References
- Ł. Górski, B. Buszewski, Methods of sludge stabilization and
sanitary, Ecol. Chem. Eng. S, 9 (2002) 1501–1519.
- S. Borowski, Aerobic thermophilic stabilization on municipal
sludges, Environ. Pollut. Control, 4 (2000) 21–25.
- M. Sobiepański, R. Kostrzewa, Odwadnianie i higienizacja
osadu ściekowego w procesie zautomatyzowanym przy
pomocy sterownika cyfrowego, Technika, 12 (2015) 2880–2884.
- O. Augustin, I. Bartkowska, L. Dzienis, Efficiency of Wastewater
Sludge Disinfection by Autoheated Thermophilic Aerobic
Digestion (ATAD), W: IWA Specialist Conference: Moving
Forward: Wasterwater Biosolids Sustainability: Technical,
Managerial and Public Synergy, Conference Proceedings,
Canada, June 24–27, 2007, pp. 1037–1043.
- S. Liu, N. Zhu, L.Y. Li, The one-stage autothermal thermophilic
aerobic digestion for sewage sludge treatment: stabilization
process and mechanism, Bioresour. Technol., 104 (2011)
266–273.
- I. Bartkowska, Autothermal Thermophilic Aerobic Digestion,
Seidel-Przywecki Publishing, 2017.
- K. Iskra, J.M. Miodoński, Ł. Krawczyk, K. Citko, Analysis of
efficiency of autothermal thermophilic aerobic digestion of
sewage sludge in full scale, Gas Water Sanit. Eng., 10 (2020)
8–12.
- D. Boruszko, A. Wojciula, Heavy metals and polycyclic aromatic
hydrocarbons in leachates from autothermal thermophilic
aerobic digestion as a potential threat to the environment
in north-eastern Poland, Stud. Quat., 39 (2022) 15–22.
- M. Gajewska, Treatment of reject water from digested sludge
dewatering in multistage constructed wetland, Ecol. Eng.
Environ. Technol., 25 (2011) 86–98.
- D. Dąbrowska, A. Kot-Wasik, J. Namieśnik, Degradation of
organic compounds in the environment, Ecol. Chem. Eng. S,
9 (2002) 1077–1096.
- M. Litter, N. Quici, Photochemical advanced oxidation
processes for water and wastewater treatment, Recent Patent
Eng., 4 (2010) 217–241.
- M. Smol, M. Włodarczyk-Makuła, Preliminary removal of
PAHs from coke oven wastewater, LAB, 17 (2012) 28–31.
- A. Rubio-Clemente, R.A. Torres-Palma, G.A. Peñuela, Removal
of polycyclic aromatic hydrocarbons in aqueous environment
by chemical treatment: a review, Sci. Total Environ., 478 (2014)
201–225.
- G. Kupryszewski, Introduction to Organic Chemistry, Polish
Scientific Publishers, Warsaw, 1997.
- P. Ofman, I. Skoczko, PAH removal effectiveness comparison
from hydraulic fracturing model wastewater in SBR
reactors with granular and flocked activated sludge, Desal.
Water Treat., 134 (2018) 41–51.
- D. Gateuille, O. Evrard, I. Lefevre, E. Moreau-Guigon, F. Alliot,
M. Chevreuil, J.M. Mouchel, Mass balance and decontamination
times of polycyclic aromatic hydrocarbons in rural nested
catchments of an early industrialized region (Seine River
Basin, France), Sci. Total Environ., 470–471 (2014) 608–617.
- B. Macherzyński, M. Włodarczyk-Makuła, Effect of composition
of the sewage sludge on degradation of low molecular weight
PAHs in the fermentation process, Eng. Prot. Environ.,
17 (2014) 533–545.
- K. Hussain, R.R. Hoque, S. Balachandran, S. Medhi, M.G. Idris,
M. Rahman, F.L. Hussain, Monitoring and Risk Analysis
of PAHs in the Environment, C. Hussain, Ed., Handbook
of Environmental Materials Management, Springer, Cham,
2018, pp. 1–35. doi: 10.1007/978-3-319
-58538-3_29-2
- A. Sapota, Polycyclic aromatic hydrocarbons, Principles and
Methods of Assessing the Working Environment, 2 (2002)
179–208.
- A. Zasadowski, A. Wysocki, Some toxicological aspects
of polycyclic aromatic hydrocarbons (PAHs) effects,
Ann. National Inst. Hyg., 53 (2002) 26–35.
- E.W. Rice, R.B. Baird, A.D. Eaton, Standard Methods for the
Examination of Water and Wastewater, 23rd ed., American
Public Health Association, American Water Works Association,
Water Environment Federation, Washington, D.C., 2017.
- R. McGill, J.W. Tukey, W.A. Larsen, Variations of Box Plots,
The American Statistician, 32 (1978) 12–16.
- M. Hollander, A.D. Wolfe, Nonparametric Statistical Methods,
John Wiley & Sons, New York, 1973, pp. 115–120.
- M. Hollander, A.D. Wolfe, Nonparametric Statistical Methods,
John Wiley & Sons, New York, 1973, pp. 68–75.
- Y. Benjamini, Y. Hochberg, Controlling the false discovery
rate: a practical and powerful approach to multiple testing,
J. R. Stat. Soc. B, 57 (1995) 289–300.
- R Core Team, A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2022.
- S.A.V. Tfouni, M.C.F. Toledo, Determination of polycyclic
aromatic hydrocarbons in cane sugar, Food Control, 18 (2007)
948–952.
- L. Jamir, V. Kumar, J. Kaur, S. Kumar, H. Singh, Composition,
valorization and therapeutical potential of molasses: a critical
review, Environ. Technol. Rev., 10 (2021) 131–142.
- W. Stringfellow, L. Alvarez-Cohen, Evaluating the relationship
between the sorption od PAHs to bacterial biomass and
biodegradation, Water Res., 11 (1999) 2535–2544.
- K. Klimaszewska, Biodegradation and occurrence of four
polycyclic aromatic hydrocarbons in aquatic sediments,
Biotechnology, 1 (1998) 140–148.
- G. Zhou, J. Li, H. Fan, J. Sun, X. Zhao, Starch Wastewater
Treatment with Effective Microorganisms Bacteria, 2010 4th
International Conference on Bioinformatics and Biomedical
Engineering, Chengdu, China, 2010, pp. 1–4.
- M.T. Rashid, J. West, Dairy Wastewater Treatment with Effective
Microorganisms and Duckweed for Pollutants and Pathogen
Control, M.K. Zaidi, Ed., Wastewater Reuse–Risk Assessment,
Decision-Making and Environmental Security, NATO
Science for Peace and Security Series, Springer, Dordrecht,
2007.
- K. Jóźwiakowski, The Evaluation of Usability of EM-Farming™
Preparation for Work Optimization of Preliminary Settling
Tanks, Polish Academy of Sciences, Cracow Branch, 2008,
pp. 159–167.
- H. Kołoczek, P. Kaszycki, Bioremediation of Refinery Pollutants
in the Groundwater Environment: Methods for Removing
Hydrocarbon Pollutants from the Groundwater Environment,
AGH University Publishing House, Cracow, 2006.
- B. Nas, M.E. Argun, T. Dolu, H. Ateş, E. Yel, S. Koyuncu, S. Dinç,
M. Kara, Occurrence, loadings and removal of EU-priority
polycyclic aromatic hydrocarbons (PAHs) in wastewater and
sludge by advanced biological treatment, stabilization pond
and constructed wetland, J. Environ. Manage., 268 (2020)
110580, doi: 10.1016/j.jenvman.2020.110580.
- K. Shimada, M. Nohchi, X. Yang, T. Sugiyama, K. Miura,
A. Takami, K. Sato, X. Chen, S. Kato, Y. Kajii, F. Meng,
S. Hatakeyama, Degradation of PAHs during long range transport
based on simultaneous measurements at Tuoji Island,
China, and at Fukue Island and Cape Hedo, Japan, Environ.
Pollut., 260 (2020) 113906, doi: 10.1016/j.envpol.2019.113906.
- M. Włodarczyk-Makuła, E. Wiśniowska, Evaluation of
degradation possibility of PAHs by microorganisms obtained
from reject waters, Proc. ECOpole, 12 (2018) 599–610.
- E. Manoli, C. Samara, The removal of polycyclic aromatic
hydrocarbons in the wastewater treatment process:
experimental calculations and model predictions, Environ.
Pollut., 51 (2008) 477–485.
- M. Rusin, E. Marchwińska-Wyrwał, Health hazards involved
with an environmental exposure to polycyclic aromatic
hydrocarbons (PAHs), Environ. Med., 3 (2014) 7–13.