References

  1. Ł. Górski, B. Buszewski, Methods of sludge stabilization and sanitary, Ecol. Chem. Eng. S, 9 (2002) 1501–1519.
  2. S. Borowski, Aerobic thermophilic stabilization on municipal sludges, Environ. Pollut. Control, 4 (2000) 21–25.
  3. M. Sobiepański, R. Kostrzewa, Odwadnianie i higienizacja osadu ściekowego w procesie zautomatyzowanym przy pomocy sterownika cyfrowego, Technika, 12 (2015) 2880–2884.
  4. O. Augustin, I. Bartkowska, L. Dzienis, Efficiency of Wastewater Sludge Disinfection by Autoheated Thermophilic Aerobic Digestion (ATAD), W: IWA Specialist Conference: Moving Forward: Wasterwater Biosolids Sustainability: Technical, Managerial and Public Synergy, Conference Proceedings, Canada, June 24–27, 2007, pp. 1037–1043.
  5. S. Liu, N. Zhu, L.Y. Li, The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: stabilization process and mechanism, Bioresour. Technol., 104 (2011) 266–273.
  6. I. Bartkowska, Autothermal Thermophilic Aerobic Digestion, Seidel-Przywecki Publishing, 2017.
  7. K. Iskra, J.M. Miodoński, Ł. Krawczyk, K. Citko, Analysis of efficiency of autothermal thermophilic aerobic digestion of sewage sludge in full scale, Gas Water Sanit. Eng., 10 (2020) 8–12.
  8. D. Boruszko, A. Wojciula, Heavy metals and polycyclic aromatic hydrocarbons in leachates from autothermal thermophilic aerobic digestion as a potential threat to the environment in north-eastern Poland, Stud. Quat., 39 (2022) 15–22.
  9. M. Gajewska, Treatment of reject water from digested sludge dewatering in multistage constructed wetland, Ecol. Eng. Environ. Technol., 25 (2011) 86–98.
  10. D. Dąbrowska, A. Kot-Wasik, J. Namieśnik, Degradation of organic compounds in the environment, Ecol. Chem. Eng. S, 9 (2002) 1077–1096.
  11. M. Litter, N. Quici, Photochemical advanced oxidation processes for water and wastewater treatment, Recent Patent Eng., 4 (2010) 217–241.
  12. M. Smol, M. Włodarczyk-Makuła, Preliminary removal of PAHs from coke oven wastewater, LAB, 17 (2012) 28–31.
  13. A. Rubio-Clemente, R.A. Torres-Palma, G.A. Peñuela, Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatment: a review, Sci. Total Environ., 478 (2014) 201–225.
  14. G. Kupryszewski, Introduction to Organic Chemistry, Polish Scientific Publishers, Warsaw, 1997.
  15. P. Ofman, I. Skoczko, PAH removal effectiveness comparison from hydraulic fracturing model wastewater in SBR reactors with granular and flocked activated sludge, Desal. Water Treat., 134 (2018) 41–51.
  16. D. Gateuille, O. Evrard, I. Lefevre, E. Moreau-Guigon, F. Alliot, M. Chevreuil, J.M. Mouchel, Mass balance and decontamination times of polycyclic aromatic hydrocarbons in rural nested catchments of an early industrialized region (Seine River Basin, France), Sci. Total Environ., 470–471 (2014) 608–617.
  17. B. Macherzyński, M. Włodarczyk-Makuła, Effect of composition of the sewage sludge on degradation of low molecular weight PAHs in the fermentation process, Eng. Prot. Environ., 17 (2014) 533–545.
  18. K. Hussain, R.R. Hoque, S. Balachandran, S. Medhi, M.G. Idris, M. Rahman, F.L. Hussain, Monitoring and Risk Analysis of PAHs in the Environment, C. Hussain, Ed., Handbook of Environmental Materials Management, Springer, Cham, 2018, pp. 1–35. doi: 10.1007/978-3-319 -58538-3_29-2
  19. A. Sapota, Polycyclic aromatic hydrocarbons, Principles and Methods of Assessing the Working Environment, 2 (2002) 179–208.
  20. A. Zasadowski, A. Wysocki, Some toxicological aspects of polycyclic aromatic hydrocarbons (PAHs) effects, Ann. National Inst. Hyg., 53 (2002) 26–35.
  21. E.W. Rice, R.B. Baird, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C., 2017.
  22. R. McGill, J.W. Tukey, W.A. Larsen, Variations of Box Plots, The American Statistician, 32 (1978) 12–16.
  23. M. Hollander, A.D. Wolfe, Nonparametric Statistical Methods, John Wiley & Sons, New York, 1973, pp. 115–120.
  24. M. Hollander, A.D. Wolfe, Nonparametric Statistical Methods, John Wiley & Sons, New York, 1973, pp. 68–75.
  25. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, 57 (1995) 289–300.
  26. R Core Team, A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2022.
  27. S.A.V. Tfouni, M.C.F. Toledo, Determination of polycyclic aromatic hydrocarbons in cane sugar, Food Control, 18 (2007) 948–952.
  28. L. Jamir, V. Kumar, J. Kaur, S. Kumar, H. Singh, Composition, valorization and therapeutical potential of molasses: a critical review, Environ. Technol. Rev., 10 (2021) 131–142.
  29. W. Stringfellow, L. Alvarez-Cohen, Evaluating the relationship between the sorption od PAHs to bacterial biomass and biodegradation, Water Res., 11 (1999) 2535–2544.
  30. K. Klimaszewska, Biodegradation and occurrence of four polycyclic aromatic hydrocarbons in aquatic sediments, Biotechnology, 1 (1998) 140–148.
  31. G. Zhou, J. Li, H. Fan, J. Sun, X. Zhao, Starch Wastewater Treatment with Effective Microorganisms Bacteria, 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 2010, pp. 1–4.
  32. M.T. Rashid, J. West, Dairy Wastewater Treatment with Effective Microorganisms and Duckweed for Pollutants and Pathogen Control, M.K. Zaidi, Ed., Wastewater Reuse–Risk Assessment, Decision-Making and Environmental Security, NATO Science for Peace and Security Series, Springer, Dordrecht, 2007.
  33. K. Jóźwiakowski, The Evaluation of Usability of EM-Farming™ Preparation for Work Optimization of Preliminary Settling Tanks, Polish Academy of Sciences, Cracow Branch, 2008, pp. 159–167.
  34. H. Kołoczek, P. Kaszycki, Bioremediation of Refinery Pollutants in the Groundwater Environment: Methods for Removing Hydrocarbon Pollutants from the Groundwater Environment, AGH University Publishing House, Cracow, 2006.
  35. B. Nas, M.E. Argun, T. Dolu, H. Ateş, E. Yel, S. Koyuncu, S. Dinç, M. Kara, Occurrence, loadings and removal of EU-priority polycyclic aromatic hydrocarbons (PAHs) in wastewater and sludge by advanced biological treatment, stabilization pond and constructed wetland, J. Environ. Manage., 268 (2020) 110580, doi: 10.1016/j.jenvman.2020.110580.
  36. K. Shimada, M. Nohchi, X. Yang, T. Sugiyama, K. Miura, A. Takami, K. Sato, X. Chen, S. Kato, Y. Kajii, F. Meng, S. Hatakeyama, Degradation of PAHs during long range transport based on simultaneous measurements at Tuoji Island, China, and at Fukue Island and Cape Hedo, Japan, Environ. Pollut., 260 (2020) 113906, doi: 10.1016/j.envpol.2019.113906.
  37. M. Włodarczyk-Makuła, E. Wiśniowska, Evaluation of degradation possibility of PAHs by microorganisms obtained from reject waters, Proc. ECOpole, 12 (2018) 599–610.
  38. E. Manoli, C. Samara, The removal of polycyclic aromatic hydrocarbons in the wastewater treatment process: experimental calculations and model predictions, Environ. Pollut., 51 (2008) 477–485.
  39. M. Rusin, E. Marchwińska-Wyrwał, Health hazards involved with an environmental exposure to polycyclic aromatic hydrocarbons (PAHs), Environ. Med., 3 (2014) 7–13.