References

  1. B. Zhu, B. Zonja, O. Gonzalez, C. Sans, S. Pérez, D. Barceló, S. Esplugas, K. Xu, Z. Qiang, Degradation kinetics and pathways of three calcium channel blockers under UV irradiation, Water Res., 86 (2015) 9–16.
  2. D. Fatta-Kassinos, M.I. Vasquez, K. Kümmerer, Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – degradation, elucidation of
    by-products and assessment of their biological potency, Chemosphere, 85 (2011) 693–709.
  3. M. Wild, D. Folini, C. Schär, N. Loeb, E.G. Duttonand, G. König-Langlo, The global energy balance from a surface perspective, Clim. Dyn., 40 (2012) 3107–3134.
  4. M.A. Obregón, M.J. Costa, A.M. Silva, A. Serrano, Spatial and temporal variation of aerosol and water vapour effects on solar radiation in the Mediterranean basin during the last two decades, Remote Sens., 12 (2020) 1316, doi: 10.3390/rs12081316.
  5. B. Mathon, M. Coquery, C. Miege, A. Vandycke, J.M. Choubert, Influence of water depth and season on the photodegradation of micropollutants in a free-water surface constructed wetland receiving treated wastewater, Chemosphere, 235 (2019) 260–270.
  6. P. Boule, D.W. Bahnemann, P.J.K. Robertson, Environmental Photochemistry Part II, Vol. 2, Springer, M. Berlin, 2005.
  7. D. Vione, R. Das, F. Rubertelli, V. Maurino, C. Minero, S. Barbati, S.Chiron, Modelling the occurrence and reactivity of hydroxyl radicals in surface waters: Implications for the fate of selected pesticides, Int. J. Environ. Anal. Chem., 90 (2010) 260–275.
  8. S. Kurwadkar, A. Evans, D. DeWinne, P. White, F. Mitchell, Modeling photodegradation kinetics of three systemic neonicotinoids- dinotefuran, imidacloprid, and thiamethoxam-in aqueous and soil environment, Environ. Toxicol. Chem., 35 (2016) 1718–1726.
  9. K. Zhang, S. Zhang, C. Ye, R. Ou, H. Zeng, X. Yu, M. Feng, Sunlight-activated periodate oxidation: a novel and versatile strategy for highly efficient water decontamination, J. Chem. Eng., 451 (2023) 138642, doi: 10.1016/j.cej.2022.138642.
  10. M.S. Khandarkhaeva, A.A. Batoeva, M.R. Sizykh, D.G. Aseev, O.V. Tsydenova, Photochemical degradation of micropollutants in aqueous media, IOP Conf. Ser.: Earth Environ. Sci., 272 (2019) 022080.
  11. Q. Yang, Y. Ma, F. Chen, F. Yao, J. Sun, S. Wang, K. Yi, L. Hou, X. Li, D. Wang, Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water, Chem. Eng. J., 378 (2019) 122–149.
  12. F. Lelario, M. Brienza, S.A. Bufo, L Scrano, Effectiveness of different advanced oxidation processes (AOPs) on the abatement of the model compound mepanipyrim in water, J. Photochem. Photobiol., A, 321 (2016) 187–201.
  13. R.G. Nair, P.J. Bharadwajand, S.K. Samdarshi, Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment, Ecotoxicol. Environ. Saf., 134 (2016) 301–307.
  14. M. Tanveer, G. Tezcanli Guyer, Solar assisted photo degradation of wastewater by compound parabolic collectors: review of design and operational parameters, Renewable Sustainable Energy Rev., 24 (2013) 534–543.
  15. Y.-C. Lin, S.C. Panchangam, L.-C. Liu, A.Y.-C. Lin, The design of a sunlight-focusing and solar tracking system: a potential application for the degradation of pharmaceuticals in water, Chemosphere, 214 (2019) 452–461.
  16. S.R. Batchu, V.R. Panditi, P.R. Gardinali, Photodegradation of sulfonamide antibiotics in simulated and natural sunlight: implications for their environmental fate, J. Environ. Sci. Health Part B., 49 (2014) 200–211.
  17. C. Weidauer, C. Davis, J. Raeke, B. Seiwert, T. Reemtsma, Sunlight photolysis of benzotriazoles – identification of transformation products and pathways, Chemosphere, 154 (2016) 416–424.
  18. E.M.L. Janssen, E. Marron, K. McNeill, Aquatic photochemical kinetics of benzotriazole and structurally related compounds, Environ. Sci. Processes Impacts, 17 (2015) 939–946.
  19. E. Koumaki, D. Mamais, C. Noutsopoulos, M.-C. Nika, A.A. Bletsou, N.S. Thomaidis, A. Eftaxias, G. Stratogianni, Degradation of emerging contaminants from water under natural sunlight: the effect of season, pH, humic acids and nitrate and identification of photodegradation by-products, Chemosphere, 138 (2015) 675–681.
  20. H. Gerengi, K. Darowicki, G. Bereket, P. Slepski, Evaluation of corrosion inhibition of brass-118 in artificial seawater by benzotriazole using dynamic EIS, Corros. Sci., 51 (2009) 2573–2579.
  21. O.S. Ayanda, I.S. Fatoki, F.A. Adekola, E. Suana, B.J. Ximba, Comparative performance evaluation of activated carbon and fly ash/activated carbon composite for triphenyltin chloride removal by adsorption, Int. J. Nano. Corr. Sci. Eng., 1 (2014) 1–12.
  22. M.P. Humphreys, J.F. Waters, D.R. Turner, A.G. Dickson, S.L. Clegg, Chemical speciation models based upon the Pitzer activity coefficient equations, including the propagation of uncertainties: artificial seawater from 0°C to 45°C, Mar. Chem., 244 (2022) 104095, doi: 10.1016/j.marchem.2022.104095.
  23. E. Kudlek, Decomposition of contaminants of emerging concern in advanced oxidation processes, Water, 10 (2018) 955, doi: 10.3390/w10070955.
  24. E. Kudlek, Formation of micropollutant decomposition by-products during oxidation processes supported by natural sunlight, Desal. Water Treat., 186 (2020) 361–372.
  25. G.D. Alkimin, D. Daniel, S. Frankenbach, J. Serôdio, A.M.V.M. Soares, C. Barata, B. Nunes, Evaluation of pharmaceutical toxic effects of non-standard endpoints on the macrophyte species Lemna minor and Lemna gibba, Sci. Total Environ., 657 (2019) 926–937.
  26. E. Kudlek, Identification of degradation by-products of selected pesticides during oxidation and chlorination processes, Ecol. Chem. Eng. S, 26 (2019) 571–581.
  27. H.D. Behr, Trends and interdependence of solar radiation and air temperature—a case study from Germany, Meteorology, 1 (2022) 341–354.
  28. U. Pfeifroth, A. Sanchez-Lorenzo, V. Manara, J. Trentmann, R. Hollmann, Trends and variability of surface solar radiation in Europe based on surface- and satellite-based data records, J. Geophys. Res.: Atmos., 123 (2018) 1735–1754.
  29. G. Zheng, W.S. Price, Direct hydrodynamic radius measurement on dissolved organic matter in natural waters using diffusion NMR, Environ. Sci. Technol., 46 (2012) 1675–1680.
  30. E. Kudlek, M. Dudziak, J. Bohdziewicz, Influence of inorganic ions and organic substances on the degradation of pharmaceutical compound in water matrix, Water, 8 (2016) 532, doi: 10.3390/w8110532.
  31. P. Calza, E. Pelizzetti, Photocatalytic transformation of organic compounds in the presence of inorganic ions, Pure Appl. Chem., 73 (2001) 1839–1848.
  32. Y. Ye, Y. Feng, H. Bruning, D. Yntema, H. Rijnaarts, Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: effects of catalyst properties, operational parameters, commonly present water constituents, and photoinduced reactive species, Appl. Catal., B, 220 (2018) 171–181.
  33. A. Lair, C. Ferronato, J.M. Chovelon, J.M. Herrmann, Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions, J. Photochem. Photobiol., A, 193 (2008) 193–203.
  34. P. Poojashree, T. Pramila, S. Manoj Kumar, G.P. Senthil Kumar, A review on pharmaceutical impurities and its importance in pharmacy, Am. J. PharmTech Res., 9 (2019) 76–87.
  35. J. Roy, S.C. Das, The effect of sunlight on ciprofloxacin eye drops, Pharm. Sci. Technol. Today, 28 (2002) 14–31.
  36. A. Smith, P.M. Pennefather, S.B. Kaye, C.A. Hart, Fluoroquinolones, Drugs, 61 (2001) 747–161.
  37. M. Kovacic, D. Juretic Perisic, M. Biosic, H. Kusic, S. Babic, A. Loncaric Bozic, UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects, Environ. Sci. Pollut. Res., 23 (2016) 14908–14917.
  38. A. Agüera, L.A. Pérez Estrada, I. Ferrer, E.M. Thurman, S. Malato, A.R. Fernández-Alba, Application of time-of-flight mass spectrometry to the analysis of photo-transformation products of diclofenac in water under natural sunlight, J. Mass Spectrom., 40 (2005) 908–915.
  39. P. Bartels, W. von Tümpling, Solar radiation influence on the decomposition process of diclofenac in surface waters, Sci. Total Environ., 374 (2007) 143–155.
  40. J. Eriksson, J. Svanfelt, L. Kronberg, A photochemical study of diclofenac and its major transformation products, Photochem. Photobiol., 86 (2010) 528–532.
  41. O.S. Keen, E.M. Thurman, I. Ferrer, A.D. Dotson, K.G. Linden, Dimer formation during UV photolysis of diclofenac, Chemosphere, 93 (2013) 1948–1956.
  42. C. von Sonntag, H.-P. Schuchmann, The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation-chemical methods, Angew. Chem. Int. Ed., 30 (1991) 1229–1253.
  43. N. Brand, G. Mailhot, M. Sarakha, M. Bolte, Primary mechanism in the degradation of 4-octylphenol photoinduced by Fe(III) in water–acetonitrile solution, J. Photochem. Photobiol., A, 135 (2000) 221–228.
  44. G. Swain, R.K. Sonwani, R.S. Singh, R.P. Jaiswal, B.N. Rai, A comparative study of 4-chlorophenol biodegradation in a packed bed and moving bed bioreactor: performance evaluation and toxicity analysis, Environ. Technol. Innovation, 24 (2021) 101820, doi: 10.1016/j.eti.2021.101820.
  45. X. Liu, G. Liu, S. Liu, L. Qin, B. Lin, M. Wang, L. Yang, M. Zheng, Free radical mechanism of toxic organic compound formations from o-chlorophenol, J. Hazard. Mater., 443 (2023) 130367, doi: 10.1016/j.jhazmat.2022.130367.
  46. M. Gomez, M.D. Murcia, J.L. Gomez, E. Gomez, M.F. Maximo, A. Garcia, A KrCl exciplex flow-through photoreactor for degrading 4-chlorophenol: experimental and modelling, Appl. Catal., B, 117–118 (2012) 194–203.
  47. A. Karci, I. Arslan-Alaton, T. Olmez-Hanci, M. Bekbölet, Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: oxidation products and toxicity evolution, J. Photochem. Photobiol., A, 230 (2012) 65–73.
  48. M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Assessment of the generation of chlorinated by-products upon Fenton-like oxidation of chlorophenols at different conditions, J. Hazard. Mater., 190 (2011) 993–1000.
  49. D. Barceló, B. Žonja, A. Ginebreda, Toxicity tests in wastewater and drinking water treatment processes: a complementary assessment tool to be on your radar, J. Environ. Chem. Eng., 8 (2020) 104262, doi: 10.1016/j.jece.2020.104262.
  50. E. Niemirycz, J. Nichthauser, M. Staniszewska, G. Nałęcz-Jawecki, J. Bolalek, The Microtox® biological test: application in toxicity evaluation of surface waters and sediments in Poland, Oceanol. Hydrobiol. Stud., 36 (2007) 151–163.
  51. N. Gharavi, S. Haggarty, A.O. El-Kadi, Chemoprotective and carcinogenic effects of tert-butylhydroquinone and its metabolites, Curr. Drug Metab., 8 (2007) 1–7.
  52. A. Khezerlou, A. Pouya Akhlaghi, A. Mirza Alizadeh, P. Dehghan, P. Maleki, Alarming impact of the excessive use of tert-butylhydroquinone in food products: a narrative review, Toxicol. Rep., 9 (2022) 1066–1075.
  53. Y. Li, H. Qin, L. Wang, J. Lu, J.-M. Chovelon, Q. Zhou, Y. Ji, Aquatic photolysis of 2,4-dichloro-6-nitrophenol—the toxic nitrated by-product of 2,4-dichlorophenol, Chemosphere, 291 (2022) 132986, doi: 10.1016/j.chemosphere.2021.132986.
  54. O.S. Kwean, S.Y. Cho, J.W. Yang, W. Cho, S. Park, Y. Lim, M.C. Shin, H.S. Kim, J. Park, H.S. Kim, 4-chlorophenol biodegradation facilitator composed of recombinant multibiocatalysts immobilized onto montmorillonite, Bioresour. Technol., 259 (2018) 268–275.
  55. A. Santos, P. Yustos, S. Rodríguez, F. Vicente, A. Romero, Kinetic modeling of toxicity evolution during phenol oxidation, Ind. Eng. Chem. Res., 48 (2009) 2844–2850.
  56. C. Ferreiro, J. Sanz, N. Villota, A. de Luis, J.I. Lombraña, Kinetic modelling for concentration and toxicity changes during the oxidation of 4-chlorophenol by UV/H2O2, Sci. Rep., 11 (2021) 15726, doi: 10.1038/s41598-021-95083-7.
  57. M. Krebel, H. Kusic, N. Koprivanac, J. Meixner, A.L. Bozic, Treatment of chlorophenols by UV-based processes: correlation of oxidation by-products, wastewater parameters, and toxicity, J. Environ. Eng., 137 (2011) 639–649.