References
- M.J. Aliaño-González, J. Gabaston, V. Ortiz-Somovilla,
E. Cantos-Villar, Wood waste from fruit trees: biomolecules
and their applications in agri-food industry, Biomolecules,
12 (2022) 238, doi: 10.3390/biom12020238.
- N. Voca, N. Bilandžija, V. Jurišic, A. Matin, T. Kricka, I. Sedak,
Proximate, ultimate, and energy values analysis of plum
biomass by-products case study: Croatia’s potential, J. Agric.
Sci. Technol., 18 (2016) 1655–1666.
- M.A. Yahya, Z. Al-Qodah, C.W. Zanariah Ngah, Agricultural
bio-waste materials as potential sustainable precursors
used for activated carbon production: a review, Renewable
Sustainable Energy Rev., 46 (2015) 218–235.
- M. Danish, T. Ahmad, A review on utilization of wood biomass
as a sustainable precursor for activated carbon production
and application, Renewable Sustainable Energy Rev., 87 (2018)
1–21.
- P. Gonzalez-Garcia, Activated carbon from lignocellulosics
precursors: A review of the synthesis methods, characterization
techniques and applications, Renewable Sustainable
Energy Rev., 82 (2018) 1393–1414.
- Md. S. Reza, C.S. Yun, S. Afroze, N. Radenahmad, M.S. Abu
Bakar, R. Saidur, J. Taweekun, A.K. Azad, Preparation of
activated carbon from biomass and its’ applications in water
and gas purification, A review, Arab J. Basic Appl. Sci., 27 (2020)
208–238.
- R. Zhu, Q. Yu, M. Li, H. Zhao, S. Jin, Y. Huang, J. Fan, J. Chen,
Analysis of factors influencing pore structure development
of agricultural and forestry waste-derived activated carbon
for adsorption application in gas and liquid phases: a review,
J. Environ. Chem. Eng., 9 (2021) 105905, doi: 10.1016/j.jece.2021.105905.
- J. Jjagwe, P.W. Olupot, E. Menya, H.M. Kalibbala, Synthesis and
application of granular activated carbon from biomass waste
materials for water treatment: a review, J. Bioresour. Bioprod.,
6 (2021) 292–322.
- I. Neme, G. Girma Gonfa, C. Masi, Activated carbon from
biomass precursors using phosphoric acid: a review, Helion,
8 (2022) 11940, doi: 10.1016/j.heliyon.2022.e11940.
- A.A. Pelaez-Cid, M.M.M. Teutli-Leon, Lignocellulosic Precursors
Used in the Synthesis of Activated Carbon - Characterization
Techniques and Applications in the Wastewater Treatment. V.
Hernandez-Montoya, Ed., InTechOpen, 2012.
- E. Diaz, I. Sanchis, C.J. Coronella, A.F. Mohedano, Activated
carbons from hydrothermal carbonization and chemical
activation of olive stones: application in sulfamethoxazole
adsorption, Resources, 11 (2022) 43, doi: 10.3390/resources11050043.
- R. Sahmarani, C. Chbib, S. Net, M. Baroudi, B. Ouddane,
Application of continuous column adsorption of organochlorine
pesticides from contaminated water onto date stones
activated carbon, Int. J. Environ. Res., 15 (2021) 585–595.
- H. Tizi, T. Berrama, D. Hamane, F. Ferrag-Siagh, Z. Bendjama,
Characterization of new adsorbent prepared from apricot
stones activated carbon mixed with amorphous SiO2 from
Algerian diatomite for removal of p-nitroaniline, Acta
Periodica Technologica, 52 (2021) 73–88.
- S.G. Mohammad, M.M.H. El-Sayed, Removal of imidacloprid
pesticide using nanoporous activated carbons produced via
pyrolysis of peach stone agricultural wastes, Chem. Eng.
Commun., 208 (2021) 1069–1080.
- A.B. Leite, C. Saucier, E.C. Lima, G.S. dos Reis, C.S. Umpierres,
B.L. Mello, M. Shirmardi, S.L.P. Dias, C.H. Sampaio, Activated
carbons from avocado seed: optimisation and application for
removal of several emerging organic compounds, Environ.
Sci. Pollut. Res., 25 (2018) 7647–7661.
- F.O. Erdogan, Characterization of the activated carbon
surface of cherry stones prepared by sodium and potassium
hydroxide, Anal. Lett., 49 (2016) 1079–1090.
- A. Pawlicka, B. Doczekalska, M. Bartkowiak, M. Janecka,
Activated carbons from plum stones, Ann. WULS – SGGW,
For. Wood Technol., 85 (2014) 175–179.
- M. Wiśniewska, M. Marciniak, M. Gęca, K. Herda, R. Pietrzak,
P. Nowicki, Activated biocarbons obtained from plant biomass
as adsorbents of heavy metal ions, Materials, 15 (2022) 5856,
doi: 10.3390/ma15175856.
- J. Michałowicz, W. Duda, Phenols – sources and toxicity,
Pol. J. Environ. Stud., 16 (2007) 347–362.
- J. Michałowicz, Bisphenol A – sources, toxicity and
biotransformation, Environ. Toxicol. Pharmacol., 37 (2014)
738–758.
- J. Xing, S. Zhang, M. Zhang, J. Hou, A critical review of presence,
removal and potential impacts of endocrine disruptors
bisphenol A, Comp. Biochem. Physiol. C: Toxicol. Pharmacol.,
254 (2022) 109275, doi: 10.1016/j.cbpc.2022.109275.
- A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak,
Adsorption of phenolic compounds by activated carbon—
a
critical review, Chemosphere, 58 (2005) 1049–1070.
- G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from
aqueous solution onto activated carbons with different
modification treatments, J. Hazard. Mater., 164 (2009) 1275–1280.
- A. Bhatnagar, I. Anastopoulos, Adsorptive removal of bisphenol
A (BPA) from aqueous solution: a review, Chemosphere,
168 (2017) 885–902.
- C.B. Godiya, B.J. Park, Removal of bisphenol A from wastewater
by physical, chemical and biological remediation techniques.
A review, Environ. Chem. Lett., 20 (2022) 1801–1837.
- K. Seifert, Zur Frage der Cellulose-Schnellbestimmung nach
der Acetylacetone-Methode, Das Papier, 14 (1960) 104–106
(in German).
- H.P. Boehm, Surface oxides on carbon and their analysis:
a critical assessment, Carbon, 40 (2002) 145–149.
- M.J. Antal Jr., Biomass Pyrolysis: A Review of the Literature
Part 1—Carbohydrate Pyrolysis, K.W. Böer, J.A. Duffie,
Eds., Advances in Solar Energy, Springer, Boston, MA, 1982,
pp. 61–111.
- M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Preparation of activated carbons
from cherry stones by activation with potassium hydroxide,
Appl. Surf. Sci., 252 (2006) 5980–5983.
- B. Cagnon, X. Py, A. Guillot, F. Stoeckli, G. Chambat,
Contributions of hemicellulose, cellulose and lignin to the mass
and the porous properties of chars and steam activated carbons
from various lignocellulosic precursors, Bioresour. Technol.,
100 (2009) 292–298.
- B. Doczekalska, M. Bartkowiak, B. Waliszewska, G. Orszulak,
J. Cerazy-Waliszewska, T. Pniewski, Characterization of
chemically activated carbons prepared from miscanthus and
switchgrass biomass, Materials, 13 (2020) 1654, doi: 10.3390/ma13071654.
- D.C.S. Azevedo, J.C.S. Araújo, M. Bastos-Neto, A.E.B. Torres,
E.F. Jaguaribe, C.L. Cavalcante, Microporous activated carbon
prepared from coconut shells using chemical activation with
zinc chloride, Microporous Mesoporous Mater., 100 (2007)
361–364.
- S. Bhungthong, D. Aussawasathien, K. Hrimchum,
S.-N. Sriphalang, Preparation and properties of activated
carbon from palm shell by potassium hydroxide impregnation:
effects of processing parameters, Chiang Mai J. Sci., 45 (2018)
462–473.
- H. Marsh, F. Rodriguez-Reinoso, Activated Carbon, Elsevier
Science Ltd., 2006.
- B. Buczek, B. Biniak, A. Świątkowski, Oxygen distribution
within oxidised active carbon granules, Fuel, 78 (1999)
1443–1448.
- A. Deryło-Marczewska, J. Goworek, A. Świątkowski,
B. Buczek, Influence of differences in porous structure within
granules of activated carbon on adsorption of aromatics from
aqueous solutions, Carbon, 42 (2004) 301–306.
- I. Bautista-Toledo, M.A. Ferro-García, J. Rivera-Utrilla,
C. Moreno-Castilla, F.J. Vegas Fernández, Bisphenol A
removal from water by activated carbon. Effects of carbon
characteristics and solution chemistry, Environ. Sci. Technol.,
39 (2005) 6246–6250.
- B. Xie, J. Qin, S. Wang, X. Li, H. Sun, W. Chen, Adsorption
of phenol on commercial activated carbons: modelling and
interpretation, Int. J. Environ. Res. Public Health, 17 (2020) 789,
doi: 10.3390/ijerph17030789.
- M. Kilic, E. Apaydin-Varol, A.E. Pütün, Adsorptive removal
of phenol from aqueous solutions on activated carbon
prepared from tobacco residues: equilibrium, kinetics and
thermodynamics, J. Hazard. Mater., 189 (2011) 397–403.
- A. Supong, P.C. Bhomick, M. Baruah, C. Pongener, U.B. Sinha,
D. Sinha, Adsorptive removal of Bisphenol A by biomass
activated carbon and insights into the adsorption mechanism
through density functional theory calculations, Sustainable
Chem. Pharm., 13 (2019) 100159, doi: 10.1016/j.scp.2019.100159.
- M.C.F. da Silva, C. Schnorr, S.F. Lütke, S. Knani, V.X. Nascimento,
E.C. Lima, P.S. Thue, J. Vieillard, L.F.O Silva, G.L. Dotto,
KOH activated carbons from Brazil nut shell: preparation,
characterization, and their application in phenol adsorption,
Chem. Eng. Res. Des., 187 (2022) 387–396.
- K.-L. Chang, J.-F. Hsieh, B.-M. Ou, M.-H. Chang, W.-Y. Hseih,
J.-H. Lin, P.-J. Huang, K.-F. Wong, S.-T. Chen, Adsorption
studies on the removal of an endocrine-disrupting compound
(Bisphenol A) using activated carbon from rice straw
agricultural waste, Sep. Sci. Technol., 47 (2012) 1514–1521.
- H. Soni, P. Padmaja, Palm shell based activated carbon
for removal of bisphenol A: an equilibrium, kinetic and
thermodynamic study, J. Porous Mater., 21 (2014) 275–284.
- R. Wirasnita, T. Hadibarata, A.R.M. Yusoff, Z. Yusop, Removal
of bisphenol A from aqueous solution by activated carbon
derived from oil palm empty fruit bunch, Water Air Soil Pollut.,
225 (2014) 2148,
doi: 10.1007/s11270-014-2148-x.
- M. Sobiesiak, Chemical Structure of Phenols and Its
Consequence for Sorption Processes, M. Soto-Hernandez,
M. Palma-Tenango, M. del Rosario Garcia-Mateos, Phenolic
Compounds, InTechOpen, Rijeka, Croatia, 2017.
- P. Shao, J. Pei, H. Tang, S. Yu, L. Yang, H. Shi, K. Yu,
K. Zhang, X. Luo, Defect-rich porous carbon with antiinterference
capability for adsorption of bisphenol A via
long-range hydrophobic interaction synergized with shortrange
dispersion force, J. Hazard. Mater., 403 (2021) 123705,
doi: 10.1016/j.jhazmat.2020.123705.
- K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics
models for the removal of contaminants from aqueous
solutions, J. Taiwan Inst. Chem. Eng., 74 (2017) 25–48.
- G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from
aqueous solution onto activated carbons with different
modification treatments, J. Hazard. Mater., 164 (2009) 1275–1280.
- K. Kuśmierek, A. Świątkowski, K. Skrzypczyńska, S. Błażewicz,
J. Hryniewicz, The effects of the thermal treatment of activated
carbon on the phenols adsorption, Korean J. Chem. Eng.,
34 (2017) 1081–1090.
- R. Acosta, D. Nabarlatz, A. Sánchez-Sánchez, J. Jagiello,
P. Gadonneix, A. Celzard, V. Fierro, Adsorption of bisphenol
A on KOH-activated tyre pyrolysis char, J. Environ. Chem. Eng.,
6 (2018) 823–833.
- N. Mojoudi, N. Mirghaffari, M. Soleimani, H. Shariatmadari,
C. Belver, J. Bedia, Phenol adsorption on high microporous
activated carbons prepared from oily sludge: equilibrium,
kinetic and thermodynamic studies, Sci. Rep., 9 (2019) 19352,
doi: 10.1038/s41598-019-55794-4.
- V. Gómez-Serrano, M. Adame-Pereira, M. Alexandre-
Franco, C. Fernández-González, Adsorption of bisphenol
A by activated carbon developed from PET waste by KOH
activation, Environ. Sci. Pollut. Res., 28 (2021) 24342–24354.
- K. Kuśmierek, A. Świątkowski, T. Kotkowski, R. Cherbański,
E. Molga, Adsorption of bisphenol A from aqueous solutions
by activated tyre pyrolysis char – effect of physical and
chemical activation, Chem. Process. Eng., 41 (2020) 129–141.
- M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and
interpretation of adsorption isotherm models: a review,
J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
- A. Derylo-Marczewska, D. Sternik, A. Swiatkowski,
K. Kusmierek, W. Gac, B. Buczek, Adsorption of phenol from
aqueous and cyclohexane solutions on activated carbons with
differentiated surface chemistry, Thermochim. Acta, 715 (2022)
179299, doi: 10.1016/j.tca.2022.179299.
- X. Wang, Y. Hu, J. Min, S. Li, X. Deng, S. Yuan, X. Zuo, Adsorption
characteristics of phenolic compounds on graphene oxide and
reduced graphene oxide: a batch experiment combined theory
calculation, Appl. Sci., 8 (2018) 1950, doi: 10.3390/app8101950.
- I. Ipek, N. Kabay, M. Yüksel, Separation of bisphenol A and
phenol from water by polymer adsorbents: equilibrium and
kinetics studies, J. Water Process Eng., 16 (2017) 206–211.
- M.R. El-Aassar, I.H. Alsohaimi, A.S.M. Ali, A.A. Elzain,
Removal of phenol and bisphenol A by immobilized Laccase
on poly(acrylonitrile-co-styrene/pyrrole) nanofibers, Sep. Sci.
Technol., 55 (2020) 2670–2678.
- J. Fan, W. Yang, A. Li, Adsorption of phenol, bisphenol A and
nonylphenol ethoxylates onto hyper-crosslinked and aminated
adsorbents, React. Funct. Polym., 71 (2011) 994–1000.