References

  1. P.K. Poddar, O. Sahu, Quality and management of wastewater in sugar industry, Appl. Water Sci., 7 (2017) 461–468.
  2. P.G. Jadhav, N.G. Vaidya, S.B. Dethe, Characterization and comparative study of cane sugar industry wastewater, Int. J. Chem. Phys. Sci., 2 (2013) 19–25.
  3. O.P. Sahu, P.K. Chaudhari, Electrochemical treatment of sugar industry wastewater: COD and color removal, J. Electroanal. Chem., 739 (2015) 122–129.
  4. J.P. Kushwaha, A review on sugar industry wastewater: sources, treatment technologies, and reuse, Desal. Water Treat., 53 (2013) 309–318.
  5. P. Asaithambi, M. Matheswaran, Electrochemical treatment of simulated sugar industrial effluent: optimization and modeling using a response surface methodology, Arabian J. Chem., 9 (2016) 981–987.
  6. A. Perendeci, D. Sural, A review of wastewater pollution and treatment strategies for beet sugar factories in Turkey, Int. Sugar J., 106 (2004) 437–442.
  7. R. Karray, F. Karray, S. Loukil, N. Mhiri, S. Sayadi, Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement, Waste Manage., 61 (2017) 171–178.
  8. K.M. Doke, E.M. Khan, J. Rapolu, A. Shaikh, Physico-chemical analysis of sugar industry effluent and its effect on seed germination of Vigna angularis, Vigna cylindrica and Sorghum cerium, Ann. Environ. Sci., 5 (2011) 7–11.
  9. S. Samuel, S.M. Muthukkaruppan, Physico-chemical analysis of sugar mill effluent, contaminated soil and its effect on seed germination of paddy (Oryza sativa L.), Int. J. Pharm. Biol. Arch., 2 (2011) 1469–1472.
  10. U.S. Hampannavar, C.B. Shivayogimath, Anaerobic treatment of sugar industry wastewater by up flow anaerobic sludge blanket reactor at ambient temperature, Int. J. Eng. Sci., 1 (2010) 55–63.
  11. A.A. Hajiagha, M. Zaeimdar, S.A. Jozi, N. Sadjadi, A. Ghadi, Combination of chemical coagulation and photo-Fenton oxidation process for the treatment of beet sugar ındustry wastewater: optimization of process conditions by response surface methodology, Ozone Sci. Eng., 41 (2019) 265–273.
  12. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, J. Environ. Manage., 219 (2018) 189–207.
  13. N.S.S. Martinez, J.F. Fernandez, X.F. Segura, A.S. Ferrer, Preoxidation of an extremely polluted industrial wastewater by the Fenton’s reagent, J. Hazard. Mater., 101 (2003) 315–322.
  14. U. Bali, E.Ç. Çatalkaya, F. Şengül, Photochemical degradation and mineralization of phenol: a comparative study, J. Environ. Sci. Health., Part A, 38 (2003) 2259–2275.
  15. B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, S.J. Dhoble, Prospective of nanotechnology in degradation of wastewater: a new challenges, Nano-Struct. Nano-Objects, 22 (2020) 100442, doi: 10.1016/j.nanoso.2020.100442.
  16. B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, Advanced oxidative degradation of benzoic acid and 4-nitro benzoic acid–a comparative study, AIP Conf. Proc., 2142 (2019) 210003, doi: 10.1063/1.5122650.
  17. B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, AOP as a degradative tool for oxidation of 4-hydroxybenzoic acid, AIP Conf. Proc., 2104 (2019) 020034, doi: 10.1063/1.5100402.
  18. B.D. Deshpande, P.S. Agrawal, M.K.N Yenkie, Nanoparticles aided AOP for degradation of p-nitro benzoic acid, Mater. Today Proc., 32 (2020) 519–523.
  19. N. Thomas, D.D. Dionysiou, S.C. Pillai, Heterogeneous Fenton catalysts: a review of recent advances, J. Hazard. Mater., 404 (2021) 124082, doi: 10.1016/j.jhazmat.2020.124082.
  20. C. Wu, W. Chen, Z. Gu, Q. Li, A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment, Sci. Total Environ., 762 (2021) 143131, doi: 10.1016/j.scitotenv.2020.143131.
  21. A.-R.A. Giwa, I.A. Bello, A.B. Olabintan, O.S. Bello, T.A. Saleh, Kinetic and thermodynamic studies of Fenton oxidative decolorization of methylene blue, Heliyon, 6 (2020) e04454, doi: 10.1016/j.heliyon.2020.e04454.
  22. B. Jain, A.K. Singh, H. Kim, E. Lichtfouse, V.K. Sharma, Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes, Environ. Chem. Lett., 16 (2018) 947–967.
  23. A. Eslami, M.R.K. Kashani, A. Khodadadi, G. Varank, A. Kadier, P.-C. Ma, S. Madihi-Bidgoli, F. Ghanbar, Sonoperoxi-coagulation (SPC) as an effective treatment for pulp and paper wastewater: focus on pH effect, biodegradability, and toxicity, J. Water Process Eng., 44 (2021) 102330, doi: 10.1016/j. jwpe.2021.102330.
  24. M. Verma, A.K. Haritash, Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes, J. Environ. Chem. Eng., 7 (2019) 102886, doi: 10.1016/j.jece.2019.102886.
  25. P. Bautista, A.F. Mohedano, M.A. Gilarranz, J.A. Casas, J.J. Rodriguez, Application of Fenton oxidation to cosmetic wastewaters treatment, J. Hazard. Mater., 143 (2007) 128–134.
  26. F. Görmez, Ö. Görmez, B. Gözmen, D. Kalderis, Degradation of chloramphenicol and metronidazole by electro-Fenton process using graphene oxide-Fe3O4 as heterogeneous catalyst, J. Environ. Chem. Eng., 7 (2019) 102990, doi: 10.1016/j.jece.2019.102990.
  27. W.P. Kwan, B.M. Voelker, Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems, Environ. Sci. Technol., 37 (2003) 1150–1158.
  28. E. Domingues, J. Gomes, M.J. Quina, R.M. Quinta-Ferreira, R.C. Martins, Detoxification of olive mill wastewaters by Fenton’s process, Catalysts, 8 (2018) 662, doi: 10.3390/catal8120662.
  29. H. Hassan, B.H. Hameed, Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4, Chem. Eng. J., 171 (2011) 912–918.
  30. Y. Bouchemaa, D. Nibou, S. Amokrane, Potential improvement in photo reduction of towards Cr(VI) species from aqueous solutions onto an heterogeneous Na-clay/Fe2O3 catalyst, Iran. J. Chem. Chem. Eng. (IJCCE), 41 (2022) 1561–1572.
  31. N.Y. Baouali, D. Nibou, S. Amokrane, NaY zeolite and TiO2 impregnated NaY zeolite for the adsorption and photocatalytic degradation of methylene blue under sunlight, Iran. J. Chem. Chem. Eng., 41 (2022) 1907–1920.
  32. C. Liang, Y. Liu, K. Li, J. Wen, S. Xing, Z. Ma, Y. Wu, Heterogeneous photo-Fenton degradation of organic pollutants with amorphous Fe-Zn-oxide/hydrochar under visible light irradiation, Sep. Purif. Technol., 188 (2017) 105–111.
  33. T. Jayabalan, M. Matheswaran, S.N. Mohamed, NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production, Renewable Energy, 154 (2020) 1144–1152.
  34. T. Jayabalan, M, Matheswaran, V. Preethi, S.N. Mohamed, Enhancing biohydrogen production from sugar industry wastewater using metal oxide/graphene nanocomposite catalysts in microbial electrolysis cell, Int. J. Hydrogen Energy, 45 (2020) 7647–7655.
  35. S.N. Mohamed, N. Thomas, J. Tamilmani, T. Boobalan, M. Matheswaran, P. Kalaichelvi, A. Alagarsamy, A. Pugazhendhi, Bioelectricity generation using iron(II) molybdate nanocatalyst coated anode during treatment of sugar wastewater in microbial fuel cell, Fuel, 277 (2020) 118119, doi: 10.1016/j.fuel.2020.118119.
  36. O. Sahu, Catalytic thermal pre-treatments of sugar industry wastewater with metal oxides: thermal treatment, Exp. Therm Fluid Sci., 85 (2017) 379–387.
  37. M. Ilie, B. Cojocaru, V.I. Parvulescu, H. Garcia, Improving TiO2 activity in photo-production of hydrogen from sugar industry wastewaters, Int. J. Hydrogen Energy, 36 (2011) 15508–15519.
  38. N. Ayas, Y. Asci, M. Yurdakul, Using of Fe/ZnO2 catalyst to remove direct Orange 26 from water by Fenton oxidation at wide pH values, Fresenius Environ. Bull., 25 (2016) 3272–3279.
  39. S. Kaya, Y. Asci, Application of heterogeneous Fenton processes using Fe(III)/MnO2 and Fe(III)/SnO2 catalysts in the treatment of sunflower oil industrial wastewater, Desal. Water Treat., 171 (2019) 302–313.
  40. A. Temirel, S. Palamutcu, Functional textiles III: textile surfaces with photocatalytic self-cleaning effect, Electron. J. Text. Technol., 5 (2011) 35–50.
  41. Z. Liu, J. Li, J. Hao, Selective catalytic reduction of NOx with propene over SnO2/Al2O3 catalyst, Chem. Eng. J., 165 (2010) 420–425.
  42. H. Mahmood, M.A. Khan, B. Mohuddin, T. Iqbal, Solutionphase growth of tin oxide (SnO2) nanostructures: structural, optical and photocatalytic properties, Mater. Sci. Eng., B, 258 (2020) 114568, doi: 0.1016/j.mseb.2020.114568.
  43. Y. Deng, J. Englehardt, Treatment of landfill leachate by the Fenton process, Water Res., 40 (2006) 3683–3684.
  44. A. Exposito, J. Monteagudo, A. Durán, A. Fernández, Dynamic behavior of hydroxyl radical in sono-photo-Fenton mineralization of synthetic municipal wastewater effluent containing antipyrine, Ultrason. Sonochem., 35 (2017) 185–195.
  45. M. Moradi, A. Elahinia, Y. Vasseghian, E. Dragoi, F. Omidi, A.M Khaneghah, A review on pollutants removal by sono-photo-Fenton processes, J. Environ. Chem. Eng., 8 (2020) 104330, doi: 10.1016/j.jece.2020.104330.
  46. L. Xu, W. Chu, N. Graham, Degradation of di-n-butyl phthalate by a homogeneous sono-photo-Fenton process with in-situ generated hydrogen peroxide, Chem. Eng. J., 240 (2014) 541–547.
  47. M. Gagol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation – a review, Chem. Eng. J., 338 (2018) 599–627.
  48. N. Jaafarzadeh, F. Ghanbari, M. Moradi, Photo-electrooxidation assisted peroxymonosulfate for decolorization of Acid Brown 14 from aqueous solution, Korean J. Chem. Eng., 32 (2015) 458–464.
  49. F. Martinez, G. Calleja, J.A. Melero, R. Molina, Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst, Appl. Catal., B, 60 (2005) 181–190.
  50. D. Gamaralalage, O. Sawai, T. Nunoura, Degradation behavior of palm oil mill effluent in Fenton oxidation, J. Hazard. Mater., 364 (2019) 791–799.
  51. G. Vilardi, D. Sebastiani, S. Miliziano, N. Verdone, L. Di Palma, Heterogeneous nZVI-induced Fenton oxidation process to enhance biodegradability of excavation by-products, Chem. Eng. J., 335 (2018) 309–320.
  52. C.S.D. Rodrigues, O.S.G.P. Soares, M.T. Pinho, M.F.R. Pereira, L.M. Madeira, p-Nitrophenol degradation by heterogeneous Fenton’s oxidation over activated carbon-based catalysts, Appl. Catal., B, 219 (2017) 109–122.
  53. N. Rajesh, C.S. Lai, D. Veena, H.T.T. Nguyen, Treatment of palm oil refinery effluent using advanced oxidation process, J. Eng. Sci. Technol., 10 (2015) 26–34.
  54. F. Ghanbaria, M. Riahib, B. Kakavandi, X. Honge, K-Y Andrew Lin, Intensified peroxydisulfate/microparticles-zero valent iron process through aeration for degradation of organic pollutants: kinetic studies, mechanism and effect of anions, J. Water Process Eng., 36 (2020) 101321, doi: 10.1016/j.jwpe.2020.101321.
  55. D. Liang, N. Li, J. An, J. Ma, Y. Wu, H. Liu, Fenton-based technologies as efficient advanced oxidation processes for microcystin-LR degradation, Sci. Total Environ., 753 (2021) 141809, doi: 10.1016/j.scitotenv.2020.141809.
  56. L. Clarizia, D. Russo, I.D. Somma, R. Marotta, R. Andreozzi, Homogeneous photo Fenton processes at near neutral pH: a review, Appl. Catal., B, 209 (2017) 358–371.
  57. H.T. Van, L.H. Nguyen, T.K Hoang, T.T. Nguyen, T.N.H. Tran, T.B. Nguyen, X.H. Vu, M.T. Pham, T.P. Tran, T.T. Pham, H.D. Nguyen, H.P. Chao, C.C. Lin, X.C. Nguyen, Heterogeneous Fenton oxidation of paracetamol in aqueous solution using iron slag as a catalyst: degradation mechanisms and kinetics, Environ. Technol. Innovation, 18 (2020) 100670, doi: 10.1016/j.eti.2020.100670.
  58. Y. Aşçı, Decolorization of Direct Orange 26 by heterogeneous Fenton oxidation, Desal. Water Treat., 51 (2013) 7612–7620.
  59. A. Hassani, P. Eghbali, F. Mahdipour, S. Wacławek, K-Y Andrew Lin, F. Ghanbari, Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: performance, mineralization, and activation mechanism, Chem. Eng. J., 453 (2023) 139556, doi: 10.1016/j.cej.2022.139556.
  60. L.M. Bellotindos, A.T. Chang, M.C. Lu, Degradation of acetaminophen by different Fenton processes, Desal. Water Treat., 56 (2015) 1372–1378.
  61. M. Blanco, A. Martinez, A. Marcaide, E. Aranzabe, A. Aranzabe, Heterogeneous Fenton catalyst for the efficient removal of azo dyes in water, Am. J. Anal. Chem., 5 (2014) 490–499.
  62. F. Velichkova, C. Julcour-Lebigue, B. Koumanova, H. Delmas, Heterogeneous Fenton oxidation of paracetamol using iron oxide (nano)particles, J. Environ. Chem. Eng., 1 (2013) 1214–1222.
  63. J. Tang, J. Wang, Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst, Chem. Eng. J., 351 (2018) 1085–1094.
  64. A.A. Gungor, E. Kalkan, N. Celebi, H. Nadaroğlu, Fenton process driven decolorization of Allura Red AC in wastewater using apolaccase-modified or native nanomagnetite immobilized on silica fume, Desal. Water Treat., 57 (2016) 15889–15899.
  65. H. Demir-Duz, O. Ayyildiz, A.S. Aktürk, M.G. Álvarez, S. Contreras, Approaching zero discharge concept in refineries by solar–assisted photo-Fenton and photocatalysis processes, Appl. Catal., B, 248 (2019) 341–348.
  66. S.Y. Arzate-Salgado, A.A. Morales-Pérez, M. Solís-López, R.M. Ramírez-Zamora, Evaluation of metallurgical slag as a Fenton-type photocatalyst for the degradation of an emerging pollutant: diclofenac, Catal. Today, 266 (2016) 126–135.
  67. J. Zhao, M. Ji, J. Di, Y. Zhang, M. He, H. Li, J. Xia, Novel Z-scheme heterogeneous photo-Fenton-like
    g-C3N4/FeOCl for the pollutants degradation under visible light irradiation, J. Photochem. Photobiol., A, 391 (2020) 112343, doi: 10.1016/j. jphotochem.2019.112343.
  68. P.K. Chaudhari, I.M. Mishra, S. Chand, Catalytic thermal pretreatment(catalytic thermolysis) of biodigester effluent of an alcohol distillery plant, Ind. Eng. Chem. Res., 44 (2005) 5518–5525.
  69. N.A. Nahyoon, L. Liu, W. Saleem, S.A. Nahyoon, K. Rabé, Efficient photocatalytic treatment of sugar mill wastewater with 2% Ag3PO4/Fe/GTiP nanocomposite, Arabian J. Chem., 13 (2020) 3624–3632.
  70. R.K. Patel, R. Shankar, P. Khare, P. Mondal, Treatment of sugar industry wastewater in continuous electrochemical process followed by low-cost adsorbent bed: performance evaluation and economic analysis, Sep. Purif. Technol., 271 (2021) 118874, doi: 10.1016/j.seppur.2021.118874.
  71. C.M. Sánchez-Arévalo, Á. Jimeno-Jiménez, C. Carbonell-Alcaina, M. Vincent-Vela, S. Álvarez-Blanco, Effect of the operating conditions on a nanofiltration process to separate low-molecular-weight phenolic compounds from the sugars present in olive mill wastewaters, Process Saf. Environ. Prot., 148 (2021) 428–436.
  72. O. Sahu, Electro-oxidation and chemical oxidation treatment of sugar industry wastewater with ferrous material: an investigation of physicochemical characteristic of sludge, S. Afr. J. Chem. Eng., 28 (2019) 26–38.
  73. G. Güven, A. Perendeci, A. Tanyolac Electrochemical treatment of simulated beet sugar factory wastewater, Chem. Eng. J., 151 (2009) 149–159.
  74. A. Akbulut, Diklofenak İçeren Atıksuların Arıtımında Fenton Proseslerinin Uygulanması, Environmental Engineering Department, Turkey, Master’s Thesis, 2020.