decontamination and
disinfection of water with solar collectors, Catal. Today,
122 (2007) 137–149.
- C. Byrne, G. Subramanianc, C.P. Suresh, Recent advances in
photocatalysis for environmental applications, J. Environ.
Chem. Eng., 6 (2018) 3531–3555.
- P. Ganguly, C. Byrnea, G. Subramanianc, C.P. Suresh,
Antimicrobial activity of photocatalysts: fundamentals,
mechanisms, kinetics and recent advances, Appl. Catal., B,
225 (2018) 51–75.
- S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self-cleaning
applications of TiO2 by photo-induced hydrophilicity and
photocatalysis, Appl. Catal., B, 176–177 (2015) 396–428.
- J. Zhang, B. Tian, L. Wang, M. Xing, J. Lei, Photocatalysis:
Fundamentals, Materials and Applications, Springer, Singapore,
2018.
- M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat,
Remediation of wastewater using various nanomaterials,
Arabian J. Chem., 12 (2019) 4897–4919.
- M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and
recent developments in photocatalytic water-splitting using
TiO2 for hydrogen production, Renewable Sustainable Energy
Rev., 11 (2007) 401–425.
- A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault,
H. Kochkar, Phenol photocatalytic degradation over anisotropic
TiO2 nanomaterials: kinetic study, adsorption isotherms
and formal mechanisms, Appl. Catal., B, 163 (2015) 404–414.
- O.A. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis:
recent advances and applications, Catalysts, 3 (2013) 189–218.
- S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal
nanostructures for efficient conversion of solar to chemical
energy, Nat. Mater., 10 (2011) 911–921.
- M. Bodzek, K. Konieczy, A. Kwiecińska-Mydlak, Nanophotocatalysis
in water and wastewater treatment, Desal. Water
Treat., 243 (2021) 51–74.
- C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu,
Cost-effective largescale synthesis of ZnO photocatalyst with
excellent performance for dye photodegradation, Chem.
Commun., 48 (2012) 2858–2860.
- A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su,
A.A. Keller, Engineered nanomaterials for water treatment and
remediation: costs, benefits, and applicability, Chem. Eng. J.,
286 (2016) 640–662.
- S.T. Lin, M. Thirumavalavan, T.Y. Jiang, J.F. Lee, Synthesis of
ZnO/Zn nano photocatalyst using modified polysaccharides for
photodegradation of dyes, Carbohydr. Polym., 105 (2014) 1–9.
- S. Ahmed, M. Rasul, R. Brown, M. Hashib, Influence of
parameters on the heterogeneous photocatalytic degradation
of pesticides and phenolic contaminants in wastewater:
a short review, J. Environ. Manage., 92 (2011) 311–330.
- R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review
of solar and visible light active TiO2 photocatalysis for treating
bacteria, cyanotoxins and contaminants of emerging concern,
Mater. Sci. Semicond. Process, 42 (2016) 2–14.
- M. Bodzek, Membrane separation techniques – removal of
inorganic and organic admixtures and impurities from water
environment – review, Arch. Environ. Prot., 45 (2019) 4–19.
- M. Gmurek, M. Olak-Kucharczyk, S. Ledakowicz, Photochemical
decomposition of endocrine disrupting compounds–a review,
Chem. Eng. J., 310 (2017) 437–456.
- A. Cesaro, V. Belgiorno, Removal of endocrine disruptors from
urban wastewater by advanced oxidation processes (AOPs):
a review, Open Biotechnol. J., 10 (2016) 151–172.
- K. Sornalingam, A. McDonagh, J.L. Zhou, Photodegradation
of estrogenic endocrine disrupting steroidal hormones in
aqueous systems: progress and future challenges, Sci. Total
Environ., 550 (2016) 209–224.
- Z. Mirzaei, F. Chen, Haghighat, L. Yerushalmi, Removal
of pharmaceuticals and endocrine disrupting compounds
from water by zinc oxide-based photocatalytic degradation:
a review, Sustainable Cities Soc., 27 (2016) 407–418.
- M. Muneer, M. Qamar, M. Saquib, D.W. Bahnemann, Heterogeneous
photocatalysed reaction of three selected pesticide
derivatives propham, propachlor and tebuthiuron in aqueous
suspensions of titanium dioxide, Chemosphere, 61 (2005) 457–468.
- M.A. Rahman, M. Muneer, Photocatalysed degradation of two
selected pesticide derivatives, dichlorvos and phosphamidon,
in aqueous suspensions of titanium dioxide, Desalination,
181 (2005) 61–172.
- I. Oller, W. Gernjak, M.I. Maldonado, L.A. Pérez-Estrada,
S. Malato, Solar photocatalytic degradation of some hazardous
water-soluble pesticides at pilot-plant scale, J. Hazard. Mater.,
138 (2006) 507–517.
- S.J. Jafari, G. Moussavi, H. Hossaini, Degradation and
mineralization of diazinon pesticide in UVC and UVC/TiO2
process, Desal. Water Treat., 57 (2016) 3782–3790.
- L. Zheng, F. Pi, Y. Wang, H. Xu, Y. Zhang, X. Sun, Photocatalytic
degradation of acephate, omethoate, and methyl parathion
by Fe3O4@SiO2@mTiO2 nanomicrospheres, J. Hazard. Mater.,
315 (2016) 11–22.
- S.H. Chan, T. Yeong, T. Wu, J.C. Juan, C.Y. Teh, Recent developments
of metal oxide semiconductors as photocatalysts in
advanced oxidation processes (AOPs) for treatment of dye
wastewater, J. Chem. Technol. Biotechnol., 86 (2011) 1130–1158.
- P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Synthesis
of CuO-ZnO nano-photocatalyst for visible light assisted
degradation of a textile dye in aqueous solution, Chem. Eng. J.,
171 (2011) 136–140.
- V. Eskizeybek, F. Sari, H. Gulce, A. Gulce, A. Avci, Preparation of
the new polyaniline/ZnO nanocomposite and its photocatalytic
activity for degradation of methylene blue and malachite
green dyes under UV and natural sun lights irradiations,
Appl. Catal., B, 119 (2012) 197–206.
- A.K. Dutta, S.K. Maji, B. Adhikary, C-Fe2O3 nanoparticles: an
easily recoverable effective photo-catalyst for the degradation
of Rose Bengal and methylene blue dyes in the wastewater
treatment plant, Mater. Res. Bull., 49 (2014) 28–34.
- Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan,
Nanomaterials-enabled water and wastewater treatment,
NanoImpact, 3–4 (2016) 22–39.
- D.E. Curry, K.A. Andrea, A.J. Carrier, C. Nganou, H. Scheller,
D. Yang, B. Youden, Y. Zhang, A. Nicholson, K.D. Cui, S. Oakes,
S.L. MacQuarrie, M. Lu, X. Zhang, Surface interaction of
doxorubicin with anatase determines its photodegradation
mechanism: insights into removal of waterborne
pharmaceuticals by TiO2 nanoparticles, Environ. Sci. Nano,
5 (2018) 1027–1035.
- R. Liang, A. Hu, W. Li, Y.N. Zhou, Enhanced degradation of
persistent pharmaceuticals found in wastewater treatment
effluents using TiO2 nanobelt photocatalysts, J. Nanopart. Res.,
15 (2013) 1990,
doi: 10.1007/s11051-013-1990-x.
- I.A. Appavoo, J. Hu, Y. Huang, S.F.Y. Li, S.L. Ong, Response
surface modeling of carbamazepine (CBZ) removal by
graphene-P25 nanocomposites/UVA process using central
composite design, Water Res., 57 (2014) 270–279.
- A.S. Mestre, A.P. Carvalho, Photocatalytic degradation of
pharmaceuticals carbamazepine, diclofenac, and sulfamethoxazole
by semiconductor and carbon materials: a review,
Molecules, 24 (2019) 3702, doi: 10.3390/molecules24203702.
- V.M. Mboula, V. Héquet, Y. Andrès, Y. Gru, R. Colin, J. Doña-Rodríguez, L. Pastrana-Martínez, A. Silva, M. Leleu, A. Tindall,
Photocatalytic degradation of estradiol under simulated solar
light and assessment of estrogenic activity, Appl. Catal., B,
162 (2015) 437–444.
- J. Rashid, M.A. Barakat, S.L. Pettit, J.N. Kuhn, InVO4/TiO2
composite for visible-light photocatalytic degradation of
2-chlorophenol in wastewater, Environ. Technol., 35 (2014)
2153, doi: 10.1080/09593330.2014.895051.
- K.K. Singh, K.K. Senapati, C. Borgohain, K.C. Sarma,
Newly developed Fe3O4–Cr2O3 magnetic nanocomposite for
photocatalytic decomposition of 4-chlorophenol in water,
J. Environ. Sci., 52 (2017) 333–340.
- R.A. Doong, C.Y. Liao, Enhanced photocatalytic activity of
Cu-deposited N-TiO2/titanate nanotubes under UV and visible
light irradiations, Sep. Purif. Technol., 179 (2017) 403–411.
- M. Bodzek, Nanoparticles for water disinfection by
photocatalysis: a review, Arch. Environ. Prot., 48 (2022) 3–17.
- M. Bodzek, K. Konieczny, M. Rajca, Membranes in water and
wastewater disinfection – review, Arch. Environ. Prot., 45 (2019)
3–18.
- S. Pigeot-Rémy, F. Simonet, E. Errazuriz-Cerda, J. Lazzaroni,
D. Atlan, C. Guillard, Photocatalysis and disinfection of water:
identification of potential bacterial targets, Appl. Catal., B,
104 (2011) 390–398.
- W. Wang, L. Zhang, T. An, G. Li, H.Y. Yip, H.Y. Wong,
Comparative study of visible-light-driven photocatalytic
mechanisms of dye decolorization and bacterial disinfection
by B–Ni-co-doped TiO2 microspheres: the role of different
reactive species, Appl. Catal., B, 108 (2011) 108–116.
- I. Matai, A. Sachdev, P. Dubey, S.U. Kumar, B. Bhushan,
P. Gopinath, Antibacterial activity and mechanism of Ag–ZnO
nanocomposite on Staphylococcus aureus and GFP-expressing
antibiotic resistant Escherichia coli, Colloids Surf., B, 115 (2014)
359–367.
- S. Das, A.J. Misra, A.P.H. Rahman, B. Das, R. Jayabalan,
A.J. Tamhankar, A. Mishra, C.S. Lundborg, S.K. Tripathy,
Ag@SnO2@ZnO core-shell nanocomposites assisted solarphotocatalysis
downregulates multidrug resistance in Bacillus sp.: a catalytic approach to impede antibiotic resistance, Appl.
Catal., B, 259 (2019) 118065, doi: 10.1016/j.apcatb.2019.118065.
- N.S. Leyland, J. Podporska-Carroll, J. Browne, S.J. Hinder,
B. Quilty, S.C. Pillai, Highly efficient F, Cu doped TiO2
anti-bacterial visible light active photocatalytic coatings to
combat hospital-acquired infections, Sci. Rep., 6 (2016) 24770,
doi: 10.1038/srep24770.
- K. Davididou, E. Hale, N. Lane, E. Chatzisymeon, A. Pichavant,
J.F. Hochepied, Photocatalytic treatment of saccharin and
bisphenol-A in the presence of TiO2 nanocomposites tuned by
Sn(IV), Catal. Today, 287 (2017) 3–9.
- A.-P. Magiorakos, A. Srinivasan, R.B. Carey, Y. Carmeli,
M.E. Falagas, C.G. Giske, S. Harbarth, J.F. Hindler, G. Kahlmeter,
B. Olsson-Liljequist, D.L. Paterson, Multidrug-resistant, extensively
drug-resistant and pandrug-resistant bacteria: an
international expert proposal for interim standard definitions
for acquired resistance, Clin. Microbiol. Infect., 18 (2012)
268–281.
- M. Wang, M. Ateia, D. Awfa, C. Yoshimura, Regrowth of
bacteria after light-based disinfection — what we know and
where we go from here, Chemosphere, 268 (2021) 128850,
doi: 10.1016/j.chemosphere.2020.128850.
- J. Bogdan, J. Szczawiński, J. Zarzyńska, J. Pławińska-Czarnak, Mechanizmy inaktywacji bakterii na powierzcniach
fotokatalitycznych, (Mechanisms of bacterial inactivation on
photocatalytic surfaces), Med. Weter, 70 (2014) 657–662 (in Polish).
- D. Friedmann, C. Mendive, D. Bahnemann, TiO2 for water
treatment: parameters affecting the kinetics and mechanisms
of photocatalysis, Appl. Catal., B, 99 (2010) 398–406.
- A.D. Belapurkar, P. Sherkhane, S.P. Kale, Disinfection of
drinking water using photocatalytic technique, Curr. Sci.,
91 (2006) 73–76.
- V. Etacheri, G. Michlits, M.K. Seery, S.J. Hinder, S.C. Pillai,
A highly efficient TiO2–xCx nano-heterojunction photocatalyst
for visible light induced antibacterial applications, ACS Appl.
Mater. Interfaces, 5 (2013) 1663–1672.
- J. Podporska-Carroll, E. Panaitescu, B. Quilty, L. Wang, L. Menon,
S.C. Pillai, Antimicrobial properties of highly efficient
photocatalytic TiO2 nanotubes, Appl. Catal., B, 176 (2015) 70–75.
- M. Garvey, E. Panaitescu, L. Menon, C. Byrne, S. Dervin,
S.J. Hinder, S.C. Pillai, Titania nanotube photocatalysts for
effectively treating waterborne microbial pathogens, J. Catal.,
344 (2016) 631–639.
- M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped
titanium dioxide nanomaterials for enhanced visible light
photocatalysis, J. Photochem. Photobiol., A, 189 (2007)
258–263.
- M.P. Reddy, A. Venugopal, M. Subrahmanyam,
Hydroxyapatite-supported Ag-TiO2 as Escherichia coli
disinfection photocatalyst, Water Res., 41 (2007) 379–386.
- O. Akhavan, Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light
irradiation, J. Colloid Interface Sci., 336 (2009) 117–124.
- B. Liu, Y. Xue, J. Zhang, B. Han, J. Zhang, X. Suo, L. Mu,
H. Shi, Visible-light driven TiO2/Ag3PO4 heterostructures with
enhanced antifungal activity against agricultural pathogenic
fungi Fusarium graminearum and mechanism insight,
Environ. Sci. Nano, 4 (2017) 255–264.
- S. Rtimi, O. Baghriche, C. Pulgarin, J.C. Lavanchy, J. Kiwi,
Growth of TiO2/Cu films by HiPIMS for accelerated bacterial
loss of viability, Surf. Coat. Technol., 232 (2013) 804–813.
- S. Rtimi, C. Pulgarin, R. Sanjines, V. Nadtochenko,
J.C. Lavanchy, J. Kiwi, Preparation and mechanism of
Cu-decorated TiO2-ZrO2 films showing accelerated
bacterial inactivation, ACS Appl. Mater. Interfaces, 71 (2015)
12832–12839.
- L. Fisher, S. Ostovapour, P. Kelly, K. Whitehead, K. Cooke,
E. Storgårds, J. Verran, Molybdenum doped titanium dioxide
photocatalytic coatings for use as hygienic surfaces: the effect
of soiling on antimicrobial activity, Biofouling, 30 (2014)
911–919.
- R. Michalski, E. Dworniczek, M. Caplovicova, O. Monfort,
P. Lianos, L. Caplovic, G. Plesch, Photocatalytic properties
and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite,
Appl. Surf. Sci., 371 (2016) 538–546.
- Y. Wang, Y. Wu, H. Yang, X. Xue, Z. Liu, Doping TiO2 with
boron or/and cerium elements: effects on photocatalytic
antimicrobial
activity, Vacuum, 131 (2016) 58–64.
- M.S. Stan, I.C. Nica, A. Dinischiotu, E. Varzaru, O.G. Iordache,
I. Dumitrescu, M. Popa, M.C. Chifiriuc, G.G. Pircalabioru,
Y. Lazar, Photocatalytic, antimicrobial and biocompatibility
features of cotton knit coated with Fe-N-Doped titanium
dioxide nanoparticles, Materials, 9 (2016) 789, doi: 10.3390/ma9090789.
- Y. Chen, K. Liu, Fabrication of magnetically recyclable Ce/N
co-doped TiO2/NiFe2O4/diatomite ternary hybrid: improved
photocatalytic efficiency under visible light irradiation,
J. Alloys Compd., 697 (2017) 161–173.
- T.W. Ng, L. Zhang, J. Liu, G. Huang, W. Wang, P.K. Wong,
Visible-light-driven photocatalytic inactivation of Escherichia
coli by magnetic Fe2O3–AgBr, Water Res., 90 (2016) 111–118.
- J.A. Rengifo-Herrera, C. Pulgarin, Photocatalytic activity of N,
S co-doped and N-doped commercial anatase TiO2 powders
towards phenol oxidation and Escherichia coli inactivation
under simulated solar light irradiation, Sol. Energy, 84 (2010)
37–43.
- E.A.S. Dimapilis, C.S. Hsu, R.M.O. Mendoza, M.C. Lu,
Zinc oxide nanoparticles for water disinfection, Sustainable
Environ. Res., 28 (2018) 47–56.
- L. He, Y. Liu, A. Mustapha, M. Lin, Antifungal activity of zinc
oxide nanoparticles against Botrytis cinerea and Penicillium
expansum, Microbiol. Res., 166 (2011) 207–215.
- W. He, H.K. Kim, W.G. Wamer, D. Melka, J.H. Callahan,
J.J. Yin, Photogenerated charge carriers and reactive oxygen
species in ZnO/Au hybrid nanostructures with enhanced
photocatalytic and antibacterial activity, J. Am. Chem. Soc.,
136 (2013) 750–757.
- S. Das, S. Sinha, M. Suar, S.I. Yun, A. Mishra, K. Suraj,
K. Tripathy, Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core–shell structure nanocomposites,
J. Photochem. Photobiol., B, 142 (2015) 68–76.
- F. Elmi, H. Alinezhad, Z. Moulana, F. Salehian, S.M. Tavakkoli,
F. Asgharpour, H. Fallah, M.M. Elmi, The use of antibacterial
activity of ZnO nanoparticles in the treatment of municipal
wastewater, Water Sci. Technol., 70 (2014) 763–770.
- R. Menaka, R. Subiya, Synthesis of zinc oxide nano powder
and its characterization using XRD, SEM and antibacterial
activity against Staphylococcus aureus, Int. J. Sci. Res., 5 (2016)
269–271.
- A.M. El Saeed, M.A. El-Fattah, A.M. Azzam, Synthesis of ZnO
nanoparticles and studying its influence on the antimicrobial,
anticorrosion and mechanical behavior of polyurethane
composite for surface coating, Dyes Pigm., 121 (2015) 282–289.
- G.R. Navale, M. Thripuranthaka, D.J. Late, S.S. Shinde,
Antimicrobial activity of ZnO nanoparticles against
pathogenic bacteria and fungi, JSM Nanotechnol. Nanomed.,
3 (2015) 1033 (1–9).
- M.F. Elkady, H.H. Shokry, E.E. Hafez, A. Fouad, Construction
of zinc oxide into different morphological structures to be
utilized as antimicrobial agent against multidrug resistant
bacteria, Bioinorg. Chem. Appl., 2015 (2015) 536854,
doi: 10.1155/2015/536854.
- B. Cao, S. Cao, P. Dong, J. Gao, J. Wang, High antibacterial
activity of ultrafine TiO2/graphene sheets nanocomposites
under visible light irradiation, Mater. Lett., 93 (2013) 349–352.
- P. Fernández-Ibáñez, M.Polo-López, S. Malato, S. Wadhwa,
J. Hamilton, P. Dunlop, R. D’sa, E. Magee, K. O’shea,
D. Dionysiou, Solar photocatalytic disinfection of water
using titanium dioxide graphene composites, Chem. Eng. J.,
261 (2015) 36–44.
- O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene
oxide nanosheets on TiO2 thin film for photoinactivation of
bacteria in solar light irradiation, J. Phys. Chem., C, 113 (2009)
20214–20220.
- J. Liu, L. Liu, H. Bai, Y. Wang, D.D. Sun, Gram-scale production
of graphene oxide–TiO2 nanorod composites: towards highactivity
photocatalytic materials, Appl. Catal., B, 106 (2011)
76–82.
- X. Zeng, Z. Wang, N. Meng, D.T. McCarthy, A. Deletic, J.H. Pan,
X. Zhang, Highly dispersed TiO2 nanocrystals and carbon
dots on reduced graphene oxide: ternary nanocomposites for
accelerated photocatalytic water disinfection, Appl. Catal., B,
202 (2017) 33–41.
- R. Ahmad, Z. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam,
J. Kim, Photocatalytic systems as an advanced environmental
remediation: Recent developments, limitations and new
avenues for applications, J. Environ. Chem. Eng., 4 (2016)
4143–4164.
- P. Raizada, A. Sudhaik, P. Singh, Photocatalytic water
decontamination using graphene and ZnO coupled
photocatalysts: a review, Mater. Sci. Energy Technol., 2 (2019)
509–525.
- D. Wu, T. An, G. Li, W. Wang, Y. Cai, H.Y. Yip, H. Zhao,
P.K. Wong, Mechanistic study of the visible-light-driven
photocatalytic inactivation of bacteria by graphene oxide–zinc
oxide composite, Appl. Surf. Sci., 358 (2015) 137–145.
- S.F. Anis, R. Hashaikeh, N. Hilal, Functional materials in
desalination: a review, Desalination, 468 (2019) 114077,
doi: 10.1016/j.desal.2019.114077.
- S. Kang, M.S. Mauter, M. Elimelech, Microbial cytotoxicity
of carbon-based nanomaterials: implications for river water
and wastewater effluent, Environ. Sci. Technol., 43 (2009)
2648–2653.
- A.S. Brady-Estévez, T.H. Nguyen, L. Gutierrez, M. Elimelech,
Impact of solution chemistry on viral removal by a singlewalled
carbon nanotube filter, Water Res., 44 (2010) 3773–3780.
- L.M. Pasquini, S.M. Hashmi, T.J. Sommer, M. Elimelech,
J.B. Zimmerman, Impact of surface functionalization on
bacterial cytotoxicity of single walled carbon nanotubes,
Environ. Sci. Technol., 46 (2012) 6297–6305.
- O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh,
Synthesis of titania/carbon nanotube heterojunction arrays
for photoinactivation of Escherichia coli in visible light
irradiation, Carbon, 47 (2009) 3280–3287.
- V.B. Koli, A.G. Dhodamani, A.V. Raut, N.D. Thorat,
S.H. Pawar, S.D. Delekar, Visible light photo-induced
antibacterial activity of TiO2-MWCNTs nanocomposites
with varying the contents of MWCNTs, J. Photochem.
Photobiol., A, 328 (2016) 50–58.
- V.B. Koli, S.D. Delekar, S.H. Pawar, Photoinactivation of
bacteria by using Fe-doped TiO2-MWCNTs nanocomposites,
J. Mater. Sci.: Mater. Med., 27 (2016) 177, doi: 10.1007/
s10856-016-5788-0.
- K. Ouyang, K. Dai, S.L. Walker, Q. Huang, X. Yin, P. Cai,
Efficient photocatalytic is infection of Escherichia coli O157:H7
using C70-TiO2 hybrid under visible light irradiation,
Sci. Rep., 6 (2016) 25702, doi: 10.1038/srep25702.
- W. Bai, V. Krishna, J. Wang, B. Moudgil, B. Koopman,
Enhancement of nano titanium dioxide photocatalysis in
transparent coatings by polyhydroxy fullerene, Appl. Catal.,
B, 125 (2012) 128–135.
- R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free
preparation of macro/mesoporous g-C3N4/TiO2 heterojunction
photocatalysts with enhanced visible light photocatalytic
activity, Appl. Catal., B, 187 (2016) 47–58.
- P. Murugesan, J.A. Moses, C. Anandharamakrishnan,
Photocatalytic disinfection efficiency of 2D structure graphitic
carbon nitride-based nanocomposites: a review, J. Mater.
Sci., 54 (2019) 12206–12235.
- J. Huang, W. Ho, X. Wang, Metal-free disinfection effects
induced by graphitic carbon nitride polymers under visible
light illumination, Chem. Commun., 50 (2014) 4338–4340.
- J.H. Thurston, N.M. Hunter, L.J. Wayment, K.A. Cornell,
K.A. Urea-derived graphitic carbon nitride (u-g-C3N4) films
with highly enhanced antimicrobial and sporicidal activity,
J. Colloid Interface Sci., 505 (2017) 910–918.
- Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu, C. Wang, D. Wang,
G. Wang, Edge-functionalized g-C3N4 nanosheets as a highly
efficient metal-free photocatalyst for safe drinking water,
Chem., 5 (2018) 664–680.
- H. Zhao, H. Yu, X. Quan, S. Chen, Y. Zhang, H. Zhao, H. Wang,
Fabrication of atomic single layer graphitic-C3N4 and its high
performance of photocatalytic disinfection under visible
light irradiation, Appl. Catal., B, 152–153 (2014) 46–50.
- Y. Li, C. Zhang, D. Shuai, S. Naraginti, D. Wang, W. Zhang,
Visible-light-driven photocatalytic inactivation of MS2 by
metal-free g-C3N4: virucidal performance and mechanism,
Water Res., 106 (2016) 249–258.
- J. Xue, S. Ma, Y. Zhou, Z. Zhang, M. He, Facile photochemical
synthesis of Au/Pt/g-C3N4 with plasmon-enhanced
photocatalytic activity for antibiotic degradation, ACS Appl.
Mater. Interfaces, 7 (2015) 9630–9637.
- W. Bing, Z. Chen, H. Sun, P. Shi, N. Gao, J. Ren, X. Qu,
Visible-light-driven enhanced antibacterial and bio film
elimination activity of graphitic carbon nitride by embedded
Ag nanoparticles, Nano Res., 8 (2015) 1648–1658.
- J. Xu, Q. Gao, X. Bai, Z. Wang, Y. Zhu, Enhanced visible-light
induced photocatalytic degradation and disinfection activities
of oxidized porous g-C3N4 by loading Ag nanoparticles,
Catal. Today, 332 (2019) 227–235.
- M.J. Munoz-Batista, O. Fontelles-Carceller, M. Ferrer,
M. Fernández-García, A. Kubacka, Disinfection capability of
Ag/g-C3N4 composite photocatalysts under UV and visible
light illumination, Appl. Catal., B, 183 (2016) 86–95.
- G. Li, X. Nie, J. Chen, Q. Jiangae, T. An, P.K. Wong, H. Zhang,
H. Zhao, H. Yamashita, Enhanced visible-light driven
photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermalcalcination
approach, Water Res., 86 (2015) 17–24.
- J. Xu, Y. Li, X. Zhou, Y. Li, Z.D. Gao, Y.Y. Song, P. Schmuki,
Graphitic C3N4-sensitized TiO2 nanotube layers: a visiblelight
activated efficient metal-free antimicrobial platform,
Chem. Eur. J., 22 (2016) 3947–3951.
- Q. Zhang, X. Quan, H. Wang, S. Chen, Y. Su, Z. Li, Constructing
a visible-light-driven photocatalytic membrane by
g-C3N4
quantum dots and TiO2 nanotube array for enhanced
water treatment, Sci. Rep., 7 (2017) 3128, doi: 10.1038/s41598-017-03347-y.
- J. Li, Y. Yin, E. Liu, Y. Maa, J. Wan, J. Fan, X. Hu, In-situ growing
Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic
hydrogen evolution and disinfection of bacteria under
visible light irradiation, J. Hazard. Mater., 321 (2017) 183–192.
- D. Xia, W. Wang, R. Yin, Z. Jiang, T. An, G. Li, H. Zhao,
P.K. Wong, Enhanced photocatalytic inactivation of Escherichia
coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst
under visible light: the role of reactive oxygen species,
Appl. Catal., B, 214 (2017) 23–33.
- L. Sun, T. Du, C. Hu, J. Chen, J. Lu, Z. Lu, H. Han,
Antibacterial activity of graphene oxide/g-C3N4 composite
through photocatalytic disinfection under visible light,
ACS Sustainable Chem. Eng., 5 (2017) 8693–8701.
- K. Ouyang, K. Dai, H. Chen, Q. Huang, C. Gao, P. Cai, Metalfree
inactivation of Escherichia coli O157:H7 by fullerene/C3N4
hybrid under visible light irradiation, Ecotoxicol. Environ.
Saf., 136 (2017) 40–45.
- X. Tang, O. Rosseler, S. Chen, S. Houzé de l’Aulnoit,
M.J. Lussier, J. Zhang, G. Ban-Weiss, H. Gilbert, R. Levinson,
H. Destaillats, Self-cleaning and de-pollution efficacies of
photocatalytic architectural membranes, Appl. Catal., B,
281 (2021) 119260, doi: 10.1016/j.apcatb.2020.119260.
- K. Reilly, B. Fang, F. Taghipour, D.P. Wilkinson, Enhanced
photocatalytic hydrogen production in a UV-irradiated
fluidized bed reactor, J. Catal., 353 (2017) 63–73.
- B. Pieber, M. Shalom, M. Antonietti, P.H. Seeberger,
K. Gilmore, Continuous heterogeneous photocatalysis in
serial micro-batch reactors, Angew. Chem. Int. Ed., 57 (2018)
9976–9979.
- S. Kim, H. Cho, H. Joo, N. Her, J. Han, K. Yi, J.-O. Kim, J. Yoon,
Evaluation of performance with small and scale-up rotating
and flat reactors; photocatalytic degradation of bisphenol
A, 17β-estradiol, and 17α–ethynyl estradiol under solar
irradiation, J. Hazard. Mater., 336 (2017) 21–32.
- C. Byrne, G. Subramanian, S.C. Pillai, Recent advances in
photocatalysis for environmental applications, J. Environ.
Chem. Eng., 6 (2018) 3531–3555.