References
- P.G. Peera Sheikh Kulsum, R. Khanam, S. Das, A.K. Nayak,
F.M.G. Tack, E. Meers, M. Vithanage, M. Shahid, A. Kumar,
S. Chakraborty, T. Bhattacharya, J.K. Biswas, A state-of-the-art
review on cadmium uptake, toxicity, and tolerance in rice: from
physiological response to remediation process, Environ. Res.,
220 (2023) 115098, doi: 10.1016/j.envres.2022.115098.
- Y.X. Hu, H.J. Wu, C.Y. Lu, H.Q. Xu, B.Y. Li, W.C. Guan, M.J. Wu,
Y.T. Gao, H.B. Tong, Cadmium chloride exposure impairs the
growth and behavior of Drosophila via ferroptosis, Sci. Total
Environ., 865 (2023) 161183, doi: 10.1016/j.scitotenv.2022.161183.
- L.R. Sun, Y. Mu, L. Xu, X.B. Han, W. Gu, M. Zhang,
Transgenerational inheritance of wing development
defects in Drosophila melanogaster induced by cadmium,
Ecotoxicol. Environ. Saf., 250 (2023) 114486, doi: 10.1016/j.ecoenv.2022.114486.
- T. Filippini, L.A. Wise, M. Vinceti, Cadmium exposure and
risk of diabetes and prediabetes: a systematic review and
dose-response meta-analysis, Environ. Int., 158 (2022) 106920,
doi: 10.1016/j.envint.2021.106920.
- S. Saedi, S.E. Watson, J.L. Young, Y. Tan, K.A. Wintergerst,
L. Cai, Does maternal low-dose cadmium exposure increase
the risk of offspring to develop metabolic syndrome and/or type 2 diabetes?, Life Sci., 315 (2023) 121385, doi: 10.1016/j.lfs.2023.121385.
- V. Souza-Arroyo, J.J. Fabián, L. Bucio-Ortiz, R.U. Miranda-Labra,
L.E. Gomez-Quiroz, M.C. Gutiérrez-Ruiz, The mechanism of
the cadmium-induced toxicity and cellular response in the liver,
Toxicology, 480 (2022) 153339, doi: 10.1016/j.tox.2022.153339.
- Z. Khan, A. Elahi, D.A. Bukhari, A. Rehman, Cadmium
sources, toxicity, resistance and removal by microorganisms - a
potential strategy for cadmium eradication, J. Saudi Chem. Soc.,
26 (2022) 101569, doi: 10.1016/j.jscs.2022.101569.
- V.A. Florez-Garcia, E.C. Guevara-Romero, M.M. Hawkins,
L.E. Bautista, T.E. Jenson, J. Yu, A.E. Kalkbrenner, Cadmium
exposure and risk of breast cancer: a meta-analysis, Environ.
Res., 219 (2023) 115109, doi: 10.1016/j.envres.2022.115109.
- S. Illuminati, A. Annibaldi, C. Truzzi, M.-L. Tercier-Waeber,
S. Nöel, C.B. Braungardt, E.P. Achterberg, K.A. Howell,
D. Turner, M. Marini, T. Romagnoli, C. Totti, F. Confalonieri,
F. Graziottin, J. Buffle, G. Scarponi,
In-situ trace metal (Cd, Pb,
Cu) speciation along the Po River plume (Northern Adriatic
Sea) using submersible systems, Mar. Chem., 212 (2019) 47–63.
- J. Liu, Y. Xu, Y. Cheng, Y. Zhao, Y. Pan, G. Fu, Y. Dai, Occurrence
and risk assessment of heavy metals in sediments of the
Xiangjiang River, China, Environ. Sci. Pollut. Res. Int., 24 (2017)
2711–2723.
- L. Singh Thakur, R. Baghel, A. Sharma, S. Sharma, S. verma,
H. Parmar, A. Kumar Varma, P. Mondal, Simultaneous removal
of lead, chromium and cadmium from synthetic water by
electrocoagulation: Optimization through response surface
methodology, Mater. Today Proc., 72 (2023) 2697–2704.
- M.P. Sheng, D.H. Peng, S.H. Luo, T. Ni, H.Y. Luo, R.F. Zhang,
Y. Wen, H. Xu, Micro-dynamic process of cadmium removal
by microbial induced carbonate precipitation, Environ. Pollut.,
308 (2022) 119585, doi: 10.1016/j.envpol.2022.119585.
- L.A. Feng, B.Y. Liang, X.L. Zeng, C. Shi, H.D. Yin, Y.M. Feng,
Y.Q. Chen, Q.L. Yu, Engineered bacterium-binding protein
promotes root recruitment of functional bacteria for enhanced
cadmium removal from wastewater by phytoremediation,
Water Res., 221 (2022) 118746, doi: 10.1016/j.watres.2022.118746.
- S.S. Lv, S.J. Du, X.G. Chen, Y.Y. Liu, G.J. Wang, Z.C. Li, First
principles study on the cadmium adsorption behaviour of
MoS2 with structural defects and doping, Solid State Commun.,
342 (2022) 114611, doi: 10.1016/j.ssc.2021.114611.
- Z.-l. Zeng, C. Yu, R.-p. Liao, X.Q. Cai, Z.-h. Chen,
Z.K. Yu, Z.-x. Wu, Preparation and characterization of sodium
polyacrylate grafted montmorillonite nanocomposite for the
adsorption of cadmium ions form aqueous solution, Colloids
Surf., A, 656 (2023) 130389, doi: 10.1016/j.colsurfa.2022.130389.
- Y.J. Xu, H.Y. Xia, Q. Zhang, G.Y. Jiang, W.C. Cai, W.H. Hu,
Adsorption of cadmium(II) in wastewater by magnesium
oxide modified biochar, Arabian J. Chem., 15 (2022) 104059,
doi: 10.1016/j.arabjc.2022.104059.
- Z.Y. Gao, D.X. Shan, J.H. He, T. Huang, Y. Mao, H.P. Tan,
H.T. Shi, T.Z. Li, T.P. Xie, Effects and mechanism on cadmium
adsorption removal by CaCl2-modified biochar from seleniumrich
straw, Bioresour. Technol., 370 (2023) 128563, doi: 10.1016/j.biortech.2022.128563.
- K. Zhang, Y.Q. Yi, Z.Q. Fang, Remediation of cadmium or
arsenic contaminated water and soil by modified biochar:
a review, Chemosphere, 311 (2023) 136914, doi: 10.1016/j.chemosphere.2022.136914.
- T.Q. Liu, Y. Lawluvy, Y. Shi, J.O. Ighalo, Y.D. He, Y.J. Zhang,
P.-S. Yap, Adsorption of cadmium and lead from aqueous
solution using modified biochar: a review, J. Environ. Chem.
Eng., 10 (2022) 106502, doi: 10.1016/j.jece.2021.106502.
- J. Wang, Y. Wang, J. Wang, G. Du, K.Y. Khan, Y. Song,
X. Cui, Z. Cheng, B. Yan, G. Chen, Comparison of cadmium
adsorption by hydrochar and pyrochar derived from Napier
grass, Chemosphere, 308 (2022) 136389, doi: 10.1016/j.chemosphere.2022.136389.
- Q.S. Yuan, P.F. Wang, X. Wang, B. Hu, C. Wang, X.L. Xing, Nanochlorapatite
modification enhancing cadmium(II) adsorption
capacity of crop residue biochars, Sci. Total Environ., 865 (2023)
161097, doi: 10.1016/j.scitotenv.2022.161097.
- M. Mansoorianfar, H. Nabipour, F. Pahlevani, Y.W. Zhao,
Z. Hussain, A. Hojjati-Najafabadi, H.Y. Hoang, R.J. Pei, Recent
progress on adsorption of cadmium ions from water systems
using metal-organic frameworks (MOFs) as an efficient
class of porous materials, Environ. Res., 214 (2022) 114113,
doi: 10.1016/j.envres.2022.114113.
- J.P. Li, M.X. Chen, X.Q. Yang, L. Zhang, Preparation of a novel
hydrogel of sodium alginate using rural waste bone meal for
efficient adsorption of heavy metals cadmium ion, Sci. Total
Environ., 863 (2023) 160969, doi: 10.1016/j.scitotenv.2022.160969.
- N.Y. Owija, S.A. Kosa, M. Abdel Salam, Removal of cadmium
ions from aqueous solution by zero valent iron nanoparticles:
equilibrium and thermodynamic studies, J. Mol. Liq., 342 (2021)
117462, doi: 10.1016/j.molliq.2021.117462.
- D. Yang, J.W. Zhang, S.Y. Yang, Y. Wang, X.J. Tang, J.M. Xu,
X.M. Liu, Biochar-supported nanoscale zero-valent iron can
simultaneously decrease cadmium and arsenic uptake by rice
grains in co-contaminated soil, Sci. Total Environ., 814 (2022)
152798, doi: 10.1016/j.scitotenv.2021.152798.
- I.-G. Song, Y.-G. Kang, J.-H. Kim, H. Yoon, W.Y. Um, Y.-S. Chang,
Assessment of sulfidated nanoscale zerovalent iron for in-situ
remediation of cadmium-contaminated acidic groundwater at a
zinc smelter, J. Hazard. Mater., 441 (2023) 129915, doi: 10.1016/j.jhazmat.2022.129915.
- R.Q. Gao, P.W. Hu, Y.N. Dai, Y. Zhang, L. Liu, W.Z. Yang,
Removal of cadmium(II) from aqueous solutions by a novel
sulfide-modified nanoscale zero-valent iron supported on
kaolinite: treatment efficiency, kinetics and mechanisms, Appl.
Surf. Sci., 602 (2022) 154353, doi: 10.1016/j.apsusc.2022.154353.
- M.J. Amiri, M. Khozaei, A. Gil. Modification of the Thomas
model for predicting unsymmetrical breakthrough curves
using an adaptive neural-based fuzzy inference system, J. Water
Health, 17 (2019) 25–36.
- M.J. Amiri, R. Roohi, A. Gil. Numerical simulation of Cd(II)
removal by ostrich bone ash supported nanoscale zero-valent
iron in a fixed-bed column system: utilization of unsteady
advection-dispersion-adsorption equation, J. Water Process
Eng., 25 (2018) 1–14.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii,
Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved
synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
- V. Ramya, D. Murugan, C. Lajapathirai, S. Meenatchisundaram,
S. Arumugam, A composite adsorbent of superparamagnetic
nanoparticles with sludge biomass derived activated carbon
for the removal of chromium(VI), J. Cleaner Prod., 366 (2022)
132853, doi: 10.1016/j.jclepro.2022.132853.
- S. Tasharrofi, Z. Rouzitalab, D.M. Maklavany, A. Esmaeili,
M. Rabieezadeh, M. Askarieh, A. Rashidi, H. Taghdisian,
Adsorption of cadmium using modified zeolite-supported
nanoscale zero-valent iron composites as a reactive material
for PRBs, Sci. Total Environ., 736 (2020) 139570, doi: 10.1016/j.scitotenv.2020.139570.
- S. Bagheri, A. Esrafili, M. Kermani, J. Mehralipour, M. Gholami,
Performance evaluation of a novel
rGO-Fe0/Fe3O4-PEI
nanocomposite for lead and cadmium removal from aqueous
solutions, J. Mol. Liq., 320 (2020) 114422, doi: 10.1016/j.molliq.2020.114422.
- J. Fan, Y.H. Guo, J.J. Wang, M.H. Fan, Rapid decolorization
of azo dye methyl orange in aqueous solution by nanoscale
zerovalent iron particles, J. Hazard. Mater., 166 (2009) 904–910.
- Y.M. Zong, X.X. Wang, H. Zhang, Y. Li, J. Yu, C. Wang, Z.T. Cai,
J.C. Wei, L. Ding, Preparation of a ternary composite based on
water caltrop shell derived biochar and gelatin/alginate for
cadmium removal from contaminated water: performances
assessment and mechanism insight, Int. J. Biol. Macromol.,
234 (2023) 123637, doi: 10.1016/j.ijbiomac.2023.123637.
- A. Ameen Hezam Saeed, N. Yub Harun, M. Mahmoud Nasef,
A. Al-Fakih, A. Abdulhakim Saeed Ghaleb, H. Kolawole Afolabi,
Removal of cadmium from aqueous solution by optimized
rice husk biochar using response surface methodology, Ain
Shams Eng. J., 13 (2022) 101516, doi: 10.1016/j.asej.2021.06.002.
- X.Y. Lin, L. Gan, G. Owens, Z.L. Chen, Removal of cadmium
from wastewater using biofunctional reduced graphene oxide
synthesized by Lysinibacillus sphaericus, J. Cleaner Prod.,
383 (2023) 135369, doi: 10.1016/j.jclepro.2022.135369.
- H. Chen, H.N. Wu, N.S.A. Khan, X.M. Peng, F.X. Qiu, T. Zhang,
Converting wastes to resource: preparation of NiO@γ-Al2O3
sludge composite from aluminum-containing sludge for
cadmium removal from wastewater, J. Cleaner Prod., 392 (2023)
136335, doi: 10.1016/j.jclepro.2023.136335.
- Y.L. Jiang, M.R. Abukhadra, N.M. Refay, M.F. Sharaf,
M.A. El-Meligy, E.M. Awwad, Synthesis of chitosan/MCM-48
and β-cyclodextrin/MCM-48 composites as bio-adsorbents for
environmental removal of Cd2+ ions: kinetic and equilibrium
studies, React. Funct. Polym., 154 (2020) 104675, doi: 10.1016/j.reactfunctpolym.2020.104675.
- Z.C. Lan, Y. Lin, C.P. Yang, Lanthanum-iron incorporated
chitosan beads for adsorption of phosphate and cadmium
from aqueous solutions, Chem. Eng. J., 448 (2022) 137519,
doi: 10.1016/j.cej.2022.137519.
- M.E. Mahmoud, M.S. Abdelwahab, G.A.A. Ibrahim, The design
of SnO2-crosslinked-chitosan nanocomposite for microwaveassisted
adsorption of aqueous cadmium and mercury ions,
Sustainable Chem. Pharm., 28 (2022) 100731, doi: 10.1016/j.scp.2022.100731.
- P.B. Vilela, C.A. Matias, A. Dalalibera, V.A. Becegato,
A.T. Paulino, Polyacrylic acid-based and chitosan-based
hydrogels for adsorption of cadmium: equilibrium isotherm,
kinetic and thermodynamic studies, J. Environ. Chem. Eng.,
7 (2019) 103327, doi: 10.1016/j.jece.2019.103327.
- S. Gul, Z. Ahmad, M. Asma, M. Ahmad, K. Rehan, M. Munir,
A.A. Bazmi, H.M. Ali, Y. Mazroua, M.A. Salem, M.S. Akhtar,
M.S. Khan, L.F. Chuah, S. Asif, Effective adsorption of cadmium
and lead using SO3H-functionalized Zr-MOFs in aqueous
medium, Chemosphere, 307 (2022) 135633, doi: 10.1016/j.chemosphere.2022.135633.