References

  1. Y.C. Sharma, Thermodynamics of removal of cadmium by adsorption on indigenous clay, Chem. Eng. J., 145 (2008) 64–68.
  2. S. Sribharathi, P. Anitha, R. Sudha, K. Poornima, G. Kavitha, Cadmium(II) removal from aqueous solution using a novel magnetic nanoparticle impregnated onto Citrus hystrix leaves, Desal. Water Treat., 196 (2020) 388–401.
  3. L. Sun, P. Gong, Y. Sun, Q. Qin, K. Song, J. Ye, H. Zhang, B. Zhou, Y. Xue, Modified chicken manure biochar enhanced the adsorption for Cd2+ in aqueous and immobilization of Cd in contaminated agricultural soil, Sci. Total Environ., 851 (2022) 158252, doi: 10.1016/j.scitotenv.2022.158252.
  4. WHO, World Health Organization Guidelines for Drinking Water Quality, Recommendations, World Health Organisation, Geneva, 2008.
  5. H. Gong, J. Chi, Z. Ding, F. Zhang, J. Huang, Removal of lead from two polluted soils by magnetic wheat straw biochars, Ecotoxicol. Environ. Saf., 205 (2020) 111132, doi: 10.1016/j.ecoenv.2020.111132.
  6. R. Sudha, P. Premkumar, Comparative studies on the removal of chromium(VI) from aqueous solutions using raw and modified Citrus limettioides peel, Indian J. Chem. Technol., 25 (2018) 255–265.
  7. R. Dhahri, M. Yilmaz, L. Mechi, A.K.D. Alsukaibi, F. Alimi, R. Salem, Y. Moussaoui, Optimization of the preparation of activated carbon from prickly pear seed cake for the removal of lead and cadmium ions from aqueous solution, Sustainability, 14 (2022) 3245, doi: 10.3390/su14063245.
  8. I.K. Rind, N. Memon, M.Y. Khuhawar, W.A. Soomro, M.F. Lanjwani, Modeling of cadmium(II) removal in a fixed bed column utilizing hydrochar-derived activated carbon obtained from discarded mango peels, Sci. Rep., 12 (2022) 8001, doi: 10.1038/s41598-022-11574-1.
  9. A.F. Adeyemi, L.O. Olasunkanmi, Evaluation of the efficiency of ZnCl2 activated cocoa pod husk charcoal on the removal of Cu2+, Cd2+, and Pb2+ ions from aqueous solution, J. Dispersion Sci. Technol., 44 (2021) 1900–1909.
  10. S. Wu, L. Liang, Q. Zhang, L. Xiong, S. Shi, Z. Chen, Z. Lu, L. Fan, The ion-imprinted oyster shell material for targeted removal of Cd(II) from aqueous solution, J. Environ. Manage., 302 (2022) 114031, doi:^ 10.1016/j.jenvman.2021.114031.
  11. Buhani, Suharso, M. Rilyanti, M. Sari, Sumadi, Removal of Cd(II) ions in solution by activated carbon from palm oil shells modified with magnetite, Desal. Water Treat., 218 (2021) 352–362.
  12. Y. Yan, F. Qi, L. Zhang, P. Zhang, Q. Li, Enhanced Cd adsorption by red mud modified bean-worm skin biochars in weakly alkali environment, Sep. Purif. Technol., 297 (2022) 121533, doi: 10.1016/j.seppur.2022.121533.
  13. Q. Su, S. Li, M. Chen, X. Cui, Highly efficient Cd(II) removal using macromolecular dithiocarbamate/slag-based geopolymer composite microspheres (SGM-MDTC), Sep. Purif. Technol., 286 (2022) 120395, doi: 10.1016/j.seppur.2021.120395.
  14. W. Zhao, K. Feng, H. Zhang, L. Han, Q. He, F. Huang, W. Yu, F. Guo, W. Wang, Sustainable green conversion of coal gangue waste into cost-effective porous multimetallic silicate adsorbent enables superefficient removal of Cd(II) and dye, Chemosphere, 324 (2023) 138287, doi: 10.1016/j.chemosphere.2023.138287.
  15. C. Hong, Z. Dong, J. Zhang, L. Zhu, L. Che, F. Mao, Y. Qiu, Effectiveness and mechanism for the simultaneous adsorption of Pb(II), Cd(II) and As(III) by animal-derived biochar/ferrihydrite composite, Chemosphere, 293 (2022) 133583, doi: 10.1016/j.chemosphere.2022.133583.
  16. M. Hassan, R. Naidu, J. Du, F. Qi, M.A. Ahsan, Y. Liu, Magnetic responsive mesoporous alginate/β-cyclodextrin polymer beads enhance selectivity and adsorption of heavy metal ions, Int. J. Biol. Macromol., 207 (2022) 826–840.
  17. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  18. I. Yousaf, U. Rahman, K. Mansoor, Solid phase extraction of Pb(II) and Cd(II) using reduced graphene oxidepolychloroprene impregnated with magnetic nanoparticle (MNPs-RGO-PCP), Desal. Water Treat., 114 (2018) 232–241.
  19. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Phys., URSS, 12 (1940) 217–225.
  20. M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic curve of activated charcoal, Chem. Zent., 1 (1947) 875–889.
  21. S. Bhattacharjee, S. Chakrabarty, S. Maity, S. Kar, P. Thakur, G. Bhattacharrya, Removal of lead from contaminated water bodies using sea nodule as an adsorbent, Water Res., 55 (2003) 327–329.
  22. O. Celebi, C. Uzum, T. Shahwan, H.N. Erten, A radiotracer study of the adsorption behaviour of aqueous Ba2+ ions on nanoparticles of zero-valent iron, J. Hazard. Mater., 148 (2007) 761–767.
  23. P. Senthil Kumar, M. Palaniyappan, M. Priyadharshini, A.M. Vignesh, A. Thanjiappan, S.A. Fernando,
    R. Tanvir Ahmed, R. Srinath, Adsorption of basic dye onto raw and surface – modified agricultural waste’, Environ. Prog. Sustainable Energy, 33 (2014) 87–98.
  24. S. Sun, J. Yang, Y. Li, K. Wang, X. Li, Optimizing adsorption of Pb(II) by modified litchi pericarp using the response surface methodology, Ecotoxicol. Environ. Saf., 108 (2014) 29–35.
  25. M. Avila, T. Burks, F. Akhtar, M. Göthelid, P.C. Lansåker, M.S. Toprak, M. Muhammed, A. Uheida, Surface functionalized nanofibers for the removal of chromium(VI) from aqueous solutions, Chem. Eng. J., 245 (2014) 201–209.
  26. M. Khan, E. Yilmaz, B. Sevinc, E. Sahmetlioglu, J. Shah, M.R. Jan, M. Soylak, Preparation and characterization of magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) nanocomposite for vortex assisted magnetic solid phase extraction of some metal ions, Talanta, 146 (2016) 130–137.
  27. N.T. Abdel-Ghani, G.A. El-Chaghaby, Biosorption for metal ions removal from aqueous solutions: a review of recent studies, Int. J. Latest Res. Sci. Technol., 3 (2014) 24–42.
  28. A.S. Thajeel, Modeling and optimization of adsorption of heavy metal ions onto local activated carbon, Aquat. Sci. Technol., 1 (2013) 108–134.
  29. G.Y. Li, Y.R. Jiang, K.L. Huang, P. Ding, J. Chen, Preparation and properties of magnetic Fe3O4-chitosan nanoparticles, J. Alloys Compd., 466 (2008) 451–456.
  30. R. Sharma, A. Sarswat, C.U. Pittman, D. Mohan, Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods, RSC Adv., 7 (2017) 8606–8624.
  31. R.G. Poonam, S.K. Bharti, N. Kumar, Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent, Appl. Water Sci., 8 (2018) 1–13.
  32. A.A. Guilherme, P.V.F. Dantas, E.S. Santos, F.A.N. Fernandes, G.R. Macedo, Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse, Braz. J. Chem. Eng., 32 (2015) 23–33.
  33. W. Kong, J. Ren, S. Wang, Q. Chen, Removal of heavy metals from aqueous solutions using acrylic-modified sugarcane bagasse-based adsorbents: equilibrium and kinetics studies, BioResources, 9 (2014) 3184–3196.
  34. M. Kadari, M. Makhlouf, O. Ould Khaoua, M. Kesraoui, S. Bouriche, Z. Benmaamar, The removal efficiency of cadmium (Cd2+) and lead (Pb2+) from aqueous solution by graphene oxide (GO) and magnetic graphene oxide (α-Fe2O3/GO), Chem. Afr., 6 (2023) 1515–1528.
  35. R. Baby, M.Z. Hussein, Z. Zainal, A.H. Abdullah, Functionalized activated carbon derived from palm kernel shells for the treatment of simulated heavy metal-contaminated water, Nanomaterials (Basel), 11 (2021) 3133, doi: 10.3390/nano11113133.
  36. J. Guo, Y. Song, X. Ji, L. Ji, L. Cai, Y. Wang, H. Zhang, W. Song, Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions, Materials (Basel), 12 (2019) 241, doi: 10.3390/ma12020241.
  37. L.T. Popoola, Nano-magnetic walnut shell-rice husk for Cd(II) sorption: design and optimization using artificial intelligence and design expert, Heliyon, 5 (2019) e02381, doi: 10.1016/j.heliyon.2019.e02381.
  38. W. Yin, C. Zhao, J. Xu, J. Zhang, Z. Guo, Y. Shao, Removal of Cd(II) and Ni(II) from aqueous solutions using activated carbon developed from powder-hydrolyzed-feathers and Trapa natans husks, Colloids Surf., A, 560 (2019) 426–433.
  39. W. Srisuwan, C. Jubsilp, S. Srisorrachatr, The use of K2CO3 modified sunflower seed husks for removing of metal ions from industrial wastewater, Chem. Eng. Trans., 70 (2018) 241–246.
  40. A.A. Adetokun, S. Uba, Z.N. Garba, Optimization of adsorption of metal ions from a ternary aqueous solution with activated carbon from Acacia senegal (L.) Willd pods using central composite design, J King Saud Univ.-Sci., 31 (2019) 1452–1462.
  41. H. Patel, Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder, Sci. Rep., 10 (2020) 16895, doi: 10.1038/s41598-020-72583-6.
  42. H. Gebretsadik, A. Gebrekidan, L. Demlie, L.N. Suvarapu, Removal of heavy metals from aqueous solutions using Eucalyptus camaldulensis: An alternate low cost adsorbent, Cogent Chem., 6 (2020) 1720892, doi: 10.1080/23312009.2020.1720892.
  43. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–60.
  44. A.K. Bhattacharya, C.J. Venkobachar, Removal of cadmium(II) by low cost adsorbents, J. Environ. Eng. Div.-ASCE, 110 (1984) 110–122.