References
- B. Zhu, B. Zonja, O. Gonzalez, C. Sans, S. Pérez, D. Barceló,
S. Esplugas, K. Xu, Z. Qiang, Degradation kinetics and pathways
of three calcium channel blockers under UV irradiation,
Water Res., 86 (2015) 9–16.
- D. Fatta-Kassinos, M.I. Vasquez, K. Kümmerer, Transformation
products of pharmaceuticals in surface waters and wastewater
formed during photolysis and advanced oxidation processes
– degradation, elucidation of
by-products and assessment of
their biological potency, Chemosphere, 85 (2011) 693–709.
- M. Wild, D. Folini, C. Schär, N. Loeb, E.G. Duttonand, G. König-Langlo, The global energy balance from a surface perspective,
Clim. Dyn., 40 (2012) 3107–3134.
- M.A. Obregón, M.J. Costa, A.M. Silva, A. Serrano, Spatial and
temporal variation of aerosol and water vapour effects on
solar radiation in the Mediterranean basin during the last two
decades, Remote Sens., 12 (2020) 1316, doi: 10.3390/rs12081316.
- B. Mathon, M. Coquery, C. Miege, A. Vandycke, J.M. Choubert,
Influence of water depth and season on the photodegradation
of micropollutants in a free-water surface constructed wetland
receiving treated wastewater, Chemosphere, 235 (2019)
260–270.
- P. Boule, D.W. Bahnemann, P.J.K. Robertson, Environmental
Photochemistry Part II, Vol. 2, Springer, M. Berlin, 2005.
- D. Vione, R. Das, F. Rubertelli, V. Maurino, C. Minero, S. Barbati,
S.Chiron, Modelling the occurrence and reactivity of hydroxyl
radicals in surface waters: Implications for the fate of selected
pesticides, Int. J. Environ. Anal. Chem., 90 (2010) 260–275.
- S. Kurwadkar, A. Evans, D. DeWinne, P. White, F. Mitchell,
Modeling photodegradation kinetics of three systemic neonicotinoids-
dinotefuran, imidacloprid, and thiamethoxam-in
aqueous and soil environment, Environ. Toxicol. Chem.,
35 (2016) 1718–1726.
- K. Zhang, S. Zhang, C. Ye, R. Ou, H. Zeng, X. Yu, M. Feng,
Sunlight-activated periodate oxidation: a novel and versatile
strategy for highly efficient water decontamination, J. Chem.
Eng., 451 (2023) 138642, doi: 10.1016/j.cej.2022.138642.
- M.S. Khandarkhaeva, A.A. Batoeva, M.R. Sizykh, D.G. Aseev,
O.V. Tsydenova, Photochemical degradation of micropollutants
in aqueous media, IOP Conf. Ser.: Earth Environ. Sci.,
272 (2019) 022080.
- Q. Yang, Y. Ma, F. Chen, F. Yao, J. Sun, S. Wang, K. Yi, L. Hou,
X. Li, D. Wang, Recent advances in photo-activated sulfate
radical-advanced oxidation process (SR-AOP) for refractory
organic pollutants removal in water, Chem. Eng. J., 378 (2019)
122–149.
- F. Lelario, M. Brienza, S.A. Bufo, L Scrano, Effectiveness
of different advanced oxidation processes (AOPs) on the
abatement of the model compound mepanipyrim in water,
J. Photochem. Photobiol., A, 321 (2016) 187–201.
- R.G. Nair, P.J. Bharadwajand, S.K. Samdarshi, Design
improvement and performance evaluation of solar
photocatalytic reactor for industrial effluent treatment,
Ecotoxicol. Environ. Saf., 134 (2016) 301–307.
- M. Tanveer, G. Tezcanli Guyer, Solar assisted photo degradation
of wastewater by compound parabolic collectors: review of
design and operational parameters, Renewable Sustainable
Energy Rev., 24 (2013) 534–543.
- Y.-C. Lin, S.C. Panchangam, L.-C. Liu, A.Y.-C. Lin, The design
of a sunlight-focusing and solar tracking system: a potential
application for the degradation of pharmaceuticals in water,
Chemosphere, 214 (2019) 452–461.
- S.R. Batchu, V.R. Panditi, P.R. Gardinali, Photodegradation of
sulfonamide antibiotics in simulated and natural sunlight:
implications for their environmental fate, J. Environ. Sci. Health
Part B., 49 (2014) 200–211.
- C. Weidauer, C. Davis, J. Raeke, B. Seiwert, T. Reemtsma, Sunlight
photolysis of benzotriazoles – identification of transformation
products and pathways, Chemosphere, 154 (2016) 416–424.
- E.M.L. Janssen, E. Marron, K. McNeill, Aquatic photochemical
kinetics of benzotriazole and structurally related compounds,
Environ. Sci. Processes Impacts, 17 (2015) 939–946.
- E. Koumaki, D. Mamais, C. Noutsopoulos, M.-C. Nika,
A.A. Bletsou, N.S. Thomaidis, A. Eftaxias, G. Stratogianni,
Degradation of emerging contaminants from water under
natural sunlight: the effect of season, pH, humic acids and
nitrate and identification of photodegradation by-products,
Chemosphere, 138 (2015) 675–681.
- H. Gerengi, K. Darowicki, G. Bereket, P. Slepski, Evaluation
of corrosion inhibition of brass-118 in artificial seawater
by benzotriazole using dynamic EIS, Corros. Sci., 51 (2009)
2573–2579.
- O.S. Ayanda, I.S. Fatoki, F.A. Adekola, E. Suana, B.J. Ximba,
Comparative performance evaluation of activated carbon and
fly ash/activated carbon composite for triphenyltin chloride
removal by adsorption, Int. J. Nano. Corr. Sci. Eng., 1 (2014)
1–12.
- M.P. Humphreys, J.F. Waters, D.R. Turner, A.G. Dickson,
S.L. Clegg, Chemical speciation models based upon the Pitzer
activity coefficient equations, including the propagation of
uncertainties: artificial seawater from 0°C to 45°C, Mar. Chem.,
244 (2022) 104095, doi: 10.1016/j.marchem.2022.104095.
- E. Kudlek, Decomposition of contaminants of emerging
concern in advanced oxidation processes, Water, 10 (2018) 955,
doi: 10.3390/w10070955.
- E. Kudlek, Formation of micropollutant decomposition
by-products during oxidation processes supported by natural
sunlight, Desal. Water Treat., 186 (2020) 361–372.
- G.D. Alkimin, D. Daniel, S. Frankenbach, J. Serôdio,
A.M.V.M. Soares, C. Barata, B. Nunes, Evaluation of
pharmaceutical toxic effects of non-standard endpoints on the
macrophyte species Lemna minor and Lemna gibba, Sci. Total
Environ., 657 (2019) 926–937.
- E. Kudlek, Identification of degradation by-products of selected
pesticides during oxidation and chlorination processes,
Ecol. Chem. Eng. S, 26 (2019) 571–581.
- H.D. Behr, Trends and interdependence of solar radiation and
air temperature—a case study from Germany, Meteorology,
1 (2022) 341–354.
- U. Pfeifroth, A. Sanchez-Lorenzo, V. Manara, J. Trentmann,
R. Hollmann, Trends and variability of surface solar radiation
in Europe based on surface- and satellite-based data records,
J. Geophys. Res.: Atmos., 123 (2018) 1735–1754.
- G. Zheng, W.S. Price, Direct hydrodynamic radius measurement
on dissolved organic matter in natural waters using
diffusion NMR, Environ. Sci. Technol., 46 (2012) 1675–1680.
- E. Kudlek, M. Dudziak, J. Bohdziewicz, Influence of
inorganic ions and organic substances on the degradation of
pharmaceutical compound in water matrix, Water, 8 (2016) 532,
doi: 10.3390/w8110532.
- P. Calza, E. Pelizzetti, Photocatalytic transformation of organic
compounds in the presence of inorganic ions, Pure Appl.
Chem., 73 (2001) 1839–1848.
- Y. Ye, Y. Feng, H. Bruning, D. Yntema, H. Rijnaarts,
Photocatalytic degradation of metoprolol by TiO2 nanotube
arrays and UV-LED: effects of catalyst properties, operational
parameters, commonly present water constituents, and photoinduced
reactive species, Appl. Catal., B, 220 (2018) 171–181.
- A. Lair, C. Ferronato, J.M. Chovelon, J.M. Herrmann,
Naphthalene degradation in water by heterogeneous
photocatalysis: an investigation of the influence of inorganic
anions, J. Photochem. Photobiol., A, 193 (2008) 193–203.
- P. Poojashree, T. Pramila, S. Manoj Kumar, G.P. Senthil Kumar,
A review on pharmaceutical impurities and its importance in
pharmacy, Am. J. PharmTech Res., 9 (2019) 76–87.
- J. Roy, S.C. Das, The effect of sunlight on ciprofloxacin eye
drops, Pharm. Sci. Technol. Today, 28 (2002) 14–31.
- A. Smith, P.M. Pennefather, S.B. Kaye, C.A. Hart,
Fluoroquinolones, Drugs, 61 (2001) 747–161.
- M. Kovacic, D. Juretic Perisic, M. Biosic, H. Kusic, S. Babic,
A. Loncaric Bozic, UV photolysis of diclofenac in water;
kinetics, degradation pathway and environmental aspects,
Environ. Sci. Pollut. Res., 23 (2016) 14908–14917.
- A. Agüera, L.A. Pérez Estrada, I. Ferrer, E.M. Thurman,
S. Malato, A.R. Fernández-Alba, Application of time-of-flight
mass spectrometry to the analysis of photo-transformation
products of diclofenac in water under natural sunlight, J. Mass
Spectrom., 40 (2005) 908–915.
- P. Bartels, W. von Tümpling, Solar radiation influence on the
decomposition process of diclofenac in surface waters, Sci. Total
Environ., 374 (2007) 143–155.
- J. Eriksson, J. Svanfelt, L. Kronberg, A photochemical
study of diclofenac and its major transformation products,
Photochem. Photobiol., 86 (2010) 528–532.
- O.S. Keen, E.M. Thurman, I. Ferrer, A.D. Dotson,
K.G. Linden, Dimer formation during UV photolysis of
diclofenac, Chemosphere, 93 (2013) 1948–1956.
- C. von Sonntag, H.-P. Schuchmann, The elucidation of
peroxyl radical reactions in aqueous solution with the help of
radiation-chemical methods, Angew. Chem. Int. Ed., 30 (1991)
1229–1253.
- N. Brand, G. Mailhot, M. Sarakha, M. Bolte, Primary mechanism
in the degradation of 4-octylphenol photoinduced by Fe(III)
in water–acetonitrile solution, J. Photochem. Photobiol., A,
135 (2000) 221–228.
- G. Swain, R.K. Sonwani, R.S. Singh, R.P. Jaiswal, B.N. Rai,
A comparative study of 4-chlorophenol biodegradation
in a packed bed and moving bed bioreactor: performance
evaluation and toxicity analysis, Environ. Technol. Innovation,
24 (2021) 101820, doi: 10.1016/j.eti.2021.101820.
- X. Liu, G. Liu, S. Liu, L. Qin, B. Lin, M. Wang, L. Yang, M. Zheng,
Free radical mechanism of toxic organic compound formations
from o-chlorophenol, J. Hazard. Mater., 443 (2023) 130367,
doi: 10.1016/j.jhazmat.2022.130367.
- M. Gomez, M.D. Murcia, J.L. Gomez, E. Gomez, M.F. Maximo,
A. Garcia, A KrCl exciplex flow-through photoreactor for
degrading 4-chlorophenol: experimental and modelling,
Appl. Catal., B, 117–118 (2012) 194–203.
- A. Karci, I. Arslan-Alaton, T. Olmez-Hanci, M. Bekbölet,
Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton
and photo-Fenton processes: oxidation products and toxicity
evolution, J. Photochem. Photobiol., A, 230 (2012) 65–73.
- M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Assessment
of the generation of chlorinated by-products upon Fenton-like
oxidation of chlorophenols at different conditions, J. Hazard.
Mater., 190 (2011) 993–1000.
- D. Barceló, B. Žonja, A. Ginebreda, Toxicity tests in wastewater
and drinking water treatment processes: a complementary
assessment tool to be on your radar, J. Environ. Chem. Eng.,
8 (2020) 104262, doi: 10.1016/j.jece.2020.104262.
- E. Niemirycz, J. Nichthauser, M. Staniszewska, G. Nałęcz-Jawecki, J. Bolalek, The Microtox® biological test: application in
toxicity evaluation of surface waters and sediments in Poland,
Oceanol. Hydrobiol. Stud., 36 (2007) 151–163.
- N. Gharavi, S. Haggarty, A.O. El-Kadi, Chemoprotective
and carcinogenic effects of tert-butylhydroquinone and its
metabolites, Curr. Drug Metab., 8 (2007) 1–7.
- A. Khezerlou, A. Pouya Akhlaghi, A. Mirza Alizadeh,
P. Dehghan, P. Maleki, Alarming impact of the excessive use of
tert-butylhydroquinone in food products: a narrative review,
Toxicol. Rep., 9 (2022) 1066–1075.
- Y. Li, H. Qin, L. Wang, J. Lu, J.-M. Chovelon, Q. Zhou, Y. Ji,
Aquatic photolysis of 2,4-dichloro-6-nitrophenol—the toxic
nitrated by-product of 2,4-dichlorophenol, Chemosphere,
291 (2022) 132986, doi: 10.1016/j.chemosphere.2021.132986.
- O.S. Kwean, S.Y. Cho, J.W. Yang, W. Cho, S. Park, Y. Lim,
M.C. Shin, H.S. Kim, J. Park, H.S. Kim, 4-chlorophenol
biodegradation facilitator composed of recombinant multibiocatalysts
immobilized onto montmorillonite, Bioresour.
Technol., 259 (2018) 268–275.
- A. Santos, P. Yustos, S. Rodríguez, F. Vicente, A. Romero,
Kinetic modeling of toxicity evolution during phenol oxidation,
Ind. Eng. Chem. Res., 48 (2009) 2844–2850.
- C. Ferreiro, J. Sanz, N. Villota, A. de Luis, J.I. Lombraña, Kinetic
modelling for concentration and toxicity changes during the
oxidation of 4-chlorophenol by UV/H2O2, Sci. Rep., 11 (2021)
15726, doi: 10.1038/s41598-021-95083-7.
- M. Krebel, H. Kusic, N. Koprivanac, J. Meixner, A.L. Bozic,
Treatment of chlorophenols by UV-based processes: correlation
of oxidation by-products, wastewater parameters, and toxicity,
J. Environ. Eng., 137 (2011) 639–649.