References
- S. Hamoudi, R. Saad, K. Belkacemi, Adsorptive removal of
phosphate and nitrate anions from aqueous solutions using
ammonium-functionalized mesoporous silica, Ind. Eng. Chem.
Res., 46 (2007) 8806–8812.
- T.K.M. Prashantha Kumar, T.R. Mandlimath, P. Sangeetha,
S.K. Revathi, A.S.K. Kumar, Nanoscale materials as sorbents
for nitrate and phosphate removal from water, Environ. Chem.
Lett., 16 (2018) 389–400.
- P. Karthikeyan, H.A.T. Banu, S. Meenakshi, Removal of
phosphate and nitrate ions from aqueous solution using
La3+ incorporated chitosan biopolymeric matrix membrane,
Int. J. Biol. Macromol., 124 (2019) 492–504.
- A.S. Eltaweil, A.M. Omer, H.G. El-Aqapa, N.M. Gaber,
N.F. Attia, G.M. El-Subruiti, E.M. Abd El-Monaem, Chitosan
based adsorbents for the removal of phosphate and nitrate:
a critical review, Carbohydr. Polym., 274 (2021) 118671,
doi: 10.1016/j.carbpol.2021.118671.
- B. Wu, J. Wan, Y. Zhang, B. Pan, I.M. Lo, Selective phosphate
removal from water and wastewater using sorption: process
fundamentals and removal mechanisms, Environ. Sci. Technol.,
54 (2019) 50–66.
- C.V. Lazaratou, D.V. Vayenas, D. Papoulis, The role of clays,
clay minerals and clay-based materials for nitrate removal from
water systems: a review, Appl. Clay Sci., 185 (2020) 105377,
doi: 10.1016/j.clay.2019.105377.
- K. Velusamy, S. Periyasamy, P.S. Kumar, D.V.N. Vo, J. Sindhu,
D. Sneka, B. Subhashini, Advanced techniques to remove
phosphates and nitrates from waters: a review, Environ. Chem.
Lett.,19 (2021) 3165–3180.
- M. Zhang, G. Song, D.L. Gelardi, L. Huang, E. Khan,
O. Mašek, Y.S. Ok, Evaluating biochar and its modifications
for the removal of ammonium, nitrate, and phosphate in water,
Water Res., 186 (2020) 116303, doi: 10.1016/j.watres.2020.116303.
- K.M.S. Khalil, M. Khairy, O.A.S. Allam, M.K. Khalil, Formation
of improved activated carbons from sugarcane bagasse as
environmental materials for adsorption of phenolic pollutants,
Int. J. Environ. Sci. Technol., 19 (2022) 3103–3116.
- H. Tian, J. Liang, J. Liu, Nanoengineering carbon spheres as
nanoreactors for sustainable energy applications, Adv. Mater.,
31 (2019) 1903886, doi: Nanoengineering carbon spheres as
nanoreactors for sustainable energy applications.
- Z.C. Wang, X. Cai, K. Li, Y.Y. Ye, Z.X. Zhang, Y.Q. Liu, D. Wang,
S.R. Li, LiBr hydrate as reaction medium for preparation
of carbon spheres from wood powders via hydrothermal
carbonization, Diamond Relat. Mater., 113 (2021) 108295,
doi: 10.1016/j.diamond.2021.108295.
- G. Prasannamedha, P.S. Kumar, Hydrothermal carbonization
of waste sugarcane bagasse for the effective removal of
emerging contaminants from aqueous solution, Adsorpt. Sci.
Technol., 2022 (2022) 1–13.
- B. Hu, K. Wang, L. Wu, S.H. Yu, M. Antonietti, M.M. Titirici,
Engineering carbon materials from the hydrothermal
carbonization process of biomass, Adv. Mater., 22 (2010)
813–828.
- L. Wang, Y. Chang, A. Li, Hydrothermal carbonization for
energy-efficient processing of sewage sludge:
a review,
Renewable Sustainable Energy Rev., 108 (2019) 423–440.
- N.D. Berge, K.S. Ro, J. Mao, J.R. Flora, M.A. Chappell, S. Bae,
Hydrothermal carbonization of municipal waste streams,
Environ. Sci. Technol., 45 (2011) 5696–5703.
- Y. Shen, A review on hydrothermal carbonization of biomass
and plastic wastes to energy products, Biomass Bioenergy,
134 (2020) 105479, doi: 10.1016/j.biombioe.2020.105479.
- M. Sevilla, A.B. Fuertes, The production of carbon materials
by hydrothermal carbonization of cellulose, Carbon, 47 (2009)
2281–2289.
- A. Funke, F. Ziegler, Hydrothermal carbonization of biomass: a
summary and discussion of chemical mechanisms for process
engineering, Biofuel Bioprod. Biorefin., 4 (2010) 160–177.
- D. Congsomjit, C. Areeprasert, Hydrochar-derived activated
carbon from sugar cane bagasse employing hydrothermal
carbonization and steam activation for syrup decolorization,
Biomass Convers. Biorefin., 11 (2021) 2569–2584.
- M.M. Titirici, M. Antonietti, Chemistry and materials options
of sustainable carbon materials made by hydrothermal
carbonization, Chem. Soc. Rev., 39 (2010) 103–116.
- G. Prasannamedha, P.S. Kumar, R. Mehala, T.J. Sharumitha,
D. Surendhar, Enhanced adsorptive removal of sulfamethoxazole
from water using biochar derived from hydrothermal
carbonization of sugarcane bagasse, J. Hazard. Mater.,
407 (2021) 124825, doi: 10.1016/j.jhazmat.2020.124825.
- W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on
carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–59.
- S. Basu, G. Ghosh, S. Saha, Adsorption characteristics of
phosphoric acid induced activation of bio-carbon: equilibrium,
kinetics, thermodynamics and batch adsorber design,
Process Saf. Environ. Prot., 117 (2018) 125–142.
- Y.W. Berkessa, S.T. Mereta, F.F. Feyisa, Simultaneous removal
of nitrate and phosphate from wastewater using solid waste
from factory, Appl. Water Sci., 9 (2019) 1–10.
- B.S. Rathi, P.S. Kumar, R. Ponprasath, K. Rohan, N. Jahnavi,
An effective separation of toxic arsenic from aquatic environment
using electrochemical ion exchange process, J. Hazard.
Mater., 412 (2021) 125240, doi: 10.1016/j.jhazmat.2021.125240.
- P.S. Kumar, S. Ramalingam, S.D. Kirupha, A. Murugesan,
T. Vidhyadevi, S. Sivanesan, Adsorption behavior of nickel(II)
onto cashew nutshell: equilibrium, thermodynamics, kinetics,
mechanism and process design, Chem. Eng. J., 167 (2011)
122–131.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H. Freundlich, Adsorption in solution, Phys. Chem. Soc.,
40 (1906) 1361–1368.
- R.D. Johnson, F.H. Arnold, The Temkin isotherm describes
heterogeneous protein adsorption, Biochim. Biophys. Acta,
Protein Struct. Mol. Enzymol., 1247 (1995) 293–297.
- S.K. Lagergren, About the theory of so-called adsorption
of soluble substances, Sven. Vetenskapsakad. Handingarl,
24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- S.H. Chien, W.R. Clayton, Application of Elovich equation
to the kinetics of phosphate release and sorption in soils,
Soil Sci. Soc. Am. J., 44 (1980) 265–268.
- O. Alagha, M.S. Manzar, M. Zubair, I. Anil, N.D. Mu’azu,
A. Qureshi, Comparative adsorptive removal of phosphate
and nitrate from wastewater using biochar-MgAl LDH
nanocomposites: coexisting anions effect and mechanistic
studies, Nanomaterials, 10 (2020) 336, doi: 10.3390/nano10020336.
- P. Karthikeyan, S. Meenakshi, Synthesis and characterization
of Zn-Al LDHs/activated carbon composite and its adsorption
properties for phosphate and nitrate ions in aqueous
medium, J. Mol. Liq., 296 (2019) 111766, doi: 10.1016/j.molliq.2019.111766.
- A. Olgun, N. Atar, S. Wang, Batch and column studies of
phosphate and nitrate adsorption on waste solids containing
boron impurity, Chem. Eng. J., 222 (2013) 108–119.
- Y. Shao, J. Li, X. Fang, Z. Yang, Y. Qu, M. Yang, W. Tan, G. Li,
H. Wang, Chemical modification of bamboo activated carbon
surface and its adsorption property of simultaneous removal
of phosphate and nitrate, Chemosphere, 287 (2022) 132118,
doi: 10.1016/j.chemosphere.2021.132118.