References
- R. Semiat, Energy issues in desalination processes, Environ. Sci.
Technol., 42 (2008) 8193–8201.
- S.M. Montazeri, G. Kolliopoulos, Hydrate based desalination
for sustainable water treatment: a review, Desalination,
537 (2022) 115855, doi: 10.1016/j.desal.2022.115855.
- R. Alrowais, M.W. Shahzad, M. Burhan, M.T. Bashir, Q. Chen,
B.B. Xu, M. Kumja, C.N. Markides, K.C. Ng,
A thermally-driven
seawater desalination system: proof of concept and vision for
future sustainability, Case Stud. Therm. Eng., 35 (2022) 102084,
doi: 10.1016/j.csite.2022.102084.
- N.P.B. Tan, P.M.L. Ucab, G.C. Dadol, L.M. Jabile, I.N. Talili,
M.T.I. Cabaraban, A review of desalination technologies and
its impact in the Philippines, Desalination, 534 (2022) 115805,
doi: 10.1016/j.desal.2022.115805.
- H. Xu, S. Jiang, M.X. Xie, T. Jia, Y.J. Dai, Technical improvements
and perspectives on humidification-dehumidification
desalination — a review, Desalination, 541 (2022) 116029,
doi: 10.1016/j.desal.2022.116029.
- J. Zheng, F. Cheng, Y. Li, X. Lü, M. Yang, Progress and trends in
hydrate-based desalination (HBD) technology: a review, Chin.
J. Chem. Eng., 27 (2019) 2037–2043.
- D. Grey, D. Garrick, D. Blackmore, J. Kelman, M. Muller,
C. Sadoff, Water security in one blue planet: twenty-first
century policy challenges for science, Philos. Trans. R. Soc.
London, Ser. A, 371 (2013) 0406, doi: 10.1098/rsta.2012.0406.
- UNESCO, Water Reuse Within a Circular Economy Context,
United Nations Educational, Scientific and Cultural
Organization (UNESCO), 2020.
- UNDESA, The United Nations Water Scarcity, International
Decade for Action “Water For Life” 2005–2015, United Nations
Department of Economic and Social Affairs (UNDESA), 2015.
- I. Prihatiningtyas, A.-H.A.H. Al-Kebsi, Y. Hartanto,
T.M. Zewdie, B. Van der Bruggen, Techno-economic assessment
of pervaporation desalination of hypersaline water,
Desalination, 527 (2022) 115538, doi: 10.1016/j.desal.2021.115538.
- H. Zheng, General Problems in Seawater Desalination, In: Solar
Energy Desalination Technology, 2017, pp. 1–46.
- H.T. El-Dessouky, H.M. Ettouney, Y. Al-Roumi, Multi-stage
flash desalination: present and future outlook, Chem. Eng. J.,
73 (1999) 173–190.
- B. Peñate, L. García-Rodríguez, Current trends and future
prospects in the design of seawater reverse osmosis
desalination technology, Desalination, 284 (2012) 1–8.
- N.I.H.A. Aziz, M.M. Hanafiah, Application of life cycle
assessment for desalination: Progress, challenges and future
directions, Environ. Pollut., 268 (2021) 115948, doi: 10.1016/j.envpol.2020.115948.
- J. Lee, K. Jo, J. Lee, S.P. Hong, S. Kim, J. Yoon, Rockingchair
capacitive deionization for continuous brackish water
desalination, ACS Sustainable Chem. Eng., 6 (2018) 10815–10822.
- X. Chen, F. Jiang, Q. Jiang, Y. Jia, C. Liu, G. Liu, J. Xu, X. Duan,
C. Zhu, G. Nie, P. Liu, Conductive and flexible PEDOTdecorated
paper as high performance electrode fabricated by
vapor phase polymerization for supercapacitor, Colloids Surf.,
A, 603 (2020) 126173, doi: 10.1016/j.colsurfa.2020.125173.
- Y. Yao, X.-h. Huang, B.-y. Zhang, Z. Zhang, D. Hou, Z.-k. Zhou,
Facile fabrication of high sensitivity cellulose nanocrystals
based QCM humidity sensors with asymmetric electrode
structure, Sens. Actuators, B, 302 (2020) 127192, doi: 10.1016/j.snb.2019.127192.
- Y. Yang, Z. Shao, F. Wang, Preparation of Fe/N co-doped
hierarchical porous carbon nanosheets derived from
chitosan nanofibers for high-performance supercapacitors,
J. Electrochem. Energy Convers. Storage, 19 (2021) 021009
(8 pages), doi: 10.1115/1.4052316.
- C.J. Linnartz, A. Rommerskirchen, M. Wessling, Y. Gendel,
Flow-electrode capacitive deionization for double displacement
reactions, ACS Sustainable Chem. Eng., 5 (2017) 3906–3912.
- S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel,
Review on the science and technology of water desalination by
capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
- Y. Oren, Capacitive deionization (CDI) for desalination
and water treatment — past, present and future (a review),
Desalination, 228 (2008) 10–29.
- X. Gao, A. Omosebi, J. Landon, K. Liu, Surface charge
enhanced carbon electrodes for stable and efficient capacitive
deionization using inverted adsorption–desorption behavior,
Energy Environ. Sci., 8 (2015) 897–909.
- A. Rommerskirchen, C.J. Linnartz, D. Müller, L.K. Willenberg,
M. Wessling, Energy recovery and process design in
continuous flow–electrode capacitive deionization processes,
ACS Sustainable Chem. Eng., 6 (2018) 13007–13015.
- J. Kim, J. Kim, J.H. Kim, H.S. Park, Hierarchically open-porous
nitrogen-incorporated carbon polyhedrons derived from
metal-organic frameworks for improved CDI performance,
Chem. Eng. J., 382 (2020) 122996, doi: 10.1016/j.cej.2019.122996.
- T. Yan, J. Liu, H. Lei, L. Shi, Z. An, H.S. Park, D. Zhang,
Capacitive deionization of saline water using sandwich-like
nitrogen-doped graphene composites via a self-assembling
strategy, Environ. Sci.: Nano, 5 (2018) 2722–2730.
- X. Gong, S. Zhang, W. Luo, N. Guo, L. Wang, D. Jia, Z. Zhao,
S. Feng, L. Jia, Enabling a large accessible surface area of a poredesigned
hydrophilic carbon nanofiber fabric for ultrahigh
capacitive deionization, ACS Appl. Mater. Interfaces, 12 (2020)
49586–49595.
- H.Y. Yang, Z.J. Han, S.F. Yu, K.L. Pey, K. Ostrikov, R. Karnik,
Carbon nanotube membranes with ultrahigh specific
adsorption capacity for water desalination and purification,
Nat. Commun., 4 (2013) 2220, doi: 10.1038/ncomms3220.
- H. Zhang, F. Zhang, Y. Wei, Q. Miao, A. Li, Y. Zhao, Y. Yuan,
N. Jin, G. Li, Controllable design and preparation of hollow
carbon-based nanotubes for asymmetric supercapacitors
and capacitive deionization, ACS Appl. Mater. Interfaces,
13 (2021) 21217–21230.
- C. Prehal, C. Koczwara, H. Amenitsch, V. Presser, O. Paris,
Salt concentration and charging velocity determine ion charge
storage mechanism in nanoporous supercapacitors, Nat.
Commun., 9 (2018) 4145, doi: 10.1038/s41467-018-06612-4.
- M. Ding, S. Fan, S. Huang, M.E. Pam, L. Guo, Y. Shi,
H.Y. Yang, Tunable pseudocapacitive behavior in metal–organic
framework-derived TiO2@porous carbon enabling highperformance
membrane capacitive deionization, ACS Appl.
Energy Mater., 2 (2019) 1812–1822.
- S. Wang, G. Wang, H. Song, S. Lv, T. Li, C. Li, In-situ formation
of Prussian blue analogue nanoparticles decorated with threedimensional
carbon nanosheet networks for superior hybrid
capacitive deionization performance, ACS Appl. Mater.
Interfaces, 12 (2020) 44049–44057.
- X. Wen, M. Zhao, Z. Zhao, X. Ma, M. Ye, Hierarchical and
self-supported vanadium disulfide microstructures@graphite
paper: an advanced electrode for efficient and durable
asymmetric capacitive deionization, ACS Sustainable Chem.
Eng., 8 (2020) 7335–7342.
- D. Desai, E.S. Beh, S. Sahu, V. Vedharathinam, Q. van
Overmeere, C.F. de Lannoy, A.P. Jose, A.R. Völkel, J.B. Rivest,
Electrochemical desalination of seawater and hypersaline
brines with coupled electricity storage, ACS Energy Lett.,
3 (2018) 375–379.
- V.M. Rangaraj, A.A. Edathil, Y.Y. Kannangara, J.-K. Song,
M.A. Haija, F. Banat, Tamarind shell derived N-doped carbon
for capacitive deionization (CDI) studies, J. Electroanal. Chem.,
848 (2019) 113307, doi: 10.1016/j.jelechem.2019.113307.
- M. Chu, W. Tian, J. Zhao, M. Zou, Z. Lu, D. Zhang,
J. Jiang, A comprehensive review of capacitive deionization
technology with biochar-based electrodes: biochar-based
electrode preparation, deionization mechanism and
applications, Chemosphere, 301 (2022) 136024, doi: 10.1016/j.chemosphere.2022.136024.
- Cigarette Butt Waste, America Nonsmokers’ Rights Foundation
[EB/OL], 2015.
- Q.Y. Dou, H.S. Park, Perspective on high-energy carbon-based
supercapacitors, Energy Environ. Mater., 3 (2020) 286–305.
- J.S. Yeon, S.H. Park, J. Suk, H. Lee, H.S. Park, Confinement of
sulfur in the micropores of honeycomb-like carbon derived
from lignin for lithium-sulfur battery cathode, Chem. Eng. J.,
382 (2020) 122946, doi: 10.1016/j.cej.2019.122946.
- H. Lei, T. Yan, H. Wang, L. Shi, J. Zhang, D. Zhang, Graphenelike
carbon nanosheets prepared by a Fe-catalyzed glucoseblowing
method for capacitive deionization, J. Mater. Chem. A,
3 (2015) 5934–5941.
- W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human
hair-derived carbon flakes for electrochemical supercapacitors,
Energy Environ. Sci., 7 (2014) 379–386.
- L. Chang, J. Li, X. Duan, W. Liu, Porous carbon derived from
metal–organic framework (MOF) for capacitive deionization
electrode, Electrochim. Acta, 176 (2015) 956–964.
- Y. Liu, L. Pan, T. Chen, X. Xu, T. Lu, Z. Sun, D.H.C. Chua,
Porous carbon spheres via microwave-assisted synthesis for
capacitive deionization, Electrochim. Acta, 151 (2015) 489–496.
- J. Wang, S. Kaskel, KOH activation of carbon-based materials
for energy storage, J. Mater. Chem., 22 (2012) 23710–23725.
- M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier,
F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption
of gases, with special reference to the evaluation of surface
area and pore size distribution (IUPAC Technical Report),
Pure Appl. Chem., 87 (2015) 1051–1069.
- J. Zhang, X. Zhang, Y. Zhou, S. Guo, K. Wang, Z. Liang,
Q. Xu, Nitrogen-doped hierarchical porous carbon nanowhisker
ensembles on carbon nanofiber for high-performance
supercapacitors, ACS Sustainable Chem. Eng., 2 (2014) 1525–1533.
- M.S. Zoromba, M.H. Abdel-Aziz, M. Bassyouni, S. Gutub,
D. Demko, A. Abdelkader, Electrochemical activation of graphene
at low temperature: the synthesis of three-dimensional
nanoarchitectures for high performance supercapacitors
and capacitive deionization, ACS Sustainable Chem. Eng.,
5 (2017) 4573–4581.
- L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for
supercapacitors, Adv. Mater., 25 (2013) 3899–3904.
- G. Zheng, L. Hu, H. Wu, X. Xie, Y. Cui, Paper supercapacitors by
a solvent-free drawing method, Energy Environ. Sci., 4 (2011)
3368–3373.
- C. Zhao, G. Liu, N. Sun, X. Zhang, G. Wang, Y. Zhang, H. Zhang,
H. Zhao, Biomass-derived N-doped porous carbon as electrode
materials for Zn-air battery powered capacitive deionization,
Chem. Eng. J., 334 (2018) 1270–1280.
- B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang, Y. Yang, Room
temperature molten salt as electrolyte for carbon nanotubebased
electric double layer capacitors, J. Power Sources,
158 (2006) 773–778.
- R.K. Sharma, H.-S. Oh, Y.-G. Shul, H. Kim, Growth and
characterization of carbon-supported MnO2 nanorods for
supercapacitor electrode, Physica B, 403 (2008) 1763–1769.
- L. Mao, H.S.O. Chan, J. Wu, Cetyltrimethylammonium bromide
intercalated graphene/polypyrrole nanowire composites
for high performance supercapacitor electrode, RSC Adv.,
2 (2012) 10610–10617.
- A. Bello, F. Barzegar, D. Momodu, J. Dangbegnon, F. Taghizadeh,
N. Manyala, Symmetric supercapacitors based on porous
3D interconnected carbon framework, Electrochim. Acta,
151 (2015) 386–392.
- D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, Enhanced
capacitive deionization performance of graphene/carbon
nanotube composites, J. Mater. Chem., 22 (2012) 14696–14704.
- K.T. Cho, S.B. Lee, J.W. Lee, Facile synthesis of highly
electrocapacitive nitrogen-doped graphitic porous carbons,
J. Phys. Chem. C, 118 (2014) 9357–9367.
- K.-B. Li, D.-W. Shi, Z.-Y. Cai, G.-L. Zhang, Q.-A. Huang,
D. Liu, C.-P. Yang, Studies on the equivalent serial resistance
of carbon supercapacitor, Electrochim. Acta, 174 (2015)
596–600.
- Z. Chen, C. Song, X. Sun, H. Guo, G. Zhu, Kinetic and isotherm
studies on the electrosorption of NaCl from aqueous solutions
by activated carbon electrodes, Desalination, 267 (2011)
239‒243.