References

  1. A.L. Olatomiwa, T. Adam, S.C.B. Gopinath, S.Y. Kolawole, O.H. Olayinka, U. Hashim, Graphene synthesis, fabrication, characterization based on bottom-up and top-down approaches: an overview, J. Semicond., 43 (2022) 061101, doi: 10.1088/1674-4926/43/6/061101.
  2. C. Nethravathi, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon N.Y., 46 (2008) 1994–1998.
  3. M. Liu, X. Zhang, W. Wu, T. Liu, Y. Liu, B. Guo, R. Zhang, One-step chemical exfoliation of graphite to ~100% fewlayer graphene with high quality and large size at ambient temperature, Chem. Eng. J., 355 (2019) 181–185.
  4. H. Jahandideh, J.-R. Macairan, A. Bahmani, M. Lapointe, N. Tufenkji, Fabrication of graphene-based porous materials: traditional and emerging approaches, Chem. Sci., 13 (2022) 8924–8941.
  5. C. Zhang, W. Lv, X. Xie, D. Tang, C. Liu, Q.H. Yang, Towards low temperature thermal exfoliation of graphite oxide for graphene production, Carbon N.Y., 62 (2013) 11–24.
  6. F.S. Al-Hazmi, G.H. Al-Harbi, G.W. Beall, A.A. Al-Ghamdi, A.Y. Obaid, W.E. Mahmoud, One pot synthesis of graphene based on microwave assisted solvothermal technique, Synth. Met., 200 (2015) 54–57.
  7. D.X. Luong, K.V. Bets, W.A. Algozeeb, M.G. Stanford, C. Kittrell, W. Chen, R.V. Salvatierra, M. Ren, E.A. McHugh, P.A. Advincula, Z. Wang, M. Bhatt, H. Guo, V. Mancevski, R. Shahsavari, B.I. Yakobson, J.M. Tour, Gram-scale bottom-up flash graphene synthesis, Nature, 577 (2020) 647–651.
  8. Y. Hu, C. bao Sun, J. Kou, Exfoliation of poly(ethylene glycol)-intercalated graphite oxide composite in water without sonication, Int. J. Miner. Metall. Mater., 27 (2020) 840–845.
  9. B. Kartick, S.K. Srivastava, I. Srivastava, Green synthesis of graphene, J. Nanosci. Nanotechnol., 13 (2013) 4320–4324.
  10. E. Freitas, D. Janu, Y. Jaqueline, G. Wernke, G. Maria, M. Demiti, L. Bergamasco, S. Vieira, Chemosphere Application of activated carbon functionalized with graphene oxide for efficient removal of COVID-19 treatment-related pharmaceuticals from water, Chemosphere, 289 (2022) 9, doi: 10.1016/j.chemosphere.2021.133213.
  11. L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, P.M. Ajayan, Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide, Carbon N.Y., 52 (2013) 608–612.
  12. M.M.M. Ahmed, T. Imae, J.P. Hill, Y. Yamauchi, K. Ariga, L.K. Shrestha, Defect-free exfoliation of graphene at ultra-high temperature, Colloids Surf., A, 538 (2018) 127–132.
  13. N.D. Mao, H. Jeong, T.K. Ngan Nguyen, T.M. Loan Nguyen, T.V. Vi Do, C.N. Ha Thuc, P. Perré, S.C. Ko, H.G. Kim, D.T. Tran, Polyethylene glycol functionalized graphene oxide and its influences on properties of poly(lactic acid) biohybrid materials, Composites, Part B, 161 (2019) 651–658.
  14. A.G. Bannov, A.V. Ukhina, E.A. Maksimovskii, I.Y. Prosanov, A.A. Shestakov, N.I. Lapekin, N.S. Lazarenko, P.B. Kurmashov, M.V. Popov, Highly porous expanded graphite: thermal shock vs. programmable heating, Materials (Basel), 14 (2021) 1–17.
  15. T. Wei, Z. Fan, G. Luo, C. Zheng, D. Xie, A rapid and efficient method to prepare exfoliated graphite by microwave irradiation, Carbon N.Y., 47 (2009) 337–339.
  16. W. Jiang, Z. Li, Y. Zhu, W. Xin, Y. Yu, Arc spectra of different solid reduced graphene oxide samples under microwave irradiation, Diamond Relat. Mater., 109 (2020), doi: 10.1016/j.diamond.2020.108060.
  17. H. Wang, X. Mi, Y. Li, S. Zhan, 3D graphene-based macrostructures for water treatment, Adv. Mater., 32 (2020) 1–11.
  18. W.T. Tee, N.Y.L. Loh, K.C. Lai, B.Y.Z. Hiew, S. Gan, L.Y. Lee, Application of 3D heteroatom-doped graphene in adsorptive removal of water pollutants: review on hydrothermal synthesis and its influencing factors, Sep. Purif. Technol., 320 (2023) 124072, doi: 10.1016/j.seppur.2023.124072.
  19. N. Chandra, P. Gururani, Advances of graphene oxide based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes, Curr. Res. Green Sustainable Chem., 5 (2022) 100306, doi: 10.1016/j.crgsc.2022.100306.
  20. G. Yin, Z. Sun, Y. Gao, S. Xu, Preparation of expanded graphite for malachite green dye removal from aqueous solution, Microchem. J., 166 (2021) 106190, doi: 10.1016/j.microc.2021.106190.
  21. M. Zhao, M.T. Yang, M. Singh, T. Overturf, Y. Gao, G. Silva Hernandez, S. Ahmed, S. Banerjee, Fabrication and characterization of a water purification system using activated carbon and graphene nanoplatelets: toward the development of a nanofiltration matrix, Water Environ. Res., 93 (2021) 1530–1542.
  22. F. Farivar, P. Lay Yap, R.U. Karunagaran, D. Losic, Thermogravimetric analysis (TGA) of graphene materials: effect of particle size of graphene, graphene oxide and graphite on thermal parameters, C, 7 (2021) 41, doi: 10.3390/c7020041.
  23. N.M.S. Hidayah, W. Liu, C. Lai, N.Z. Noriman, C.-S. Khe, U. Hashim, H.C. Lee, Comparison on graphite, graphene oxide and reduced graphene oxide: synthesis and characterization, AIP Conf. Proc., 1892 (2017) 150002, doi: 10.1063/1.5005764.
  24. W. Wu, M. Liu, Y. Gu, B. Guo, H. Ma, P. Wang, X. Wang, R. Zhang, Fast chemical exfoliation of graphite to few-layer graphene with high quality and large size via a two-step microwave-assisted process, Chem. Eng. J., 381 (2020) 122592, doi: 10.1016/j.cej.2019.122592.
  25. R. Siburian, D.R. Sari, J. Gultom, H. Sihotang, S.L. Raja, J. Gultom, M. Supeno, Performance of graphite and graphene as electrodes in primary cell battery, J. Phys. Conf. Ser., 1116 (2018) 042034,
    doi: 10.1088/1742-6596/1116/4/042034.