References

  1. S. Hamoudi, R. Saad, K. Belkacemi, Adsorptive removal of phosphate and nitrate anions from aqueous solutions using ammonium-functionalized mesoporous silica, Ind. Eng. Chem. Res., 46 (2007) 8806–8812.
  2. T.K.M. Prashantha Kumar, T.R. Mandlimath, P. Sangeetha, S.K. Revathi, A.S.K. Kumar, Nanoscale materials as sorbents for nitrate and phosphate removal from water, Environ. Chem. Lett., 16 (2018) 389–400.
  3. P. Karthikeyan, H.A.T. Banu, S. Meenakshi, Removal of phosphate and nitrate ions from aqueous solution using La3+ incorporated chitosan biopolymeric matrix membrane, Int. J. Biol. Macromol., 124 (2019) 492–504.
  4. A.S. Eltaweil, A.M. Omer, H.G. El-Aqapa, N.M. Gaber, N.F. Attia, G.M. El-Subruiti, E.M. Abd El-Monaem, Chitosan based adsorbents for the removal of phosphate and nitrate: a critical review, Carbohydr. Polym., 274 (2021) 118671, doi: 10.1016/j.carbpol.2021.118671.
  5. B. Wu, J. Wan, Y. Zhang, B. Pan, I.M. Lo, Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms, Environ. Sci. Technol., 54 (2019) 50–66.
  6. C.V. Lazaratou, D.V. Vayenas, D. Papoulis, The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: a review, Appl. Clay Sci., 185 (2020) 105377, doi: 10.1016/j.clay.2019.105377.
  7. K. Velusamy, S. Periyasamy, P.S. Kumar, D.V.N. Vo, J. Sindhu, D. Sneka, B. Subhashini, Advanced techniques to remove phosphates and nitrates from waters: a review, Environ. Chem. Lett.,19 (2021) 3165–3180.
  8. M. Zhang, G. Song, D.L. Gelardi, L. Huang, E. Khan, O. Mašek, Y.S. Ok, Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water, Water Res., 186 (2020) 116303, doi: 10.1016/j.watres.2020.116303.
  9. K.M.S. Khalil, M. Khairy, O.A.S. Allam, M.K. Khalil, Formation of improved activated carbons from sugarcane bagasse as environmental materials for adsorption of phenolic pollutants, Int. J. Environ. Sci. Technol., 19 (2022) 3103–3116.
  10. H. Tian, J. Liang, J. Liu, Nanoengineering carbon spheres as nanoreactors for sustainable energy applications, Adv. Mater., 31 (2019) 1903886, doi: Nanoengineering carbon spheres as nanoreactors for sustainable energy applications.
  11. Z.C. Wang, X. Cai, K. Li, Y.Y. Ye, Z.X. Zhang, Y.Q. Liu, D. Wang, S.R. Li, LiBr hydrate as reaction medium for preparation of carbon spheres from wood powders via hydrothermal carbonization, Diamond Relat. Mater., 113 (2021) 108295, doi: 10.1016/j.diamond.2021.108295.
  12. G. Prasannamedha, P.S. Kumar, Hydrothermal carbonization of waste sugarcane bagasse for the effective removal of emerging contaminants from aqueous solution, Adsorpt. Sci. Technol., 2022 (2022) 1–13.
  13. B. Hu, K. Wang, L. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, Engineering carbon materials from the hydrothermal carbonization process of biomass, Adv. Mater., 22 (2010) 813–828.
  14. L. Wang, Y. Chang, A. Li, Hydrothermal carbonization for energy-efficient processing of sewage sludge:
    a review, Renewable Sustainable Energy Rev., 108 (2019) 423–440.
  15. N.D. Berge, K.S. Ro, J. Mao, J.R. Flora, M.A. Chappell, S. Bae, Hydrothermal carbonization of municipal waste streams, Environ. Sci. Technol., 45 (2011) 5696–5703.
  16. Y. Shen, A review on hydrothermal carbonization of biomass and plastic wastes to energy products, Biomass Bioenergy, 134 (2020) 105479, doi: 10.1016/j.biombioe.2020.105479.
  17. M. Sevilla, A.B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon, 47 (2009) 2281–2289.
  18. A. Funke, F. Ziegler, Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering, Biofuel Bioprod. Biorefin., 4 (2010) 160–177.
  19. D. Congsomjit, C. Areeprasert, Hydrochar-derived activated carbon from sugar cane bagasse employing hydrothermal carbonization and steam activation for syrup decolorization, Biomass Convers. Biorefin., 11 (2021) 2569–2584.
  20. M.M. Titirici, M. Antonietti, Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization, Chem. Soc. Rev., 39 (2010) 103–116.
  21. G. Prasannamedha, P.S. Kumar, R. Mehala, T.J. Sharumitha, D. Surendhar, Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse, J. Hazard. Mater., 407 (2021) 124825, doi: 10.1016/j.jhazmat.2020.124825.
  22. W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–59.
  23. S. Basu, G. Ghosh, S. Saha, Adsorption characteristics of phosphoric acid induced activation of bio-carbon: equilibrium, kinetics, thermodynamics and batch adsorber design, Process Saf. Environ. Prot., 117 (2018) 125–142.
  24. Y.W. Berkessa, S.T. Mereta, F.F. Feyisa, Simultaneous removal of nitrate and phosphate from wastewater using solid waste from factory, Appl. Water Sci., 9 (2019) 1–10.
  25. B.S. Rathi, P.S. Kumar, R. Ponprasath, K. Rohan, N. Jahnavi, An effective separation of toxic arsenic from aquatic environment using electrochemical ion exchange process, J. Hazard. Mater., 412 (2021) 125240, doi: 10.1016/j.jhazmat.2021.125240.
  26. P.S. Kumar, S. Ramalingam, S.D. Kirupha, A. Murugesan, T. Vidhyadevi, S. Sivanesan, Adsorption behavior of nickel(II) onto cashew nutshell: equilibrium, thermodynamics, kinetics, mechanism and process design, Chem. Eng. J., 167 (2011) 122–131.
  27. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  28. H. Freundlich, Adsorption in solution, Phys. Chem. Soc., 40 (1906) 1361–1368.
  29. R.D. Johnson, F.H. Arnold, The Temkin isotherm describes heterogeneous protein adsorption, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1247 (1995) 293–297.
  30. S.K. Lagergren, About the theory of so-called adsorption of soluble substances, Sven. Vetenskapsakad. Handingarl, 24 (1898) 1–39.
  31. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  32. S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44 (1980) 265–268.
  33. O. Alagha, M.S. Manzar, M. Zubair, I. Anil, N.D. Mu’azu, A. Qureshi, Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: coexisting anions effect and mechanistic studies, Nanomaterials, 10 (2020) 336, doi: 10.3390/nano10020336.
  34. P. Karthikeyan, S. Meenakshi, Synthesis and characterization of Zn-Al LDHs/activated carbon composite and its adsorption properties for phosphate and nitrate ions in aqueous medium, J. Mol. Liq., 296 (2019) 111766, doi: 10.1016/j.molliq.2019.111766.
  35. A. Olgun, N. Atar, S. Wang, Batch and column studies of phosphate and nitrate adsorption on waste solids containing boron impurity, Chem. Eng. J., 222 (2013) 108–119.
  36. Y. Shao, J. Li, X. Fang, Z. Yang, Y. Qu, M. Yang, W. Tan, G. Li, H. Wang, Chemical modification of bamboo activated carbon surface and its adsorption property of simultaneous removal of phosphate and nitrate, Chemosphere, 287 (2022) 132118, doi: 10.1016/j.chemosphere.2021.132118.