References
- P.K. Poddar, O. Sahu, Quality and management of wastewater
in sugar industry, Appl. Water Sci., 7 (2017) 461–468.
- P.G. Jadhav, N.G. Vaidya, S.B. Dethe, Characterization and
comparative study of cane sugar industry wastewater,
Int. J. Chem. Phys. Sci., 2 (2013) 19–25.
- O.P. Sahu, P.K. Chaudhari, Electrochemical treatment of sugar
industry wastewater: COD and color removal, J. Electroanal.
Chem., 739 (2015) 122–129.
- J.P. Kushwaha, A review on sugar industry wastewater:
sources, treatment technologies, and reuse, Desal. Water Treat.,
53 (2013) 309–318.
- P. Asaithambi, M. Matheswaran, Electrochemical treatment of
simulated sugar industrial effluent: optimization and modeling
using a response surface methodology, Arabian J. Chem.,
9 (2016) 981–987.
- A. Perendeci, D. Sural, A review of wastewater pollution
and treatment strategies for beet sugar factories in Turkey,
Int. Sugar J., 106 (2004) 437–442.
- R. Karray, F. Karray, S. Loukil, N. Mhiri, S. Sayadi, Anaerobic
co-digestion of Tunisian green macroalgae Ulva rigida with
sugar industry wastewater for biogas and methane production
enhancement, Waste Manage., 61 (2017) 171–178.
- K.M. Doke, E.M. Khan, J. Rapolu, A. Shaikh, Physico-chemical
analysis of sugar industry effluent and its effect on seed
germination of Vigna angularis, Vigna cylindrica and Sorghum
cerium, Ann. Environ. Sci., 5 (2011) 7–11.
- S. Samuel, S.M. Muthukkaruppan, Physico-chemical analysis
of sugar mill effluent, contaminated soil and its effect on seed
germination of paddy (Oryza sativa L.), Int. J. Pharm. Biol. Arch.,
2 (2011) 1469–1472.
- U.S. Hampannavar, C.B. Shivayogimath, Anaerobic treatment
of sugar industry wastewater by up flow anaerobic sludge
blanket reactor at ambient temperature, Int. J. Eng. Sci., 1 (2010)
55–63.
- A.A. Hajiagha, M. Zaeimdar, S.A. Jozi, N. Sadjadi, A. Ghadi,
Combination of chemical coagulation and photo-Fenton
oxidation process for the treatment of beet sugar ındustry
wastewater: optimization of process conditions by response
surface methodology, Ozone Sci. Eng., 41 (2019) 265–273.
- D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation
process-mediated removal of pharmaceuticals from water:
a review, J. Environ. Manage., 219 (2018) 189–207.
- N.S.S. Martinez, J.F. Fernandez, X.F. Segura, A.S. Ferrer, Preoxidation
of an extremely polluted industrial wastewater
by the Fenton’s reagent, J. Hazard. Mater., 101 (2003) 315–322.
- U. Bali, E.Ç. Çatalkaya, F. Şengül, Photochemical degradation
and mineralization of phenol: a comparative study,
J. Environ. Sci. Health., Part A, 38 (2003) 2259–2275.
- B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, S.J. Dhoble,
Prospective of nanotechnology in degradation of wastewater:
a new challenges, Nano-Struct. Nano-Objects, 22 (2020) 100442,
doi: 10.1016/j.nanoso.2020.100442.
- B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, Advanced
oxidative degradation of benzoic acid and 4-nitro benzoic
acid–a comparative study, AIP Conf. Proc., 2142 (2019) 210003,
doi: 10.1063/1.5122650.
- B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, AOP as a
degradative tool for oxidation of 4-hydroxybenzoic acid,
AIP Conf. Proc., 2104 (2019) 020034, doi: 10.1063/1.5100402.
- B.D. Deshpande, P.S. Agrawal, M.K.N Yenkie, Nanoparticles
aided AOP for degradation of p-nitro benzoic acid, Mater.
Today Proc., 32 (2020) 519–523.
- N. Thomas, D.D. Dionysiou, S.C. Pillai, Heterogeneous Fenton
catalysts: a review of recent advances, J. Hazard. Mater.,
404 (2021) 124082, doi: 10.1016/j.jhazmat.2020.124082.
- C. Wu, W. Chen, Z. Gu, Q. Li, A review of the characteristics
of Fenton and ozonation systems in landfill leachate
treatment, Sci. Total Environ., 762 (2021) 143131, doi: 10.1016/j.scitotenv.2020.143131.
- A.-R.A. Giwa, I.A. Bello, A.B. Olabintan, O.S. Bello, T.A. Saleh,
Kinetic and thermodynamic studies of Fenton oxidative
decolorization of methylene blue, Heliyon, 6 (2020) e04454,
doi: 10.1016/j.heliyon.2020.e04454.
- B. Jain, A.K. Singh, H. Kim, E. Lichtfouse, V.K. Sharma,
Treatment of organic pollutants by homogeneous and
heterogeneous Fenton reaction processes, Environ. Chem. Lett.,
16 (2018) 947–967.
- A. Eslami, M.R.K. Kashani, A. Khodadadi, G. Varank,
A. Kadier, P.-C. Ma, S. Madihi-Bidgoli, F. Ghanbar, Sonoperoxi-coagulation (SPC) as an effective treatment for pulp and
paper wastewater: focus on pH effect, biodegradability, and
toxicity, J. Water Process Eng., 44 (2021) 102330, doi: 10.1016/j.
jwpe.2021.102330.
- M. Verma, A.K. Haritash, Degradation of amoxicillin by Fenton
and Fenton-integrated hybrid oxidation processes, J. Environ.
Chem. Eng., 7 (2019) 102886, doi: 10.1016/j.jece.2019.102886.
- P. Bautista, A.F. Mohedano, M.A. Gilarranz, J.A. Casas,
J.J. Rodriguez, Application of Fenton oxidation to cosmetic
wastewaters treatment, J. Hazard. Mater., 143 (2007) 128–134.
- F. Görmez, Ö. Görmez, B. Gözmen, D. Kalderis, Degradation
of chloramphenicol and metronidazole by electro-Fenton
process using graphene oxide-Fe3O4 as heterogeneous
catalyst, J. Environ. Chem. Eng., 7 (2019) 102990, doi: 10.1016/j.jece.2019.102990.
- W.P. Kwan, B.M. Voelker, Rates of hydroxyl radical generation
and organic compound oxidation in mineral-catalyzed
Fenton-like systems, Environ. Sci. Technol., 37 (2003) 1150–1158.
- E. Domingues, J. Gomes, M.J. Quina, R.M. Quinta-Ferreira,
R.C. Martins, Detoxification of olive mill wastewaters
by Fenton’s process, Catalysts, 8 (2018) 662, doi: 10.3390/catal8120662.
- H. Hassan, B.H. Hameed, Fe–clay as effective heterogeneous
Fenton catalyst for the decolorization of Reactive Blue 4,
Chem. Eng. J., 171 (2011) 912–918.
- Y. Bouchemaa, D. Nibou, S. Amokrane, Potential improvement
in photo reduction of towards Cr(VI) species from aqueous
solutions onto an heterogeneous Na-clay/Fe2O3 catalyst, Iran.
J. Chem. Chem. Eng. (IJCCE), 41 (2022) 1561–1572.
- N.Y. Baouali, D. Nibou, S. Amokrane, NaY zeolite and
TiO2 impregnated NaY zeolite for the adsorption and
photocatalytic degradation of methylene blue under sunlight,
Iran. J. Chem. Chem. Eng., 41 (2022) 1907–1920.
- C. Liang, Y. Liu, K. Li, J. Wen, S. Xing, Z. Ma, Y. Wu,
Heterogeneous photo-Fenton degradation of organic pollutants
with amorphous Fe-Zn-oxide/hydrochar under visible light
irradiation, Sep. Purif. Technol., 188 (2017) 105–111.
- T. Jayabalan, M. Matheswaran, S.N. Mohamed, NiCo2O4-graphene nanocomposites in sugar industry wastewater
fed microbial electrolysis cell for enhanced biohydrogen
production, Renewable Energy, 154 (2020) 1144–1152.
- T. Jayabalan, M, Matheswaran, V. Preethi, S.N. Mohamed,
Enhancing biohydrogen production from sugar industry
wastewater using metal oxide/graphene nanocomposite
catalysts in microbial electrolysis cell, Int. J. Hydrogen Energy,
45 (2020) 7647–7655.
- S.N. Mohamed, N. Thomas, J. Tamilmani, T. Boobalan,
M. Matheswaran, P. Kalaichelvi, A. Alagarsamy,
A. Pugazhendhi, Bioelectricity generation using iron(II)
molybdate nanocatalyst coated anode during treatment of
sugar wastewater in microbial fuel cell, Fuel, 277 (2020) 118119,
doi: 10.1016/j.fuel.2020.118119.
- O. Sahu, Catalytic thermal pre-treatments of sugar industry
wastewater with metal oxides: thermal treatment, Exp. Therm
Fluid Sci., 85 (2017) 379–387.
- M. Ilie, B. Cojocaru, V.I. Parvulescu, H. Garcia, Improving TiO2
activity in photo-production of hydrogen from sugar industry
wastewaters, Int. J. Hydrogen Energy, 36 (2011) 15508–15519.
- N. Ayas, Y. Asci, M. Yurdakul, Using of Fe/ZnO2 catalyst to
remove direct Orange 26 from water by Fenton oxidation at
wide pH values, Fresenius Environ. Bull., 25 (2016) 3272–3279.
- S. Kaya, Y. Asci, Application of heterogeneous Fenton processes
using Fe(III)/MnO2 and Fe(III)/SnO2 catalysts in the treatment
of sunflower oil industrial wastewater, Desal. Water Treat.,
171 (2019) 302–313.
- A. Temirel, S. Palamutcu, Functional textiles III: textile surfaces
with photocatalytic self-cleaning effect, Electron. J. Text.
Technol., 5 (2011) 35–50.
- Z. Liu, J. Li, J. Hao, Selective catalytic reduction of NOx with
propene over SnO2/Al2O3 catalyst, Chem. Eng. J., 165 (2010)
420–425.
- H. Mahmood, M.A. Khan, B. Mohuddin, T. Iqbal, Solutionphase
growth of tin oxide (SnO2) nanostructures: structural,
optical and photocatalytic properties, Mater. Sci. Eng., B,
258 (2020) 114568, doi: 0.1016/j.mseb.2020.114568.
- Y. Deng, J. Englehardt, Treatment of landfill leachate by the
Fenton process, Water Res., 40 (2006) 3683–3684.
- A. Exposito, J. Monteagudo, A. Durán, A. Fernández,
Dynamic behavior of hydroxyl radical in sono-photo-Fenton
mineralization of synthetic municipal wastewater effluent
containing antipyrine, Ultrason. Sonochem., 35 (2017) 185–195.
- M. Moradi, A. Elahinia, Y. Vasseghian, E. Dragoi, F. Omidi,
A.M Khaneghah, A review on pollutants removal by sono-photo-Fenton processes, J. Environ. Chem. Eng., 8 (2020)
104330, doi: 10.1016/j.jece.2020.104330.
- L. Xu, W. Chu, N. Graham, Degradation of di-n-butyl phthalate
by a homogeneous sono-photo-Fenton process with in-situ
generated hydrogen peroxide, Chem. Eng. J., 240 (2014)
541–547.
- M. Gagol, A. Przyjazny, G. Boczkaj, Wastewater treatment by
means of advanced oxidation processes based on cavitation – a
review, Chem. Eng. J., 338 (2018) 599–627.
- N. Jaafarzadeh, F. Ghanbari, M. Moradi, Photo-electrooxidation
assisted peroxymonosulfate for decolorization of
Acid Brown 14 from aqueous solution, Korean J. Chem. Eng.,
32 (2015) 458–464.
- F. Martinez, G. Calleja, J.A. Melero, R. Molina, Heterogeneous
photo-Fenton degradation of phenolic aqueous solutions over
iron-containing SBA-15 catalyst, Appl. Catal., B, 60 (2005)
181–190.
- D. Gamaralalage, O. Sawai, T. Nunoura, Degradation behavior
of palm oil mill effluent in Fenton oxidation, J. Hazard. Mater.,
364 (2019) 791–799.
- G. Vilardi, D. Sebastiani, S. Miliziano, N. Verdone, L. Di
Palma, Heterogeneous nZVI-induced Fenton oxidation process
to enhance biodegradability of excavation by-products,
Chem. Eng. J., 335 (2018) 309–320.
- C.S.D. Rodrigues, O.S.G.P. Soares, M.T. Pinho, M.F.R. Pereira,
L.M. Madeira, p-Nitrophenol degradation by heterogeneous
Fenton’s oxidation over activated carbon-based catalysts,
Appl. Catal., B, 219 (2017) 109–122.
- N. Rajesh, C.S. Lai, D. Veena, H.T.T. Nguyen, Treatment of
palm oil refinery effluent using advanced oxidation process,
J. Eng. Sci. Technol., 10 (2015) 26–34.
- F. Ghanbaria, M. Riahib, B. Kakavandi, X. Honge, K-Y Andrew
Lin, Intensified peroxydisulfate/microparticles-zero valent iron
process through aeration for degradation of organic pollutants:
kinetic studies, mechanism and effect of anions, J. Water
Process Eng., 36 (2020) 101321, doi: 10.1016/j.jwpe.2020.101321.
- D. Liang, N. Li, J. An, J. Ma, Y. Wu, H. Liu, Fenton-based
technologies as efficient advanced oxidation processes for
microcystin-LR degradation, Sci. Total Environ., 753 (2021)
141809, doi: 10.1016/j.scitotenv.2020.141809.
- L. Clarizia, D. Russo, I.D. Somma, R. Marotta, R. Andreozzi,
Homogeneous photo Fenton processes at near neutral pH: a
review, Appl. Catal., B, 209 (2017) 358–371.
- H.T. Van, L.H. Nguyen, T.K Hoang, T.T. Nguyen, T.N.H.
Tran, T.B. Nguyen, X.H. Vu, M.T. Pham, T.P. Tran, T.T. Pham,
H.D. Nguyen, H.P. Chao, C.C. Lin, X.C. Nguyen, Heterogeneous
Fenton oxidation of paracetamol in aqueous solution using
iron slag as a catalyst: degradation mechanisms and kinetics,
Environ. Technol. Innovation, 18 (2020) 100670, doi: 10.1016/j.eti.2020.100670.
- Y. Aşçı, Decolorization of Direct Orange 26 by heterogeneous
Fenton oxidation, Desal. Water Treat., 51 (2013) 7612–7620.
- A. Hassani, P. Eghbali, F. Mahdipour, S. Wacławek,
K-Y Andrew Lin, F. Ghanbari, Insights into the synergistic
role of photocatalytic activation of peroxymonosulfate by
UVA-LED irradiation over CoFe2O4-rGO nanocomposite
towards effective Bisphenol A degradation: performance,
mineralization, and activation mechanism, Chem. Eng. J.,
453 (2023) 139556, doi: 10.1016/j.cej.2022.139556.
- L.M. Bellotindos, A.T. Chang, M.C. Lu, Degradation of
acetaminophen by different Fenton processes, Desal. Water
Treat., 56 (2015) 1372–1378.
- M. Blanco, A. Martinez, A. Marcaide, E. Aranzabe, A. Aranzabe,
Heterogeneous Fenton catalyst for the efficient removal of
azo dyes in water, Am. J. Anal. Chem., 5 (2014) 490–499.
- F. Velichkova, C. Julcour-Lebigue, B. Koumanova, H. Delmas,
Heterogeneous Fenton oxidation of paracetamol using
iron oxide (nano)particles, J. Environ. Chem. Eng., 1 (2013)
1214–1222.
- J. Tang, J. Wang, Fenton-like degradation of sulfamethoxazole
using Fe-based magnetic nanoparticles embedded into
mesoporous carbon hybrid as an efficient catalyst, Chem. Eng.
J., 351 (2018) 1085–1094.
- A.A. Gungor, E. Kalkan, N. Celebi, H. Nadaroğlu, Fenton process
driven decolorization of Allura Red AC in wastewater using
apolaccase-modified or native nanomagnetite immobilized on
silica fume, Desal. Water Treat., 57 (2016) 15889–15899.
- H. Demir-Duz, O. Ayyildiz, A.S. Aktürk, M.G. Álvarez,
S. Contreras, Approaching zero discharge concept in refineries
by solar–assisted photo-Fenton and photocatalysis processes,
Appl. Catal., B, 248 (2019) 341–348.
- S.Y. Arzate-Salgado, A.A. Morales-Pérez, M. Solís-López,
R.M. Ramírez-Zamora, Evaluation of metallurgical slag as a
Fenton-type photocatalyst for the degradation of an emerging
pollutant: diclofenac, Catal. Today, 266 (2016) 126–135.
- J. Zhao, M. Ji, J. Di, Y. Zhang, M. He, H. Li, J. Xia, Novel
Z-scheme heterogeneous photo-Fenton-like
g-C3N4/FeOCl
for the pollutants degradation under visible light irradiation,
J. Photochem. Photobiol., A, 391 (2020) 112343, doi: 10.1016/j.
jphotochem.2019.112343.
- P.K. Chaudhari, I.M. Mishra, S. Chand, Catalytic thermal
pretreatment(catalytic thermolysis) of biodigester effluent
of an alcohol distillery plant, Ind. Eng. Chem. Res., 44 (2005)
5518–5525.
- N.A. Nahyoon, L. Liu, W. Saleem, S.A. Nahyoon, K. Rabé,
Efficient photocatalytic treatment of sugar mill wastewater
with 2% Ag3PO4/Fe/GTiP nanocomposite, Arabian J. Chem.,
13 (2020) 3624–3632.
- R.K. Patel, R. Shankar, P. Khare, P. Mondal, Treatment of sugar
industry wastewater in continuous electrochemical process
followed by low-cost adsorbent bed: performance evaluation
and economic analysis, Sep. Purif. Technol., 271 (2021) 118874,
doi: 10.1016/j.seppur.2021.118874.
- C.M. Sánchez-Arévalo, Á. Jimeno-Jiménez, C. Carbonell-Alcaina, M. Vincent-Vela, S. Álvarez-Blanco, Effect of the
operating conditions on a nanofiltration process to separate
low-molecular-weight phenolic compounds from the sugars
present in olive mill wastewaters, Process Saf. Environ. Prot.,
148 (2021) 428–436.
- O. Sahu, Electro-oxidation and chemical oxidation treatment
of sugar industry wastewater with ferrous material: an
investigation of physicochemical characteristic of sludge,
S. Afr. J. Chem. Eng., 28 (2019) 26–38.
- G. Güven, A. Perendeci, A. Tanyolac Electrochemical treatment
of simulated beet sugar factory wastewater, Chem. Eng. J.,
151 (2009) 149–159.
- A. Akbulut, Diklofenak İçeren Atıksuların Arıtımında Fenton
Proseslerinin Uygulanması, Environmental Engineering
Department, Turkey, Master’s Thesis, 2020.