References

  1. A.K. Jha, J. Li, L. Nies, L. Zhang, Research advances in dry anaerobic digestion process of solid organic wastes, Afr. J. Biotechnol., 10 (2011) 14242–14253.
  2. B.K. Ahring, Perspectives for anaerobic digestion, Adv. Biochem. Eng. Biotechnol., 81 (2003) 1–30.
  3. I. Angelidaki, L. Ellegaard, B.K. Ahring, Applications of the Anaerobic Digestion Process, In: Biomethanation II. Advances in Biochemical Engineering/Biotechnology, Vol. 82, Springer, Berlin, Heidelberg, 2003, pp. 1–33.
    doi: 10.1007/3-540-45838-7_1
  4. I. Rocamora, S.T. Wagland, R. Villa, E.W. Simpson, O. Fernández, Y. Bajón-Fernández, Dry anaerobic digestion of organic waste: a review of operational parameters and their impact on process performance, Bioresour. Technol., 299 (2020) 122681, doi: 10.1016/j.biortech.2019.122681.
  5. A. Grosser, Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. a comparison of BMP tests and semicontinuous trial results, Energy, 143 (2018) 488–499.
  6. F. Petracchini, F. Liotta, V. Paolini, M. Perilli, D. Cerioni, F. Gallucci, M. Carnevale, A. Bencini, A novel pilot scale multistage semidry anaerobic digestion reactor to treat food waste and cow manure, Int. J. Environ. Sci. Technol., 15 (2018) 1999–2008.
  7. A. Abbassi-Guendouz, D. Brockmann, E. Trably, C. Dumas, J.P. Delgenès, J.P. Steyer, R. Escudié, Total solids content drives high solid anaerobic digestion via mass transfer limitation, Bioresour. Technol., 111 (2012) 55–61.
  8. O.P. Karthikeyan, C. Visvanathan, Bio-energy recovery from high-solid organic substrates by dry anaerobic bioconversion processes: a review, Rev. Environ. Sci. Bio/Technol., 12 (2013) 257–284.
  9. R.J. Lopez, S.R. Higgins, E. Pagaling, T. Yan, M.J. Cooney, High rate anaerobic digestion of wastewater separated from grease trap waste, Renewable Energy, 62 (2014) 234–242.
  10. C.Y. Bux, Faizal, Green Energy and Technology Algae Biotechnology Products and Processes, 2016.
  11. C.H. Vanegas, J. Bartlett, Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species, Environ. Technol., 34 (2013) 2277–2283.
  12. J.D. Murphy, B. Drosg, E. Allen, J. Jerney, A. Xia, C. Herrmann, A Perspective on Algal Biogas, IEA Bioenergy, Paris, 2015.
  13. G. Smetana, E. Neczaj, A. Grosser, Biomethane potential of selected organic waste and sewage sludge at different temperature regimes, Energies, 14 (2021) 4217, doi: 10.3390/en14144217.
  14. D. Bolzonella, L. Innocenti, P. Pavan, P. Traverso, F. Cecchi, Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase, Bioresour. Technol., 86 (2003) 123–129.
  15. R. Kothari, A.K. Pandey, S. Kumar, V.V. Tyagi, S.K. Tyagi, Different aspects of dry anaerobic digestion for bio-energy: an overview, Renewable Sustainable Energy Rev., 39 (2014) 174–195.
  16. C. Zhang, H. Su, J. Baeyens, T. Tan, Reviewing the anaerobic digestion of food waste for biogas production, Renewable Sustainable Energy Rev., 38 (2014) 383–392.
  17. P. Neumann, S. Pesante, M. Venegas, G. Vidal, Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge, Rev. Environ. Sci. Biotechnol., 15 (2016) 173–211.
  18. Z. Yang, X. Kang, B. Chen, G. Qiu, J. Wei, F. Li, C. Wei, Effects of alkali, autoclaving, and Fe+ autoclaving pre-treatment on anaerobic digestion performance of coking sludge from the perspective of sludge extracts and methane production, Environ. Sci. Pollut. Res., 28 (2021) 13151–13161.
  19. F. Passos, E. Uggetti, H. Carrère, I. Ferrer, Pre-treatment of microalgae to improve biogas production: a review, Bioresour. Technol., 172 (2014) 403–412.
  20. G. Smetana, A. Grosser, Modelling the Anaerobic Co-digestion of Organic Waste at Different Temperature Regimes, Czestochowa University of Technology, 2020.
  21. Wakame.pdf, (n.d.).
  22. Global Invasive Species Database (2021), (n.d.). Available at http://www.iucngisd.org/gisd
  23. J. Filer, H.H. Ding, S. Chang, Biochemical methane potential (BMP) assay method for anaerobic digestion research, Water, 11 (2019) 921, doi: 10.3390/w11050921.
  24. A. Grosser, E. Neczaj, Pre-treatment methods as a means of boosting methane production from sewage sludge and its mixtures with grease trap sludge, E3S Web Conf., 22 (2017) 00058, doi: 10.1051/e3sconf/20172200058.
  25. Lipase from Aspergillus oryzae, Sigma-Aldrich, (n.d.).
  26. B.A. Schumacher, Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments, Ecological Risk Assessment Support Center, Office of Research and Development, US. Environmental Protection Agency, 2002.
  27. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1999.
  28. W. Hermanowicz, W. Dożańska, J. Dojlido, B. Koziorowski, J. Zerbe, Fizyczno-chemiczne badanie wody i ścieków, Arkady, Warszawa, 1999.
  29. Y.M. Yun, D.H. Kim, S.K. Cho, H.S. Shin, K.W. Jung, H.W. Kim, Mitigation of ammonia inhibition by internal dilution in high-rate anaerobic digestion of food waste leachate and evidences of microbial community response, Biotechnol. Bioeng., 113 (2016) 1892–1901.
  30. A. Keucken, M. Habagil, D. Batstone, U. Jeppsson, M. Arnell, Anaerobic co-digestion of sludge and organic food waste— performance, inhibition, and impact on the microbial community, Energies, 11 (2018) 2325, doi: 10.3390/en11092325.
  31. I.H. Franke-Whittle, A. Walter, C. Ebner, H. Insam, Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities, Waste Manage., 34 (2014) 2080–2089.
  32. H. Insam, I. Franke-Whittle, M. Goberna, Microbes in Aerobic and Anaerobic Waste Treatment, H. Insam, I. Franke-Whittle, M. Goberna, Eds., Microbes at Work, Berlin, Heidelberg, 2010, pp. 1–34.
    doi: 10.1007/978-3-642-04043-6_1
  33. O.P. Karthikeyan, C. Visvanathan, Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review, Rev. Environ. Sci. Biotechnol., 12 (2013) 257–284.
  34. P. Weiland, Biogas production: current state and perspectives, Appl. Microbiol. Biotechnol., 85 (2010) 849–860.
  35. T. Al Seadi, D. Rutz, H. Prassl, M. Köttner, T. Finsterwalder, S. Volk, R. Janssen, Biogas – Handbook, Denmark, 2008.
  36. E. Neczaj, A. Grosser, M. Worwa̧g, Boosting production of methane from sewage sludge by addition of grease trap sludge, Environ. Prot. Eng., 39 (2013) 125–133.
  37. Å. Davidsson, C. Lövstedt, J. la Cour Jansen, C. Gruvberger, H. Aspegren, Co-digestion of grease trap sludge and sewage sludge, Waste Manage., 28 (2008) 986–992.
  38. M. Solé-Bundó, C. Eskicioglu, M. Garfí, H. Carrère, I. Ferrer, Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pre-treatment, Bioresour. Technol., 237 (2017) 89–98.
  39. R.Z. Gaur, A.A. Khan, S. Suthar, Effect of thermal pre-treatment on co-digestion of duckweed (Lemna gibba) and waste activated sludge on biogas production, Chemosphere, 174 (2017) 754-763.
  40. R.Z. Feng, Q.Y. Li, A.A. Zaidi, H. Peng, Y. Shi, Effect of autoclave pre-treatment on biogas production through anaerobic digestion of green algae, Period. Polytech., Chem. Eng., 65 (2021) 483–492.