References
- Y.C. Sharma, Thermodynamics of removal of cadmium by
adsorption on indigenous clay, Chem. Eng. J., 145 (2008) 64–68.
- S. Sribharathi, P. Anitha, R. Sudha, K. Poornima, G. Kavitha,
Cadmium(II) removal from aqueous solution using a novel
magnetic nanoparticle impregnated onto Citrus hystrix leaves,
Desal. Water Treat., 196 (2020) 388–401.
- L. Sun, P. Gong, Y. Sun, Q. Qin, K. Song, J. Ye, H. Zhang,
B. Zhou, Y. Xue, Modified chicken manure biochar enhanced
the adsorption for Cd2+ in aqueous and immobilization of Cd
in contaminated agricultural soil, Sci. Total Environ., 851 (2022)
158252, doi: 10.1016/j.scitotenv.2022.158252.
- WHO, World Health Organization Guidelines for Drinking
Water Quality, Recommendations, World Health Organisation,
Geneva, 2008.
- H. Gong, J. Chi, Z. Ding, F. Zhang, J. Huang, Removal of lead
from two polluted soils by magnetic wheat straw biochars,
Ecotoxicol. Environ. Saf., 205 (2020) 111132, doi: 10.1016/j.ecoenv.2020.111132.
- R. Sudha, P. Premkumar, Comparative studies on the removal
of chromium(VI) from aqueous solutions using raw and
modified Citrus limettioides peel, Indian J. Chem. Technol.,
25 (2018) 255–265.
- R. Dhahri, M. Yilmaz, L. Mechi, A.K.D. Alsukaibi, F. Alimi,
R. Salem, Y. Moussaoui, Optimization of the preparation
of activated carbon from prickly pear seed cake for the
removal of lead and cadmium ions from aqueous solution,
Sustainability, 14 (2022) 3245, doi: 10.3390/su14063245.
- I.K. Rind, N. Memon, M.Y. Khuhawar, W.A. Soomro,
M.F. Lanjwani, Modeling of cadmium(II) removal in a fixed
bed column utilizing hydrochar-derived activated carbon
obtained from discarded mango peels, Sci. Rep., 12 (2022) 8001,
doi: 10.1038/s41598-022-11574-1.
- A.F. Adeyemi, L.O. Olasunkanmi, Evaluation of the efficiency
of ZnCl2 activated cocoa pod husk charcoal on the removal of
Cu2+, Cd2+, and Pb2+ ions from aqueous solution, J. Dispersion
Sci. Technol., 44 (2021) 1900–1909.
- S. Wu, L. Liang, Q. Zhang, L. Xiong, S. Shi, Z. Chen, Z. Lu,
L. Fan, The ion-imprinted oyster shell material for targeted
removal of Cd(II) from aqueous solution, J. Environ. Manage.,
302 (2022) 114031, doi:^ 10.1016/j.jenvman.2021.114031.
- Buhani, Suharso, M. Rilyanti, M. Sari, Sumadi, Removal of
Cd(II) ions in solution by activated carbon from palm oil
shells modified with magnetite, Desal. Water Treat., 218 (2021)
352–362.
- Y. Yan, F. Qi, L. Zhang, P. Zhang, Q. Li, Enhanced Cd adsorption
by red mud modified bean-worm skin biochars in weakly
alkali environment, Sep. Purif. Technol., 297 (2022) 121533,
doi: 10.1016/j.seppur.2022.121533.
- Q. Su, S. Li, M. Chen, X. Cui, Highly efficient Cd(II) removal
using macromolecular dithiocarbamate/slag-based geopolymer
composite microspheres (SGM-MDTC), Sep. Purif. Technol.,
286 (2022) 120395, doi: 10.1016/j.seppur.2021.120395.
- W. Zhao, K. Feng, H. Zhang, L. Han, Q. He, F. Huang, W. Yu,
F. Guo, W. Wang, Sustainable green conversion of coal gangue
waste into cost-effective porous multimetallic silicate adsorbent
enables superefficient removal of Cd(II) and dye, Chemosphere,
324 (2023) 138287, doi: 10.1016/j.chemosphere.2023.138287.
- C. Hong, Z. Dong, J. Zhang, L. Zhu, L. Che, F. Mao, Y. Qiu,
Effectiveness and mechanism for the simultaneous adsorption
of Pb(II), Cd(II) and As(III) by animal-derived biochar/ferrihydrite composite, Chemosphere, 293 (2022) 133583,
doi: 10.1016/j.chemosphere.2022.133583.
- M. Hassan, R. Naidu, J. Du, F. Qi, M.A. Ahsan, Y. Liu, Magnetic
responsive mesoporous alginate/β-cyclodextrin polymer
beads enhance selectivity and adsorption of heavy metal ions,
Int. J. Biol. Macromol., 207 (2022) 826–840.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–470.
- I. Yousaf, U. Rahman, K. Mansoor, Solid phase extraction
of Pb(II) and Cd(II) using reduced graphene oxidepolychloroprene
impregnated with magnetic nanoparticle
(MNPs-RGO-PCP), Desal. Water Treat., 114 (2018) 232–241.
- M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir
isotherms, Acta Phys., URSS, 12 (1940) 217–225.
- M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic
curve of activated charcoal, Chem. Zent., 1 (1947) 875–889.
- S. Bhattacharjee, S. Chakrabarty, S. Maity, S. Kar, P. Thakur,
G. Bhattacharrya, Removal of lead from contaminated water
bodies using sea nodule as an adsorbent, Water Res., 55 (2003)
327–329.
- O. Celebi, C. Uzum, T. Shahwan, H.N. Erten, A radiotracer study
of the adsorption behaviour of aqueous Ba2+ ions on nanoparticles
of zero-valent iron, J. Hazard. Mater., 148 (2007) 761–767.
- P. Senthil Kumar, M. Palaniyappan, M. Priyadharshini,
A.M. Vignesh, A. Thanjiappan, S.A. Fernando,
R. Tanvir Ahmed,
R. Srinath, Adsorption of basic dye onto raw and surface –
modified agricultural waste’, Environ. Prog. Sustainable
Energy, 33 (2014) 87–98.
- S. Sun, J. Yang, Y. Li, K. Wang, X. Li, Optimizing adsorption
of Pb(II) by modified litchi pericarp using the response surface
methodology, Ecotoxicol. Environ. Saf., 108 (2014) 29–35.
- M. Avila, T. Burks, F. Akhtar, M. Göthelid, P.C. Lansåker,
M.S. Toprak, M. Muhammed, A. Uheida, Surface functionalized
nanofibers for the removal of chromium(VI) from aqueous
solutions, Chem. Eng. J., 245 (2014) 201–209.
- M. Khan, E. Yilmaz, B. Sevinc, E. Sahmetlioglu, J. Shah,
M.R. Jan, M. Soylak, Preparation and characterization of
magnetic allylamine modified graphene oxide-poly(vinyl
acetate-co-divinylbenzene) nanocomposite for vortex assisted
magnetic solid phase extraction of some metal ions, Talanta,
146 (2016) 130–137.
- N.T. Abdel-Ghani, G.A. El-Chaghaby, Biosorption for metal
ions removal from aqueous solutions: a review of recent studies,
Int. J. Latest Res. Sci. Technol., 3 (2014) 24–42.
- A.S. Thajeel, Modeling and optimization of adsorption of heavy
metal ions onto local activated carbon, Aquat. Sci. Technol.,
1 (2013) 108–134.
- G.Y. Li, Y.R. Jiang, K.L. Huang, P. Ding, J. Chen, Preparation and
properties of magnetic Fe3O4-chitosan nanoparticles, J. Alloys
Compd., 466 (2008) 451–456.
- R. Sharma, A. Sarswat, C.U. Pittman, D. Mohan, Cadmium and
lead remediation using magnetic and non-magnetic sustainable
biosorbents derived from Bauhinia purpurea pods, RSC Adv.,
7 (2017) 8606–8624.
- R.G. Poonam, S.K. Bharti, N. Kumar, Kinetic study of lead
(Pb2+) removal from battery manufacturing wastewater using
bagasse biochar as biosorbent, Appl. Water Sci., 8 (2018) 1–13.
- A.A. Guilherme, P.V.F. Dantas, E.S. Santos, F.A.N. Fernandes,
G.R. Macedo, Evaluation of composition, characterization
and enzymatic hydrolysis of pretreated sugar cane bagasse,
Braz. J. Chem. Eng., 32 (2015) 23–33.
- W. Kong, J. Ren, S. Wang, Q. Chen, Removal of heavy metals
from aqueous solutions using acrylic-modified sugarcane
bagasse-based adsorbents: equilibrium and kinetics studies,
BioResources, 9 (2014) 3184–3196.
- M. Kadari, M. Makhlouf, O. Ould Khaoua, M. Kesraoui,
S. Bouriche, Z. Benmaamar, The removal efficiency of cadmium
(Cd2+) and lead (Pb2+) from aqueous solution by graphene
oxide (GO) and magnetic graphene oxide (α-Fe2O3/GO),
Chem. Afr., 6 (2023) 1515–1528.
- R. Baby, M.Z. Hussein, Z. Zainal, A.H. Abdullah,
Functionalized activated carbon derived from palm kernel
shells for the treatment of simulated heavy metal-contaminated
water, Nanomaterials (Basel), 11 (2021) 3133, doi: 10.3390/nano11113133.
- J. Guo, Y. Song, X. Ji, L. Ji, L. Cai, Y. Wang, H. Zhang, W. Song,
Preparation and characterization of nanoporous activated
carbon derived from prawn shell and its application for
removal of heavy metal ions, Materials (Basel), 12 (2019) 241,
doi: 10.3390/ma12020241.
- L.T. Popoola, Nano-magnetic walnut shell-rice husk for Cd(II)
sorption: design and optimization using artificial intelligence
and design expert, Heliyon, 5 (2019) e02381, doi: 10.1016/j.heliyon.2019.e02381.
- W. Yin, C. Zhao, J. Xu, J. Zhang, Z. Guo, Y. Shao, Removal
of Cd(II) and Ni(II) from aqueous solutions using activated
carbon developed from powder-hydrolyzed-feathers and
Trapa natans husks, Colloids Surf., A, 560 (2019) 426–433.
- W. Srisuwan, C. Jubsilp, S. Srisorrachatr, The use of K2CO3
modified sunflower seed husks for removing of metal ions from
industrial wastewater, Chem. Eng. Trans., 70 (2018) 241–246.
- A.A. Adetokun, S. Uba, Z.N. Garba, Optimization of adsorption
of metal ions from a ternary aqueous solution with activated
carbon from Acacia senegal (L.) Willd pods using central
composite design, J King Saud Univ.-Sci., 31 (2019) 1452–1462.
- H. Patel, Batch and continuous fixed bed adsorption of
heavy metals removal using activated charcoal from neem
(Azadirachta indica) leaf powder, Sci. Rep., 10 (2020) 16895,
doi: 10.1038/s41598-020-72583-6.
- H. Gebretsadik, A. Gebrekidan, L. Demlie, L.N. Suvarapu,
Removal of heavy metals from aqueous solutions using
Eucalyptus camaldulensis: An alternate low cost adsorbent, Cogent
Chem., 6 (2020) 1720892, doi: 10.1080/23312009.2020.1720892.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–60.
- A.K. Bhattacharya, C.J. Venkobachar, Removal of cadmium(II)
by low cost adsorbents, J. Environ. Eng. Div.-ASCE, 110 (1984)
110–122.