References

  1. L. McKibben, T. Horan, J.I. Tokars, G. Fowler, D.M. Cardo, M.L. Pearson, P.J. Brennan, Guidance on public reporting of health care associated infections: recommendations of the Healthcare Infection Control Practices Advisory Committee, Am. J. Infect. Control, 33 (2005) 217–226.
  2. L. Feng, D. Astruc, Nanocatalysts and other nanomaterials for water remediation from organic pollutants, Coord. Chem. Rev., 408 (2020) 213180, doi: 10.1016/j.ccr.2020.213180.
  3. Molinari, P. Argurio, M. Bellardita, L. Palmisano, Photocatalytic Processes in Membrane Reactors, E. Drioli, L. Giorno, E. Fontananova, Comprehensive Membrane Science and Engineering, 2nd ed., Elsevier, Oxford, 2017, pp. 101–138.
  4. P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
  5. X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931–3946.
  6. E. Friehs, Y. AlSalka, R. Jonczyk, A. Lavrentieva, A. Jochums, J.G. Walter, F. Stahl, T. Scheper, D. Bahnemann, Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis, J. Photochem. Photobiol., C, 29 (2016) 1–28.
  7. F. Petronella, C. Truppi, A. Ingrosso, T. Placido, M. Striccoli, M.L. Curri, A. Agostiano, R. Comparelli, Nanocomposite materials for photocatalytic degradation of pollutants, Catal. Today, 281 (2016) 85–100.
  8. M. Bodzek, M. Rajca, Photocatalysis in the treatment and disinfection of water. Pt 1: Theoretical backgrounds, Ecol. Chem. Eng. S, 19 (2012) 489–512.
  9. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  10. O.K. Dalrymplea, E. Stefanakos, M.A. Trotz, D.Y. Goswami, A review of the mechanisms and modeling of photocatalytic disinfection, Appl. Catal., B, 98 (2010) 27–38.
  11. T. Bora, J. Dutta, Applications of nanotechnology in wastewater treatment—a review, J. Nanosci. Nanotechnol., 14 (2014) 613–626.
  12. S.K. Loeb, P.J.J. Alvarez, J.A. Brame, E.L. Cates, W. Choi, J. Crittenden, D.D. Dionysiou, Q. Li, Gi. Li-Puma, X. Quan, D.L. Sedlak, T.D. Waite, P. Westerhoff, J.-H. Kim, The technology horizon for photocatalytic water treatment: sunrise or sunset?, Environ. Sci. Technol., 53 (2019) 2937–2947.
  13. M.T. Amin, A.A. Alazba, U. Manzoor, A review of removal of pollutants from water/wastewater using different types of nanomaterials, Adv. Mater. Sci. Eng., 2014 (2014) 825910, doi: 10.1155/2014/825910.
  14. M.L. Zambrano-Zaragoza, R. González-Reza, N. Mendoza- Muñoz, V. Miranda-Linares, T.F. Bernal-Couoh, S. Mendoza-Elvira, D. Quintanar-Guerrero, Nanosystems in edible coatings: a novel strategy for food preservation, Int. J. Mol. Sci., 19 (2018) 705, doi: 10.3390/ijms19030705.
  15. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, K. O’shea, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  16. S. Malato, J. Blanco, D.C. Alarcon, M.I. Maldonado, P. Fernandez-Ibanez, W. Gernjak, Photocatalytic decontamination and disinfection of water with solar collectors, Catal. Today, 122 (2007) 137–149.
  17. C. Byrne, G. Subramanianc, C.P. Suresh, Recent advances in photocatalysis for environmental applications, J. Environ. Chem. Eng., 6 (2018) 3531–3555.
  18. P. Ganguly, C. Byrnea, G. Subramanianc, C.P. Suresh, Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances, Appl. Catal., B, 225 (2018) 51–75.
  19. S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis, Appl. Catal., B, 176–177 (2015) 396–428.
  20. J. Zhang, B. Tian, L. Wang, M. Xing, J. Lei, Photocatalysis: Fundamentals, Materials and Applications, Springer, Singapore, 2018.
  21. M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat, Remediation of wastewater using various nanomaterials, Arabian J. Chem., 12 (2019) 4897–4919.
  22. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable Sustainable Energy Rev., 11 (2007) 401–425.
  23. A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault, H. Kochkar, Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms and formal mechanisms, Appl. Catal., B, 163 (2015) 404–414.
  24. O.A. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3 (2013) 189–218.
  25. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater., 10 (2011) 911–921.
  26. M. Bodzek, K. Konieczy, A. Kwiecińska-Mydlak, Nanophotocatalysis in water and wastewater treatment, Desal. Water Treat., 243 (2021) 51–74.
  27. C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Cost-effective largescale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation, Chem. Commun., 48 (2012) 2858–2860.
  28. A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su, A.A. Keller, Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability, Chem. Eng. J., 286 (2016) 640–662.
  29. S.T. Lin, M. Thirumavalavan, T.Y. Jiang, J.F. Lee, Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes, Carbohydr. Polym., 105 (2014) 1–9.
  30. S. Ahmed, M. Rasul, R. Brown, M. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92 (2011) 311–330.
  31. R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process, 42 (2016) 2–14.
  32. M. Bodzek, Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Arch. Environ. Prot., 45 (2019) 4–19.
  33. M. Gmurek, M. Olak-Kucharczyk, S. Ledakowicz, Photochemical decomposition of endocrine disrupting compounds–a review, Chem. Eng. J., 310 (2017) 437–456.
  34. A. Cesaro, V. Belgiorno, Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review, Open Biotechnol. J., 10 (2016) 151–172.
  35. K. Sornalingam, A. McDonagh, J.L. Zhou, Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: progress and future challenges, Sci. Total Environ., 550 (2016) 209–224.
  36. Z. Mirzaei, F. Chen, Haghighat, L. Yerushalmi, Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review, Sustainable Cities Soc., 27 (2016) 407–418.
  37. M. Muneer, M. Qamar, M. Saquib, D.W. Bahnemann, Heterogeneous photocatalysed reaction of three selected pesticide derivatives propham, propachlor and tebuthiuron in aqueous suspensions of titanium dioxide, Chemosphere, 61 (2005) 457–468.
  38. M.A. Rahman, M. Muneer, Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide, Desalination, 181 (2005) 61–172.
  39. I. Oller, W. Gernjak, M.I. Maldonado, L.A. Pérez-Estrada, S. Malato, Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale, J. Hazard. Mater., 138 (2006) 507–517.
  40. S.J. Jafari, G. Moussavi, H. Hossaini, Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process, Desal. Water Treat., 57 (2016) 3782–3790.
  41. L. Zheng, F. Pi, Y. Wang, H. Xu, Y. Zhang, X. Sun, Photocatalytic degradation of acephate, omethoate, and methyl parathion by Fe3O4@SiO2@mTiO2 nanomicrospheres, J. Hazard. Mater., 315 (2016) 11–22.
  42. S.H. Chan, T. Yeong, T. Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye wastewater, J. Chem. Technol. Biotechnol., 86 (2011) 1130–1158.
  43. P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Synthesis of CuO-ZnO nano-photocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chem. Eng. J., 171 (2011) 136–140.
  44. V. Eskizeybek, F. Sari, H. Gulce, A. Gulce, A. Avci, Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations, Appl. Catal., B, 119 (2012) 197–206.
  45. A.K. Dutta, S.K. Maji, B. Adhikary, C-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of Rose Bengal and methylene blue dyes in the wastewater treatment plant, Mater. Res. Bull., 49 (2014) 28–34.
  46. Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3–4 (2016) 22–39.
  47. D.E. Curry, K.A. Andrea, A.J. Carrier, C. Nganou, H. Scheller, D. Yang, B. Youden, Y. Zhang, A. Nicholson, K.D. Cui, S. Oakes, S.L. MacQuarrie, M. Lu, X. Zhang, Surface interaction of doxorubicin with anatase determines its photodegradation mechanism: insights into removal of waterborne pharmaceuticals by TiO2 nanoparticles, Environ. Sci. Nano, 5 (2018) 1027–1035.
  48. R. Liang, A. Hu, W. Li, Y.N. Zhou, Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts, J. Nanopart. Res., 15 (2013) 1990,
    doi: 10.1007/s11051-013-1990-x.
  49. I.A. Appavoo, J. Hu, Y. Huang, S.F.Y. Li, S.L. Ong, Response surface modeling of carbamazepine (CBZ) removal by graphene-P25 nanocomposites/UVA process using central composite design, Water Res., 57 (2014) 270–279.
  50. A.S. Mestre, A.P. Carvalho, Photocatalytic degradation of pharmaceuticals carbamazepine, diclofenac, and sulfamethoxazole by semiconductor and carbon materials: a review, Molecules, 24 (2019) 3702, doi: 10.3390/molecules24203702.
  51. V.M. Mboula, V. Héquet, Y. Andrès, Y. Gru, R. Colin, J. Doña-Rodríguez, L. Pastrana-Martínez, A. Silva, M. Leleu, A. Tindall, Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity, Appl. Catal., B, 162 (2015) 437–444.
  52. J. Rashid, M.A. Barakat, S.L. Pettit, J.N. Kuhn, InVO4/TiO2 composite for visible-light photocatalytic degradation of 2-chlorophenol in wastewater, Environ. Technol., 35 (2014) 2153, doi: 10.1080/09593330.2014.895051.
  53. K.K. Singh, K.K. Senapati, C. Borgohain, K.C. Sarma, Newly developed Fe3O4–Cr2O3 magnetic nanocomposite for photocatalytic decomposition of 4-chlorophenol in water, J. Environ. Sci., 52 (2017) 333–340.
  54. R.A. Doong, C.Y. Liao, Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations, Sep. Purif. Technol., 179 (2017) 403–411.
  55. M. Bodzek, Nanoparticles for water disinfection by photocatalysis: a review, Arch. Environ. Prot., 48 (2022) 3–17.
  56. M. Bodzek, K. Konieczny, M. Rajca, Membranes in water and wastewater disinfection – review, Arch. Environ. Prot., 45 (2019) 3–18.
  57. S. Pigeot-Rémy, F. Simonet, E. Errazuriz-Cerda, J. Lazzaroni, D. Atlan, C. Guillard, Photocatalysis and disinfection of water: identification of potential bacterial targets, Appl. Catal., B, 104 (2011) 390–398.
  58. W. Wang, L. Zhang, T. An, G. Li, H.Y. Yip, H.Y. Wong, Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B–Ni-co-doped TiO2 microspheres: the role of different reactive species, Appl. Catal., B, 108 (2011) 108–116.
  59. I. Matai, A. Sachdev, P. Dubey, S.U. Kumar, B. Bhushan, P. Gopinath, Antibacterial activity and mechanism of Ag–ZnO nanocomposite on Staphylococcus aureus and GFP-expressing antibiotic resistant Escherichia coli, Colloids Surf., B, 115 (2014) 359–367.
  60. S. Das, A.J. Misra, A.P.H. Rahman, B. Das, R. Jayabalan, A.J. Tamhankar, A. Mishra, C.S. Lundborg, S.K. Tripathy, Ag@SnO2@ZnO core-shell nanocomposites assisted solarphotocatalysis downregulates multidrug resistance in Bacillus sp.: a catalytic approach to impede antibiotic resistance, Appl. Catal., B, 259 (2019) 118065, doi: 10.1016/j.apcatb.2019.118065.
  61. N.S. Leyland, J. Podporska-Carroll, J. Browne, S.J. Hinder, B. Quilty, S.C. Pillai, Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections, Sci. Rep., 6 (2016) 24770, doi: 10.1038/srep24770.
  62. K. Davididou, E. Hale, N. Lane, E. Chatzisymeon, A. Pichavant, J.F. Hochepied, Photocatalytic treatment of saccharin and bisphenol-A in the presence of TiO2 nanocomposites tuned by Sn(IV), Catal. Today, 287 (2017) 3–9.
  63. A.-P. Magiorakos, A. Srinivasan, R.B. Carey, Y. Carmeli, M.E. Falagas, C.G. Giske, S. Harbarth, J.F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, D.L. Paterson, Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance, Clin. Microbiol. Infect., 18 (2012) 268–281.
  64. M. Wang, M. Ateia, D. Awfa, C. Yoshimura, Regrowth of bacteria after light-based disinfection — what we know and where we go from here, Chemosphere, 268 (2021) 128850, doi: 10.1016/j.chemosphere.2020.128850.
  65. J. Bogdan, J. Szczawiński, J. Zarzyńska, J. Pławińska-Czarnak, Mechanizmy inaktywacji bakterii na powierzcniach fotokatalitycznych, (Mechanisms of bacterial inactivation on photocatalytic surfaces), Med. Weter, 70 (2014) 657–662 (in Polish).
  66. D. Friedmann, C. Mendive, D. Bahnemann, TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal., B, 99 (2010) 398–406.
  67. A.D. Belapurkar, P. Sherkhane, S.P. Kale, Disinfection of drinking water using photocatalytic technique, Curr. Sci., 91 (2006) 73–76.
  68. V. Etacheri, G. Michlits, M.K. Seery, S.J. Hinder, S.C. Pillai, A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications, ACS Appl. Mater. Interfaces, 5 (2013) 1663–1672.
  69. J. Podporska-Carroll, E. Panaitescu, B. Quilty, L. Wang, L. Menon, S.C. Pillai, Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes, Appl. Catal., B, 176 (2015) 70–75.
  70. M. Garvey, E. Panaitescu, L. Menon, C. Byrne, S. Dervin, S.J. Hinder, S.C. Pillai, Titania nanotube photocatalysts for effectively treating waterborne microbial pathogens, J. Catal., 344 (2016) 631–639.
  71. M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol., A, 189 (2007) 258–263.
  72. M.P. Reddy, A. Venugopal, M. Subrahmanyam, Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst, Water Res., 41 (2007) 379–386.
  73. O. Akhavan, Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Colloid Interface Sci., 336 (2009) 117–124.
  74. B. Liu, Y. Xue, J. Zhang, B. Han, J. Zhang, X. Suo, L. Mu, H. Shi, Visible-light driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight, Environ. Sci. Nano, 4 (2017) 255–264.
  75. S. Rtimi, O. Baghriche, C. Pulgarin, J.C. Lavanchy, J. Kiwi, Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability, Surf. Coat. Technol., 232 (2013) 804–813.
  76. S. Rtimi, C. Pulgarin, R. Sanjines, V. Nadtochenko, J.C. Lavanchy, J. Kiwi, Preparation and mechanism of Cu-decorated TiO2-ZrO2 films showing accelerated bacterial inactivation, ACS Appl. Mater. Interfaces, 71 (2015) 12832–12839.
  77. L. Fisher, S. Ostovapour, P. Kelly, K. Whitehead, K. Cooke, E. Storgårds, J. Verran, Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: the effect of soiling on antimicrobial activity, Biofouling, 30 (2014) 911–919.
  78. R. Michalski, E. Dworniczek, M. Caplovicova, O. Monfort, P. Lianos, L. Caplovic, G. Plesch, Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite, Appl. Surf. Sci., 371 (2016) 538–546.
  79. Y. Wang, Y. Wu, H. Yang, X. Xue, Z. Liu, Doping TiO2 with boron or/and cerium elements: effects on photocatalytic antimicrobial activity, Vacuum, 131 (2016) 58–64.
  80. M.S. Stan, I.C. Nica, A. Dinischiotu, E. Varzaru, O.G. Iordache, I. Dumitrescu, M. Popa, M.C. Chifiriuc, G.G. Pircalabioru, Y. Lazar, Photocatalytic, antimicrobial and biocompatibility features of cotton knit coated with Fe-N-Doped titanium dioxide nanoparticles, Materials, 9 (2016) 789, doi: 10.3390/ma9090789.
  81. Y. Chen, K. Liu, Fabrication of magnetically recyclable Ce/N co-doped TiO2/NiFe2O4/diatomite ternary hybrid: improved photocatalytic efficiency under visible light irradiation, J. Alloys Compd., 697 (2017) 161–173.
  82. T.W. Ng, L. Zhang, J. Liu, G. Huang, W. Wang, P.K. Wong, Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3–AgBr, Water Res., 90 (2016) 111–118.
  83. J.A. Rengifo-Herrera, C. Pulgarin, Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and Escherichia coli inactivation under simulated solar light irradiation, Sol. Energy, 84 (2010) 37–43.
  84. E.A.S. Dimapilis, C.S. Hsu, R.M.O. Mendoza, M.C. Lu, Zinc oxide nanoparticles for water disinfection, Sustainable Environ. Res., 28 (2018) 47–56.
  85. L. He, Y. Liu, A. Mustapha, M. Lin, Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res., 166 (2011) 207–215.
  86. W. He, H.K. Kim, W.G. Wamer, D. Melka, J.H. Callahan, J.J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, J. Am. Chem. Soc., 136 (2013) 750–757.
  87. S. Das, S. Sinha, M. Suar, S.I. Yun, A. Mishra, K. Suraj, K. Tripathy, Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core–shell structure nanocomposites, J. Photochem. Photobiol., B, 142 (2015) 68–76.
  88. F. Elmi, H. Alinezhad, Z. Moulana, F. Salehian, S.M. Tavakkoli, F. Asgharpour, H. Fallah, M.M. Elmi, The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater, Water Sci. Technol., 70 (2014) 763–770.
  89. R. Menaka, R. Subiya, Synthesis of zinc oxide nano powder and its characterization using XRD, SEM and antibacterial activity against Staphylococcus aureus, Int. J. Sci. Res., 5 (2016) 269–271.
  90. A.M. El Saeed, M.A. El-Fattah, A.M. Azzam, Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating, Dyes Pigm., 121 (2015) 282–289.
  91. G.R. Navale, M. Thripuranthaka, D.J. Late, S.S. Shinde, Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi, JSM Nanotechnol. Nanomed., 3 (2015) 1033 (1–9).
  92. M.F. Elkady, H.H. Shokry, E.E. Hafez, A. Fouad, Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria, Bioinorg. Chem. Appl., 2015 (2015) 536854, doi: 10.1155/2015/536854.
  93. B. Cao, S. Cao, P. Dong, J. Gao, J. Wang, High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation, Mater. Lett., 93 (2013) 349–352.
  94. P. Fernández-Ibáñez, M.Polo-López, S. Malato, S. Wadhwa, J. Hamilton, P. Dunlop, R. D’sa, E. Magee, K. O’shea, D. Dionysiou, Solar photocatalytic disinfection of water using titanium dioxide graphene composites, Chem. Eng. J., 261 (2015) 36–44.
  95. O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem., C, 113 (2009) 20214–20220.
  96. J. Liu, L. Liu, H. Bai, Y. Wang, D.D. Sun, Gram-scale production of graphene oxide–TiO2 nanorod composites: towards highactivity photocatalytic materials, Appl. Catal., B, 106 (2011) 76–82.
  97. X. Zeng, Z. Wang, N. Meng, D.T. McCarthy, A. Deletic, J.H. Pan, X. Zhang, Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection, Appl. Catal., B, 202 (2017) 33–41.
  98. R. Ahmad, Z. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam, J. Kim, Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications, J. Environ. Chem. Eng., 4 (2016) 4143–4164.
  99. P. Raizada, A. Sudhaik, P. Singh, Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review, Mater. Sci. Energy Technol., 2 (2019) 509–525.
  100. D. Wu, T. An, G. Li, W. Wang, Y. Cai, H.Y. Yip, H. Zhao, P.K. Wong, Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite, Appl. Surf. Sci., 358 (2015) 137–145.
  101. S.F. Anis, R. Hashaikeh, N. Hilal, Functional materials in desalination: a review, Desalination, 468 (2019) 114077, doi: 10.1016/j.desal.2019.114077.
  102. S. Kang, M.S. Mauter, M. Elimelech, Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent, Environ. Sci. Technol., 43 (2009) 2648–2653.
  103. A.S. Brady-Estévez, T.H. Nguyen, L. Gutierrez, M. Elimelech, Impact of solution chemistry on viral removal by a singlewalled carbon nanotube filter, Water Res., 44 (2010) 3773–3780.
  104. L.M. Pasquini, S.M. Hashmi, T.J. Sommer, M. Elimelech, J.B. Zimmerman, Impact of surface functionalization on bacterial cytotoxicity of single walled carbon nanotubes, Environ. Sci. Technol., 46 (2012) 6297–6305.
  105. O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of Escherichia coli in visible light irradiation, Carbon, 47 (2009) 3280–3287.
  106. V.B. Koli, A.G. Dhodamani, A.V. Raut, N.D. Thorat, S.H. Pawar, S.D. Delekar, Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs, J. Photochem. Photobiol., A, 328 (2016) 50–58.
  107. V.B. Koli, S.D. Delekar, S.H. Pawar, Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites, J. Mater. Sci.: Mater. Med., 27 (2016) 177, doi: 10.1007/ s10856-016-5788-0.
  108. K. Ouyang, K. Dai, S.L. Walker, Q. Huang, X. Yin, P. Cai, Efficient photocatalytic is infection of Escherichia coli O157:H7 using C70-TiO2 hybrid under visible light irradiation, Sci. Rep., 6 (2016) 25702, doi: 10.1038/srep25702.
  109. W. Bai, V. Krishna, J. Wang, B. Moudgil, B. Koopman, Enhancement of nano titanium dioxide photocatalysis in transparent coatings by polyhydroxy fullerene, Appl. Catal., B, 125 (2012) 128–135.
  110. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal., B, 187 (2016) 47–58.
  111. P. Murugesan, J.A. Moses, C. Anandharamakrishnan, Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review, J. Mater. Sci., 54 (2019) 12206–12235.
  112. J. Huang, W. Ho, X. Wang, Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination, Chem. Commun., 50 (2014) 4338–4340.
  113. J.H. Thurston, N.M. Hunter, L.J. Wayment, K.A. Cornell, K.A. Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity, J. Colloid Interface Sci., 505 (2017) 910–918.
  114. Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu, C. Wang, D. Wang, G. Wang, Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water, Chem., 5 (2018) 664–680.
  115. H. Zhao, H. Yu, X. Quan, S. Chen, Y. Zhang, H. Zhao, H. Wang, Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation, Appl. Catal., B, 152–153 (2014) 46–50.
  116. Y. Li, C. Zhang, D. Shuai, S. Naraginti, D. Wang, W. Zhang, Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: virucidal performance and mechanism, Water Res., 106 (2016) 249–258.
  117. J. Xue, S. Ma, Y. Zhou, Z. Zhang, M. He, Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation, ACS Appl. Mater. Interfaces, 7 (2015) 9630–9637.
  118. W. Bing, Z. Chen, H. Sun, P. Shi, N. Gao, J. Ren, X. Qu, Visible-light-driven enhanced antibacterial and bio film elimination activity of graphitic carbon nitride by embedded Ag nanoparticles, Nano Res., 8 (2015) 1648–1658.
  119. J. Xu, Q. Gao, X. Bai, Z. Wang, Y. Zhu, Enhanced visible-light induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles, Catal. Today, 332 (2019) 227–235.
  120. M.J. Munoz-Batista, O. Fontelles-Carceller, M. Ferrer, M. Fernández-García, A. Kubacka, Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination, Appl. Catal., B, 183 (2016) 86–95.
  121. G. Li, X. Nie, J. Chen, Q. Jiangae, T. An, P.K. Wong, H. Zhang, H. Zhao, H. Yamashita, Enhanced visible-light driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermalcalcination approach, Water Res., 86 (2015) 17–24.
  122. J. Xu, Y. Li, X. Zhou, Y. Li, Z.D. Gao, Y.Y. Song, P. Schmuki, Graphitic C3N4-sensitized TiO2 nanotube layers: a visiblelight activated efficient metal-free antimicrobial platform, Chem. Eur. J., 22 (2016) 3947–3951.
  123. Q. Zhang, X. Quan, H. Wang, S. Chen, Y. Su, Z. Li, Constructing a visible-light-driven photocatalytic membrane by
    g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment, Sci. Rep., 7 (2017) 3128, doi: 10.1038/s41598-017-03347-y.
  124. J. Li, Y. Yin, E. Liu, Y. Maa, J. Wan, J. Fan, X. Hu, In-situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation, J. Hazard. Mater., 321 (2017) 183–192.
  125. D. Xia, W. Wang, R. Yin, Z. Jiang, T. An, G. Li, H. Zhao, P.K. Wong, Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species, Appl. Catal., B, 214 (2017) 23–33.
  126. L. Sun, T. Du, C. Hu, J. Chen, J. Lu, Z. Lu, H. Han, Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light, ACS Sustainable Chem. Eng., 5 (2017) 8693–8701.
  127. K. Ouyang, K. Dai, H. Chen, Q. Huang, C. Gao, P. Cai, Metalfree inactivation of Escherichia coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation, Ecotoxicol. Environ. Saf., 136 (2017) 40–45.
  128. X. Tang, O. Rosseler, S. Chen, S. Houzé de l’Aulnoit, M.J. Lussier, J. Zhang, G. Ban-Weiss, H. Gilbert, R. Levinson, H. Destaillats, Self-cleaning and de-pollution efficacies of photocatalytic architectural membranes, Appl. Catal., B, 281 (2021) 119260, doi: 10.1016/j.apcatb.2020.119260.
  129. K. Reilly, B. Fang, F. Taghipour, D.P. Wilkinson, Enhanced photocatalytic hydrogen production in a UV-irradiated fluidized bed reactor, J. Catal., 353 (2017) 63–73.
  130. B. Pieber, M. Shalom, M. Antonietti, P.H. Seeberger, K. Gilmore, Continuous heterogeneous photocatalysis in serial micro-batch reactors, Angew. Chem. Int. Ed., 57 (2018) 9976–9979.
  131. S. Kim, H. Cho, H. Joo, N. Her, J. Han, K. Yi, J.-O. Kim, J. Yoon, Evaluation of performance with small and scale-up rotating and flat reactors; photocatalytic degradation of bisphenol A, 17β-estradiol, and 17α–ethynyl estradiol under solar irradiation, J. Hazard. Mater., 336 (2017) 21–32.
  132. C. Byrne, G. Subramanian, S.C. Pillai, Recent advances in photocatalysis for environmental applications, J. Environ. Chem. Eng., 6 (2018) 3531–3555.