References
- M. Batool, Waqas-ud-Din Khan, Y. Hamid, M.A. Farooq,
M.A. Naeem, F. Nadeem, Interaction of pristine and mineral
engineered biochar with microbial community in attenuating
the heavy metals toxicity: a review, Appl. Soil Ecol.,
175 (2022) 104444, doi: 10.1016/j.apsoil.2022.104444.
- B. Silva, H. Figueiredo, C. Quintelas, I.C. Neves, T. Tavares,
Zeolites as supports for the biorecovery of hexavalent and
trivalent chromium, Microporous Mesoporous Mater.,
116 (2008) 555–560.
- S. Chaturvedi, A. Khare, S.M.P. Khurana, Toxicity of
Hexavalent Chromium and Its Microbial Detoxification
Through Bioremediation, M.P. Shah, Ed., Removal of
Emerging Contaminants Through Microbial Processes,
Springer, Singapore, 2021, pp. 513–542.
- N. Tahri Joutey, W. Bahafid, H. Sayel, S. Ananou, N. El
Ghachtouli, Hexavalent chromium removal by a novel
Serratia proteamaculans isolated from the bank of Sebou River
(Morocco), Environ. Sci. Pollut. Res., 21 (2013) 3060–3072.
- R. Jobby, P. Jha, A.K. Yadav, N. Desai, Biosorption and
biotransformation of hexavalent chromium [Cr(VI)]:
a
comprehensive review, Chemosphere, 207 (2018) 255–266.
- P. Sharma, A.K. Pandey, S.H. Kim, S.P. Singh, P. Chaturvedi,
S. Varjani, Critical review on microbial community during
in-situ bioremediation of heavy metals from industrial
wastewater, Environ. Technol. Innovation, 24 (2021) 101826,
doi: 10.1016/j.eti.2021.101826.
- G. Bayramoğlu, G. Çelik, E. Yalçın, M. Yılmaz, M.Y. Arıca,
Modification of surface properties of Lentinus sajor-caju mycelia
by physical and chemical methods: evaluation of their Cr6+
removal efficiencies from aqueous medium, J. Hazard. Mater.,
119 (2005) 219–229.
- C. Quintelas, B. Fernandes, J. Castro, H. Figueiredo,
T. Tavares, Biosorption of Cr(VI) by a Bacillus coagulans biofilm
supported on granular activated carbon (GAC), Chem. Eng. J.,
136 (2008) 195–203.
- C. Cervantes, J. Campos-García, S. Devars, F. Gutiérrez-Corona,
H. Loza-Tavera, J.C. Torres-Guzmán,
R. Moreno-Sánchez,
Interactions of chromium with microorganisms and plants,
FEMS Microbiol. Rev., 25 (2001) 335–347.
- M.D. Mullen, D.C. Wolf, F.G. Ferris, T.J. Beveridge,
C.A. Flemming, G.W. Bailey, Bacterial sorption of heavy-metals,
Appl. Environ. Microbiol., 55 (1989) 3143–3149.
- M.C. Sportelli, C. Kranz, B. Mizaikoff, N. Cioffi, Recent
advances on the spectroscopic characterization of microbial
biofilms: a critical review, Anal. Chim. Acta, 1195 (2022) 339433,
doi: 10.1016/j.aca.2022.339433.
- A. Mitra, S. Mukhopadhyay, Biofilm mediated decontamination
of pollutants from the environment, AIMS Bioeng.,
3 (2016) 44–59.
- J.M. Sonawane, A.K. Rai, M. Sharma, M. Tripathi,
R. Prasad, Microbial biofilms: recent advances and progress in
environmental bioremediation, Sci. Total Environ., 824 (2022)
153843, doi: 10.1016/j.scitotenv.2022.153843.
- T. Siddharth, P. Sridhar, V. Vinila, R.D. Tyagi, Environmental
applications of microbial extracellular polymeric substance
(EPS): a review, J. Environ. Manage., 287 (2021) 112307,
doi: 10.1016/j.jenvman.2021.112307.
- C. Quintelas, V.B. da Silva, B. Silva, H. Figueiredo, T. Tavares,
Optimization of production of extracellular polymeric
substances by Arthrobacter viscosus and their interaction with
a 13X zeolite for the biosorption of Cr(VI), Environ. Technol.,
32 (2011) 1541–1549.
- M. Asri, N. El Ghachtouli, S. Elabed, S. Ibnsouda Koraichi,
A. Elabed, B. Silva, T. Tavares, Wicherhamomyces anomalus biofilm supported on wood husk for chromium wastewater
treatment, J. Hazard. Mater., 359 (2018) 554–562.
- N. Mohd-Al-Faisal, W.H.A. Wan Harun, F. Abdul Razak, An
in vitro study on the anti-adherence effect of Brucea javanica
and Piper betle extracts towards oral Candida, Arch. Oral Biol.,
58 (2013) 1335–1342.
- M. Asri, A. Elabed, N. El Ghachtouli, S. Ibnsouda Koraichi,
W. Bahafid, S. Elabed, Theoretical and experimental adhesion
of yeast strains with high chromium removal potential,
Environ. Eng. Sci., 34 (2017) 693–702.
- S. Elabed, M. Mostakim, F. Berguadi, H. Latrache, A. Houari,
F. Hamadi, S. Ibnsouda koraichi, Study of microbial adhesion
on some wood species: theoretical prediction, Microbiology,
80 (2011) 43–49.
- E.A. Vogler, Structure and reactivity of water at biomaterial
surfaces, Adv. Colloid Interface Sci., 74 (1998) 69–117.
- C.J. van Oss, Interfacial Forces in Aqueous Media, Dekker,
New York, 1996.
- A.M. Gallardo-Moreno, M.L. González-Martín, C. Pérez-Giraldo, J.M. Bruque, A.C. Gómez-García, The measurement
temperature: an important factor relating physicochemical
and adhesive properties of yeast cells to biomaterials,
J. Colloid Interface Sci., 271 (2004) 351–358.
- H.H.M. Rijnaarts, W. Norde, J. Lyklema, A.J.B. Zehnder, DLVO
and steric contributions to bacterial deposition in media of
different ionic strengths, Colloids Surf., B, 14 (1999) 179–195.
- P. Pattanapipitpaisal, N.L. Brown, L. Macaskie, Chromate
reduction and 16S rRNA identification of bacteria isolated
from a Cr(VI)-contaminated site, Appl. Microbiol. Biotechnol.,
57 (2001) 257–261.
- C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, and
T. Tavares, Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from
aqueous solutions by an E. coli biofilm supported on kaolin,
Chem. Eng. J., 149 (2009) 319–324.
- J. Azeredo, R. Oliveira, A new method for precipitating
bacterial exopolysaccharides, Biotechnol. Technol., 10 (1996)
341–344.
- A. Avellan, C. Levard, J. Rose, M. Auffan, M. Bertrand, L. Olivi,
C. Santaella, W. Achouak, A. Masion, Influence of structural
defects of Ge-imogolite nanotubes on their toxicity towards
Pseudomonas brassicacearum, Environ. Sci. Nano, 3 (2016)
839–846.
- Y. Guo, R.M. Bustin, FTIR spectroscopy and reflectance of
modern charcoals and fungal decayed woods: implications
for studies of inertinite in coals, Int. J. Coal Geol., 37 (1998)
29–53.
- S. Benyoucef, D. Harrache, Microstructure characterization
of scots pine “Pinus sylvestris” sawdust, J. Mater. Environ. Sci.,
6 (2015) 765–772.
- M. Sain, S. Panthapulakkal, Bioprocess preparation of wheat
straw fibers and their characterization, Ind. Crops Prod.,
23 (2006) 1–8.
- A.K. Rana, R.K. Basak, B.C. Mitra, M. Lawther, A.N. Banerjee,
Studies of acetylation of jute using simplified procedure and
its characterization, J. Appl. Polym. Sci., 64 (1996) 1517–1523.
- K.K. Pandey, A.J. Pitman, FTIR studies of the changes in wood
chemistry following decay by brown-rot and white-rot fungi,
Int. Biodeterior. Biodegrad., 52 (2003) 151–160.
- D. Chen, X. Hu, L. Shi, Q. Cui, H. Wang, H. Yao, Synthesis and
characterization of zeolite X from lithium slag, Appl. Clay Sci.,
59–60 (2012) 148–151.
- Y. Ma, C. Yan, A. Alshameri, X. Qiu, C. Zhou, Synthesis and
characterization of 13X zeolite from low-grade natural kaolin,
Adv. Powder Technol., 25 (2014) 495–499.
- L. Liu, R. Singh, G. Li, G. Xiao, P.A. Webley, Y. Zhai, Synthesis
of hydrophobic zeolite X@SiO2 core-shell composites,
Mater. Chem. Phys., 133 (2012) 1144–1151.
- B. Adnadjević, J. Jovanović, S. Gajinov, Effect of different
physicochemical properties of hydrophobic zeolites on the
pervaporation properties of PDMS-membranes, J. Membr. Sci.,
136 (1997) 173–179.
- V. Ochoa-Herrera, R. Sierra-Alvarez, Removal of perfluorinated
surfactants by sorption onto granular activated carbon,
zeolite and sludge, Chemosphere, 72 (2008) 1588–1593.
- P.M. Costanzo, R.F. Giese, C.J. van Oss, The Determination
of Surface Tension Parameters of Powders by Thin Layer
Wicking, R.A. Williams, N.C. de Jaeger, Eds., Advances in
Measurement and Control of Colloidal Processes, Butterworth-Heinemann, San Diego, USA, 1991, pp. 223–232.
- C.J. van Oss, R.F. Giese, The hydrophilicity and hydrophobicity
of clay minerals, Clays Clay Miner., 43 (1995) 474–477.
- P. Dutournié, A. Said, T.J. Daou, J. Bikaï, L. Limousy, Hydraulic
performance modifications of a zeolite membrane after an
alkaline treatment: contribution of polar and apolar surface
tension components, Adv. Mater. Sci. Eng., 2015 (2015) 524259,
doi: 10.1155/2015/524259.
- R. Van Houdt, C.W. Michiels, Biofilm formation and the
food industry, a focus on the bacterial outer surface, J. Appl.
Crystallogr., 109 (2010) 1117–1131.
- J.M. Lundén, M.K. Miettinen, T.J. Autio, H.J. Korkeala, Persistent
Listeria monocytogenes strains show enhanced adherence to
food contact surface after short contact times, J. Food Prot.,
63 (2000) 1204–1207.
- R.A.N. Chmielewski, J.F. Frank, Biofilm Formation and Control
in Food Processing Facilities, Compr. Rev. Food Sci. Food Saf.,
2 (2003) 22–32.
- H. Gibson, J.H. Taylor, K.E. Hall, J.T. Holah, Effectiveness of
cleaning techniques used in the food industry in terms of the
removal of bacterial biofilms, J. Appl. Microbiol., 1995 (1999)
41–48.
- B. Joseph, S.K. Otta, I. Karunasagar, I. Karunasagar, Biofilm
formation by Salmonella spp. on food contact surfaces and
their sensitivity to sanitizers, Int. J. Food Microbiol., 64 (2001)
367–372.
- M.R. Beresford, P.W. Andrew, G. Shama, Listeria monocytogenes
adheres to many materials found in food-processing
environments, J. Appl. Microbiol., 90 (2001) 1000–1005.
- A.K. Meena, K. Kadirvelu, G.K. Mishraa, C. Rajagopal,
P.N. Nagar, Adsorption of Pb(II) and Cd(II) metal ions from
aqueous solutions by mustard husk, J. Hazard. Mater.,
150 (2008) 619–625.
- B. Silva, H. Figueiredo, C. Quintelas, I.C. Neves, T. Tavares,
Improved biosorption for Cr(VI) reduction and removal by
Arthrobacter viscosus using zeolite, Int. Biodeterior. Biodegrad.,
74 (2012) 116–123.
- C. Quintelas, B. Fonseca, B. Silva, H. Figueiredo, T. Tavares,
Treatment of chromium(VI) solutions in a pilot-scale
bioreactor through a biofilm of Arthrobacter viscosus supported
on GAC, Bioresour. Technol., 100 (2009) 220–226.
- Z. Lewandowski, J.P. Boltz, Biofilms in Water and Wastewater
Treatment, P. Wilderer, Ed., Treatise on Water Science,
Academic Press, Oxford, 2011, pp. 529–567.
- F. Costa, B. Silva, T. Tavares, 6 - Biofilm bioprocesses,
C. Larroche, M.A. Sanromán, G. Du, A. Pandey, Eds.,
Current Developments in Biotechnology and Bioengineering:
Bioprocesses, Bioreactors and Controls, Elsevier, Amsterdam,
Netherlands, 2017, pp. 143–167.
- J.P. Bassin, M. Dezotti, Moving Bed Biofilm Reactor (MBBR),
in: Advanced Biological Processes for Wastewater Treatment,
Springer, Cham, 2018, pp. 37–74.
- C. Quintelas, B. Fernandes, J. Castro, H. Figueiredo,
T. Tavares, Biosorption of Cr(VI) by a Bacillus coagulans biofilm
supported on granular activated carbon (GAC), Chem. Eng. J.,
136 (2008) 195–203.
- H. Liu, H.H.P. Fang, Characterization of electrostatic binding
sites of extracellular polymers by linear programming
analysis of titration data, Biotechnol. Bioeng., 80 (2002) 806–811.
- D.C.K. Ko, J.F. Porter, G. Mckay, Optimised correlations
for the fixed-bed adsorption of metal ions on bone char,
Chem. Eng. Sci., 55 (2000) 5819–5829.
- T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan,
Biosorption of Acid Blue 15 using fresh water macroalga
Azolla filiculoides: batch and column studies, Dyes Pigm.,
71 (2006) 77–82.
- E. Malkoc, Y. Nuhoglu, Investigations of nickel(II) removal
from aqueous solutions using tea factory waste, J. Hazard.
Mater., 127 (2005) 120–128.
- M. Badia-Fabregat, D. Lucas, T. Tuomivirta, H. Fritze,
T. Pennanen, S. Rodríguez-Mozaz, D. Barceló, G. Caminal,
T. Vicent, Study of the effect of the bacterial and fungal
communities present in real wastewater effluents on the
performance of fungal treatments, Sci. Total Environ.,
579 (2017) 366–377.
- R. De Philippis, G. Colica, E. Micheletti, Exopolysaccharide producing
cyanobacteria in heavy metal removal from water:
molecular basis and practical applicability of the biosorption
process, Appl. Microbiol. Biotechnol., 92 (2011) 697–708.
- E. Blanchet, E. Desmond, B. Erable, A. Bridier, T. Bouchez,
A. Bergel, Comparison of synthetic medium and wastewater
used as dilution medium to design scalable microbial anodes:
application to food waste treatment, Bioresour. Technol.,
185 (2015) 106–115.
- F. Bourgeois, F. Monette, D.G. Cyr, Operational modifications
for the development of nitrifying bacteria in a large-scale biological
aerated filter and its impact on wastewater treatment,
Water Sci. Technol., 78 (2018) 1–11.
- M.E. Casas, K. Bester, Can those organic micro-pollutants
that are recalcitrant in activated sludge treatment be removed
from wastewater by biofilm reactors (slow sand filters)?,
Sci. Total Environ., 506–507 (2015) 315–322.
- C. Quintelas, B. Fernandes, J. Castro, H. Figueiredo, T. Tavares,
Biosorption of Cr(VI) by three different bacterial species
supported on granular activated carbon – a comparative study,
J. Hazard. Mater., 153 (2008) 799–809.
- K. Weinberger, Process and Facility for Treating Ammonium-Containing Wastewater, U.S. Patent No. 9,969,637, U.S. Patent
and Trademark Office, Washington, D.C., 2018.
- J. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces
cerevisiae: a review, Biotechnol. Adv., 24 (2006) 427–451.
- P.R. Gogate, A.B. Pandit, A review of imperative technologies
for wastewater treatment I: oxidation technologies at ambient
conditions, Adv. Environ. Res., 8 (2004) 501–551.
- I.E. Mejias Carpio, G. Machado-Santelli, S. Kazumi Sakata,
S.S. Ferreira Filho, D.F. Rodrigues, Copper removal using a
heavy-metal resistant microbial consortium in a fixed-bed
reactor, Water Res., 62 (2014) 156–166.
- R. Pan, L. Cao, R. Zhang, Combined effects of Cu, Cd, Pb, and
Zn on the growth and uptake of consortium of Cu-resistant
Penicillium sp. A1 and Cd-resistant Fusarium sp. A19, J. Hazard.
Mater., 171 (2009) 761–766.
- S. Sharma, A. Adholeya, Detoxification and accumulation of
chromium from tannery effluent and spent chrome effluent
by Paecilomyces lilacinus fungi, Int. Biodeterior. Biodegrad.,
65 (2011) 309–317.
- H. Salehizadeh, S.A. Shojaosadati, Removal of metal ions
from aqueous solution by polysaccharide produced from
Bacillus firmus, Water Res., 37 (2003) 4231–4235.
- B. Jha, D.N. Singh, Basics of Zeolites, In: Fly Ash Zeolites,
Advanced Structured Materials, Vol. 78, Springer, Singapore,
2016, pp. 5–31.