References

  1. M.J. Aliaño-González, J. Gabaston, V. Ortiz-Somovilla, E. Cantos-Villar, Wood waste from fruit trees: biomolecules and their applications in agri-food industry, Biomolecules, 12 (2022) 238, doi: 10.3390/biom12020238.
  2. N. Voca, N. Bilandžija, V. Jurišic, A. Matin, T. Kricka, I. Sedak, Proximate, ultimate, and energy values analysis of plum biomass by-products case study: Croatia’s potential, J. Agric. Sci. Technol., 18 (2016) 1655–1666.
  3. M.A. Yahya, Z. Al-Qodah, C.W. Zanariah Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renewable Sustainable Energy Rev., 46 (2015) 218–235.
  4. M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renewable Sustainable Energy Rev., 87 (2018) 1–21.
  5. P. Gonzalez-Garcia, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renewable Sustainable Energy Rev., 82 (2018) 1393–1414.
  6. Md. S. Reza, C.S. Yun, S. Afroze, N. Radenahmad, M.S. Abu Bakar, R. Saidur, J. Taweekun, A.K. Azad, Preparation of activated carbon from biomass and its’ applications in water and gas purification, A review, Arab J. Basic Appl. Sci., 27 (2020) 208–238.
  7. R. Zhu, Q. Yu, M. Li, H. Zhao, S. Jin, Y. Huang, J. Fan, J. Chen, Analysis of factors influencing pore structure development of agricultural and forestry waste-derived activated carbon for adsorption application in gas and liquid phases: a review, J. Environ. Chem. Eng., 9 (2021) 105905, doi: 10.1016/j.jece.2021.105905.
  8. J. Jjagwe, P.W. Olupot, E. Menya, H.M. Kalibbala, Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review, J. Bioresour. Bioprod., 6 (2021) 292–322.
  9. I. Neme, G. Girma Gonfa, C. Masi, Activated carbon from biomass precursors using phosphoric acid: a review, Helion, 8 (2022) 11940, doi: 10.1016/j.heliyon.2022.e11940.
  10. A.A. Pelaez-Cid, M.M.M. Teutli-Leon, Lignocellulosic Precursors Used in the Synthesis of Activated Carbon - Characterization Techniques and Applications in the Wastewater Treatment. V. Hernandez-Montoya, Ed., InTechOpen, 2012.
  11. E. Diaz, I. Sanchis, C.J. Coronella, A.F. Mohedano, Activated carbons from hydrothermal carbonization and chemical activation of olive stones: application in sulfamethoxazole adsorption, Resources, 11 (2022) 43, doi: 10.3390/resources11050043.
  12. R. Sahmarani, C. Chbib, S. Net, M. Baroudi, B. Ouddane, Application of continuous column adsorption of organochlorine pesticides from contaminated water onto date stones activated carbon, Int. J. Environ. Res., 15 (2021) 585–595.
  13. H. Tizi, T. Berrama, D. Hamane, F. Ferrag-Siagh, Z. Bendjama, Characterization of new adsorbent prepared from apricot stones activated carbon mixed with amorphous SiO2 from Algerian diatomite for removal of p-nitroaniline, Acta Periodica Technologica, 52 (2021) 73–88.
  14. S.G. Mohammad, M.M.H. El-Sayed, Removal of imidacloprid pesticide using nanoporous activated carbons produced via pyrolysis of peach stone agricultural wastes, Chem. Eng. Commun., 208 (2021) 1069–1080.
  15. A.B. Leite, C. Saucier, E.C. Lima, G.S. dos Reis, C.S. Umpierres, B.L. Mello, M. Shirmardi, S.L.P. Dias, C.H. Sampaio, Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds, Environ. Sci. Pollut. Res., 25 (2018) 7647–7661.
  16. F.O. Erdogan, Characterization of the activated carbon surface of cherry stones prepared by sodium and potassium hydroxide, Anal. Lett., 49 (2016) 1079–1090.
  17. A. Pawlicka, B. Doczekalska, M. Bartkowiak, M. Janecka, Activated carbons from plum stones, Ann. WULS – SGGW, For. Wood Technol., 85 (2014) 175–179.
  18. M. Wiśniewska, M. Marciniak, M. Gęca, K. Herda, R. Pietrzak, P. Nowicki, Activated biocarbons obtained from plant biomass as adsorbents of heavy metal ions, Materials, 15 (2022) 5856, doi: 10.3390/ma15175856.
  19. J. Michałowicz, W. Duda, Phenols – sources and toxicity, Pol. J. Environ. Stud., 16 (2007) 347–362.
  20. J. Michałowicz, Bisphenol A – sources, toxicity and biotransformation, Environ. Toxicol. Pharmacol., 37 (2014) 738–758.
  21. J. Xing, S. Zhang, M. Zhang, J. Hou, A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A, Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 254 (2022) 109275, doi: 10.1016/j.cbpc.2022.109275.
  22. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon—
    a critical review, Chemosphere, 58 (2005) 1049–1070.
  23. G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater., 164 (2009) 1275–1280.
  24. A. Bhatnagar, I. Anastopoulos, Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review, Chemosphere, 168 (2017) 885–902.
  25. C.B. Godiya, B.J. Park, Removal of bisphenol A from wastewater by physical, chemical and biological remediation techniques. A review, Environ. Chem. Lett., 20 (2022) 1801–1837.
  26. K. Seifert, Zur Frage der Cellulose-Schnellbestimmung nach der Acetylacetone-Methode, Das Papier, 14 (1960) 104–106 (in German).
  27. H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 40 (2002) 145–149.
  28. M.J. Antal Jr., Biomass Pyrolysis: A Review of the Literature Part 1—Carbohydrate Pyrolysis, K.W. Böer, J.A. Duffie, Eds., Advances in Solar Energy, Springer, Boston, MA, 1982, pp. 61–111.
  29. M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Preparation of activated carbons from cherry stones by activation with potassium hydroxide, Appl. Surf. Sci., 252 (2006) 5980–5983.
  30. B. Cagnon, X. Py, A. Guillot, F. Stoeckli, G. Chambat, Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors, Bioresour. Technol., 100 (2009) 292–298.
  31. B. Doczekalska, M. Bartkowiak, B. Waliszewska, G. Orszulak, J. Cerazy-Waliszewska, T. Pniewski, Characterization of chemically activated carbons prepared from miscanthus and switchgrass biomass, Materials, 13 (2020) 1654, doi: 10.3390/ma13071654.
  32. D.C.S. Azevedo, J.C.S. Araújo, M. Bastos-Neto, A.E.B. Torres, E.F. Jaguaribe, C.L. Cavalcante, Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride, Microporous Mesoporous Mater., 100 (2007) 361–364.
  33. S. Bhungthong, D. Aussawasathien, K. Hrimchum, S.-N. Sriphalang, Preparation and properties of activated carbon from palm shell by potassium hydroxide impregnation: effects of processing parameters, Chiang Mai J. Sci., 45 (2018) 462–473.
  34. H. Marsh, F. Rodriguez-Reinoso, Activated Carbon, Elsevier Science Ltd., 2006.
  35. B. Buczek, B. Biniak, A. Świątkowski, Oxygen distribution within oxidised active carbon granules, Fuel, 78 (1999) 1443–1448.
  36. A. Deryło-Marczewska, J. Goworek, A. Świątkowski, B. Buczek, Influence of differences in porous structure within granules of activated carbon on adsorption of aromatics from aqueous solutions, Carbon, 42 (2004) 301–306.
  37. I. Bautista-Toledo, M.A. Ferro-García, J. Rivera-Utrilla, C. Moreno-Castilla, F.J. Vegas Fernández, Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry, Environ. Sci. Technol., 39 (2005) 6246–6250.
  38. B. Xie, J. Qin, S. Wang, X. Li, H. Sun, W. Chen, Adsorption of phenol on commercial activated carbons: modelling and interpretation, Int. J. Environ. Res. Public Health, 17 (2020) 789, doi: 10.3390/ijerph17030789.
  39. M. Kilic, E. Apaydin-Varol, A.E. Pütün, Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 189 (2011) 397–403.
  40. A. Supong, P.C. Bhomick, M. Baruah, C. Pongener, U.B. Sinha, D. Sinha, Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations, Sustainable Chem. Pharm., 13 (2019) 100159, doi: 10.1016/j.scp.2019.100159.
  41. M.C.F. da Silva, C. Schnorr, S.F. Lütke, S. Knani, V.X. Nascimento, E.C. Lima, P.S. Thue, J. Vieillard, L.F.O Silva, G.L. Dotto, KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption, Chem. Eng. Res. Des., 187 (2022) 387–396.
  42. K.-L. Chang, J.-F. Hsieh, B.-M. Ou, M.-H. Chang, W.-Y. Hseih, J.-H. Lin, P.-J. Huang, K.-F. Wong, S.-T. Chen, Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol A) using activated carbon from rice straw agricultural waste, Sep. Sci. Technol., 47 (2012) 1514–1521.
  43. H. Soni, P. Padmaja, Palm shell based activated carbon for removal of bisphenol A: an equilibrium, kinetic and thermodynamic study, J. Porous Mater., 21 (2014) 275–284.
  44. R. Wirasnita, T. Hadibarata, A.R.M. Yusoff, Z. Yusop, Removal of bisphenol A from aqueous solution by activated carbon derived from oil palm empty fruit bunch, Water Air Soil Pollut., 225 (2014) 2148,
    doi: 10.1007/s11270-014-2148-x.
  45. M. Sobiesiak, Chemical Structure of Phenols and Its Consequence for Sorption Processes, M. Soto-Hernandez, M. Palma-Tenango, M. del Rosario Garcia-Mateos, Phenolic Compounds, InTechOpen, Rijeka, Croatia, 2017.
  46. P. Shao, J. Pei, H. Tang, S. Yu, L. Yang, H. Shi, K. Yu, K. Zhang, X. Luo, Defect-rich porous carbon with antiinterference capability for adsorption of bisphenol A via long-range hydrophobic interaction synergized with shortrange dispersion force, J. Hazard. Mater., 403 (2021) 123705, doi: 10.1016/j.jhazmat.2020.123705.
  47. K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng., 74 (2017) 25–48.
  48. G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater., 164 (2009) 1275–1280.
  49. K. Kuśmierek, A. Świątkowski, K. Skrzypczyńska, S. Błażewicz, J. Hryniewicz, The effects of the thermal treatment of activated carbon on the phenols adsorption, Korean J. Chem. Eng., 34 (2017) 1081–1090.
  50. R. Acosta, D. Nabarlatz, A. Sánchez-Sánchez, J. Jagiello, P. Gadonneix, A. Celzard, V. Fierro, Adsorption of bisphenol A on KOH-activated tyre pyrolysis char, J. Environ. Chem. Eng., 6 (2018) 823–833.
  51. N. Mojoudi, N. Mirghaffari, M. Soleimani, H. Shariatmadari, C. Belver, J. Bedia, Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium, kinetic and thermodynamic studies, Sci. Rep., 9 (2019) 19352, doi: 10.1038/s41598-019-55794-4.
  52. V. Gómez-Serrano, M. Adame-Pereira, M. Alexandre- Franco, C. Fernández-González, Adsorption of bisphenol A by activated carbon developed from PET waste by KOH activation, Environ. Sci. Pollut. Res., 28 (2021) 24342–24354.
  53. K. Kuśmierek, A. Świątkowski, T. Kotkowski, R. Cherbański, E. Molga, Adsorption of bisphenol A from aqueous solutions by activated tyre pyrolysis char – effect of physical and chemical activation, Chem. Process. Eng., 41 (2020) 129–141.
  54. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
  55. A. Derylo-Marczewska, D. Sternik, A. Swiatkowski, K. Kusmierek, W. Gac, B. Buczek, Adsorption of phenol from aqueous and cyclohexane solutions on activated carbons with differentiated surface chemistry, Thermochim. Acta, 715 (2022) 179299, doi: 10.1016/j.tca.2022.179299.
  56. X. Wang, Y. Hu, J. Min, S. Li, X. Deng, S. Yuan, X. Zuo, Adsorption characteristics of phenolic compounds on graphene oxide and reduced graphene oxide: a batch experiment combined theory calculation, Appl. Sci., 8 (2018) 1950, doi: 10.3390/app8101950.
  57. I. Ipek, N. Kabay, M. Yüksel, Separation of bisphenol A and phenol from water by polymer adsorbents: equilibrium and kinetics studies, J. Water Process Eng., 16 (2017) 206–211.
  58. M.R. El-Aassar, I.H. Alsohaimi, A.S.M. Ali, A.A. Elzain, Removal of phenol and bisphenol A by immobilized Laccase on poly(acrylonitrile-co-styrene/pyrrole) nanofibers, Sep. Sci. Technol., 55 (2020) 2670–2678.
  59. J. Fan, W. Yang, A. Li, Adsorption of phenol, bisphenol A and nonylphenol ethoxylates onto hyper-crosslinked and aminated adsorbents, React. Funct. Polym., 71 (2011) 994–1000.