References

  1. R. Semiat, Energy issues in desalination processes, Environ. Sci. Technol., 42 (2008) 8193–8201.
  2. S.M. Montazeri, G. Kolliopoulos, Hydrate based desalination for sustainable water treatment: a review, Desalination, 537 (2022) 115855, doi: 10.1016/j.desal.2022.115855.
  3. R. Alrowais, M.W. Shahzad, M. Burhan, M.T. Bashir, Q. Chen, B.B. Xu, M. Kumja, C.N. Markides, K.C. Ng,
    A thermally-driven seawater desalination system: proof of concept and vision for future sustainability, Case Stud. Therm. Eng., 35 (2022) 102084, doi: 10.1016/j.csite.2022.102084.
  4. N.P.B. Tan, P.M.L. Ucab, G.C. Dadol, L.M. Jabile, I.N. Talili, M.T.I. Cabaraban, A review of desalination technologies and its impact in the Philippines, Desalination, 534 (2022) 115805, doi: 10.1016/j.desal.2022.115805.
  5. H. Xu, S. Jiang, M.X. Xie, T. Jia, Y.J. Dai, Technical improvements and perspectives on humidification-dehumidification desalination — a review, Desalination, 541 (2022) 116029, doi: 10.1016/j.desal.2022.116029.
  6. J. Zheng, F. Cheng, Y. Li, X. Lü, M. Yang, Progress and trends in hydrate-based desalination (HBD) technology: a review, Chin. J. Chem. Eng., 27 (2019) 2037–2043.
  7. D. Grey, D. Garrick, D. Blackmore, J. Kelman, M. Muller, C. Sadoff, Water security in one blue planet: twenty-first century policy challenges for science, Philos. Trans. R. Soc. London, Ser. A, 371 (2013) 0406, doi: 10.1098/rsta.2012.0406.
  8. UNESCO, Water Reuse Within a Circular Economy Context, United Nations Educational, Scientific and Cultural Organization (UNESCO), 2020.
  9. UNDESA, The United Nations Water Scarcity, International Decade for Action “Water For Life” 2005–2015, United Nations Department of Economic and Social Affairs (UNDESA), 2015.
  10. I. Prihatiningtyas, A.-H.A.H. Al-Kebsi, Y. Hartanto, T.M. Zewdie, B. Van der Bruggen, Techno-economic assessment of pervaporation desalination of hypersaline water, Desalination, 527 (2022) 115538, doi: 10.1016/j.desal.2021.115538.
  11. H. Zheng, General Problems in Seawater Desalination, In: Solar Energy Desalination Technology, 2017, pp. 1–46.
  12. H.T. El-Dessouky, H.M. Ettouney, Y. Al-Roumi, Multi-stage flash desalination: present and future outlook, Chem. Eng. J., 73 (1999) 173–190.
  13. B. Peñate, L. García-Rodríguez, Current trends and future prospects in the design of seawater reverse osmosis desalination technology, Desalination, 284 (2012) 1–8.
  14. N.I.H.A. Aziz, M.M. Hanafiah, Application of life cycle assessment for desalination: Progress, challenges and future directions, Environ. Pollut., 268 (2021) 115948, doi: 10.1016/j.envpol.2020.115948.
  15. J. Lee, K. Jo, J. Lee, S.P. Hong, S. Kim, J. Yoon, Rockingchair capacitive deionization for continuous brackish water desalination, ACS Sustainable Chem. Eng., 6 (2018) 10815–10822.
  16. X. Chen, F. Jiang, Q. Jiang, Y. Jia, C. Liu, G. Liu, J. Xu, X. Duan, C. Zhu, G. Nie, P. Liu, Conductive and flexible PEDOTdecorated paper as high performance electrode fabricated by vapor phase polymerization for supercapacitor, Colloids Surf., A, 603 (2020) 126173, doi: 10.1016/j.colsurfa.2020.125173.
  17. Y. Yao, X.-h. Huang, B.-y. Zhang, Z. Zhang, D. Hou, Z.-k. Zhou, Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure, Sens. Actuators, B, 302 (2020) 127192, doi: 10.1016/j.snb.2019.127192.
  18. Y. Yang, Z. Shao, F. Wang, Preparation of Fe/N co-doped hierarchical porous carbon nanosheets derived from chitosan nanofibers for high-performance supercapacitors, J. Electrochem. Energy Convers. Storage, 19 (2021) 021009 (8 pages), doi: 10.1115/1.4052316.
  19. C.J. Linnartz, A. Rommerskirchen, M. Wessling, Y. Gendel, Flow-electrode capacitive deionization for double displacement reactions, ACS Sustainable Chem. Eng., 5 (2017) 3906–3912.
  20. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  21. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review), Desalination, 228 (2008) 10–29.
  22. X. Gao, A. Omosebi, J. Landon, K. Liu, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior, Energy Environ. Sci., 8 (2015) 897–909.
  23. A. Rommerskirchen, C.J. Linnartz, D. Müller, L.K. Willenberg, M. Wessling, Energy recovery and process design in continuous flow–electrode capacitive deionization processes, ACS Sustainable Chem. Eng., 6 (2018) 13007–13015.
  24. J. Kim, J. Kim, J.H. Kim, H.S. Park, Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance, Chem. Eng. J., 382 (2020) 122996, doi: 10.1016/j.cej.2019.122996.
  25. T. Yan, J. Liu, H. Lei, L. Shi, Z. An, H.S. Park, D. Zhang, Capacitive deionization of saline water using sandwich-like nitrogen-doped graphene composites via a self-assembling strategy, Environ. Sci.: Nano, 5 (2018) 2722–2730.
  26. X. Gong, S. Zhang, W. Luo, N. Guo, L. Wang, D. Jia, Z. Zhao, S. Feng, L. Jia, Enabling a large accessible surface area of a poredesigned hydrophilic carbon nanofiber fabric for ultrahigh capacitive deionization, ACS Appl. Mater. Interfaces, 12 (2020) 49586–49595.
  27. H.Y. Yang, Z.J. Han, S.F. Yu, K.L. Pey, K. Ostrikov, R. Karnik, Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification, Nat. Commun., 4 (2013) 2220, doi: 10.1038/ncomms3220.
  28. H. Zhang, F. Zhang, Y. Wei, Q. Miao, A. Li, Y. Zhao, Y. Yuan, N. Jin, G. Li, Controllable design and preparation of hollow carbon-based nanotubes for asymmetric supercapacitors and capacitive deionization, ACS Appl. Mater. Interfaces, 13 (2021) 21217–21230.
  29. C. Prehal, C. Koczwara, H. Amenitsch, V. Presser, O. Paris, Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors, Nat. Commun., 9 (2018) 4145, doi: 10.1038/s41467-018-06612-4.
  30. M. Ding, S. Fan, S. Huang, M.E. Pam, L. Guo, Y. Shi, H.Y. Yang, Tunable pseudocapacitive behavior in metal–organic framework-derived TiO2@porous carbon enabling highperformance membrane capacitive deionization, ACS Appl. Energy Mater., 2 (2019) 1812–1822.
  31. S. Wang, G. Wang, H. Song, S. Lv, T. Li, C. Li, In-situ formation of Prussian blue analogue nanoparticles decorated with threedimensional carbon nanosheet networks for superior hybrid capacitive deionization performance, ACS Appl. Mater. Interfaces, 12 (2020) 44049–44057.
  32. X. Wen, M. Zhao, Z. Zhao, X. Ma, M. Ye, Hierarchical and self-supported vanadium disulfide microstructures@graphite paper: an advanced electrode for efficient and durable asymmetric capacitive deionization, ACS Sustainable Chem. Eng., 8 (2020) 7335–7342.
  33. D. Desai, E.S. Beh, S. Sahu, V. Vedharathinam, Q. van Overmeere, C.F. de Lannoy, A.P. Jose, A.R. Völkel, J.B. Rivest, Electrochemical desalination of seawater and hypersaline brines with coupled electricity storage, ACS Energy Lett., 3 (2018) 375–379.
  34. V.M. Rangaraj, A.A. Edathil, Y.Y. Kannangara, J.-K. Song, M.A. Haija, F. Banat, Tamarind shell derived N-doped carbon for capacitive deionization (CDI) studies, J. Electroanal. Chem., 848 (2019) 113307, doi: 10.1016/j.jelechem.2019.113307.
  35. M. Chu, W. Tian, J. Zhao, M. Zou, Z. Lu, D. Zhang, J. Jiang, A comprehensive review of capacitive deionization technology with biochar-based electrodes: biochar-based electrode preparation, deionization mechanism and applications, Chemosphere, 301 (2022) 136024, doi: 10.1016/j.chemosphere.2022.136024.
  36. Cigarette Butt Waste, America Nonsmokers’ Rights Foundation [EB/OL], 2015.
  37. Q.Y. Dou, H.S. Park, Perspective on high-energy carbon-based supercapacitors, Energy Environ. Mater., 3 (2020) 286–305.
  38. J.S. Yeon, S.H. Park, J. Suk, H. Lee, H.S. Park, Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode, Chem. Eng. J., 382 (2020) 122946, doi: 10.1016/j.cej.2019.122946.
  39. H. Lei, T. Yan, H. Wang, L. Shi, J. Zhang, D. Zhang, Graphenelike carbon nanosheets prepared by a Fe-catalyzed glucoseblowing method for capacitive deionization, J. Mater. Chem. A, 3 (2015) 5934–5941.
  40. W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors, Energy Environ. Sci., 7 (2014) 379–386.
  41. L. Chang, J. Li, X. Duan, W. Liu, Porous carbon derived from metal–organic framework (MOF) for capacitive deionization electrode, Electrochim. Acta, 176 (2015) 956–964.
  42. Y. Liu, L. Pan, T. Chen, X. Xu, T. Lu, Z. Sun, D.H.C. Chua, Porous carbon spheres via microwave-assisted synthesis for capacitive deionization, Electrochim. Acta, 151 (2015) 489–496.
  43. J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage, J. Mater. Chem., 22 (2012) 23710–23725.
  44. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  45. J. Zhang, X. Zhang, Y. Zhou, S. Guo, K. Wang, Z. Liang, Q. Xu, Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors, ACS Sustainable Chem. Eng., 2 (2014) 1525–1533.
  46. M.S. Zoromba, M.H. Abdel-Aziz, M. Bassyouni, S. Gutub, D. Demko, A. Abdelkader, Electrochemical activation of graphene at low temperature: the synthesis of three-dimensional nanoarchitectures for high performance supercapacitors and capacitive deionization, ACS Sustainable Chem. Eng., 5 (2017) 4573–4581.
  47. L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors, Adv. Mater., 25 (2013) 3899–3904.
  48. G. Zheng, L. Hu, H. Wu, X. Xie, Y. Cui, Paper supercapacitors by a solvent-free drawing method, Energy Environ. Sci., 4 (2011) 3368–3373.
  49. C. Zhao, G. Liu, N. Sun, X. Zhang, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization, Chem. Eng. J., 334 (2018) 1270–1280.
  50. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang, Y. Yang, Room temperature molten salt as electrolyte for carbon nanotubebased electric double layer capacitors, J. Power Sources, 158 (2006) 773–778.
  51. R.K. Sharma, H.-S. Oh, Y.-G. Shul, H. Kim, Growth and characterization of carbon-supported MnO2 nanorods for supercapacitor electrode, Physica B, 403 (2008) 1763–1769.
  52. L. Mao, H.S.O. Chan, J. Wu, Cetyltrimethylammonium bromide intercalated graphene/polypyrrole nanowire composites for high performance supercapacitor electrode, RSC Adv., 2 (2012) 10610–10617.
  53. A. Bello, F. Barzegar, D. Momodu, J. Dangbegnon, F. Taghizadeh, N. Manyala, Symmetric supercapacitors based on porous 3D interconnected carbon framework, Electrochim. Acta, 151 (2015) 386–392.
  54. D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, Enhanced capacitive deionization performance of graphene/carbon nanotube composites, J. Mater. Chem., 22 (2012) 14696–14704.
  55. K.T. Cho, S.B. Lee, J.W. Lee, Facile synthesis of highly electrocapacitive nitrogen-doped graphitic porous carbons, J. Phys. Chem. C, 118 (2014) 9357–9367.
  56. K.-B. Li, D.-W. Shi, Z.-Y. Cai, G.-L. Zhang, Q.-A. Huang, D. Liu, C.-P. Yang, Studies on the equivalent serial resistance of carbon supercapacitor, Electrochim. Acta, 174 (2015) 596–600.
  57. Z. Chen, C. Song, X. Sun, H. Guo, G. Zhu, Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes, Desalination, 267 (2011) 239‒243.