References
- I. Tarasenko, A. Kholodov, A. Zin’kov, I. Chekryzhov, Chemical
composition of groundwater in abandoned coal mines:
evidence of hydrogeochemical evolution, Appl. Geochem.,
137 (2022) 105210, doi: 10.1016/j.apgeochem.2022.105210.
- Z. Yang, W. Li, X. Li, J. He, Quantitative analysis of the
relationship between vegetation and groundwater buried
depth: a case study of a coal mine district in Western China,
Ecol. Indic., 102 (2019) 770–782.
- Z. Yan, G. Liu, R. Sun, Q. Tang, D. Wu, B. Wu, C. Zhou,
Geochemistry of rare earth elements in groundwater from
the Taiyuan Formation limestone aquifer in the Wolonghu
Coal Mine, Anhui province, China, J. Geochem. Explor.,
135 (2013) 54–62.
- T. Rinder, M. Dietzel, J.A. Stammeier, A. Leis, D. Bedoya-
González, S. Hilberg, Geochemistry of coal mine drainage,
groundwater, and brines from the Ibbenbüren mine, Germany:
a coupled elemental-isotopic approach, Appl. Geochem.,
121 (2020) 104693, doi: 10.1016/j.apgeochem.2020.104693.
- M. Gomo, D. Vermeulen, Hydrogeochemical characteristics
of a flooded underground coal mine groundwater system,
J. Afr. Earth Sci., 92 (2014) 68–75.
- L. Li, W. Li, Q. Wang, Prediction and zoning of the impact
of underground coal mining on groundwater resources,
Process Saf. Environ. Prot., 168 (2022) 454–462.
- C. Jiang, L. Cheng, C. Li, L. Zheng, A hydrochemical and multiisotopic
study of groundwater sulfate origin and contribution
in the coal mining area, Ecotoxicol. Environ. Saf., 248 (2022)
114286, doi: 10.1016/j.ecoenv.2022.114286.
- M. Zhu, B. Li, G. Liu, Groundwater risk assessment of
abandoned mines based on pressure-state-response—
the example of an abandoned mine in southwest China,
Energy Rep., 8 (2022) 10728–10740.
- D. Guo, H. Li, J. Wang, Z. Xu, Facile synthesis of NH2-UiO-66 modified low-cost loofah sponge for the adsorption
of fluoride from water, J. Alloys Compd., 929 (2022) 167270,
doi: 10.1016/j.jallcom.2022.167270.
- K. Li, Z. Hu, R. Zhao, J. Zhou, C. Jing, Q. Sun, J. Rao, K. Yao,
B. Dong, X. Liu, H. Li, Y. Zang, J. Ji, A multidimensional
rational design of nickel–iron sulfide and carbon nanotubes
on diatomite via synergistic modulation strategy for supercapacitors,
J. Colloid Interface Sci., 603 (2021) 799–809.
- X. Chen, J. Lin, H. Wang, Y. Yang, C. Wang, Q. Sun, X. Shen,
Y. Li, Epoxy-functionalized polyethyleneimine modified
epichlorohydrin-cross-linked cellulose aerogel as adsorbents
for carbon dioxide capture, Carbohydr. Polym., 302 (2023)
120389, doi: 10.1016/j.carbpol.2022.120389.
- B. Gao, P. Jiang, F. An, S. Zhao, Z. Ge, Studies on the
surface modification of diatomite with polyethyleneimine
and trapping effect of the modified diatomite for phenol,
Appl. Surf. Sci., 250 (2005) 273–279.
- M.A. Usman, A.Y. Khan, Selective adsorption of anionic dye
from wastewater using polyethyleneimine based macroporous
sponge: batch and continuous studies, J. Hazard. Mater.,
428 (2022) 128238, doi: 10.1016/j.jhazmat.2022.128238.
- B. Gao, F. An, K. Liu, Studies on chelating adsorption properties
of novel composite material polyethyleneimine/silica gel for
heavy-metal ions, Appl. Surf. Sci., 253 (2006) 1946–1952.
- T.B. da Costa, T.L. da Silva, C.S. Dias Costa, M.G.C. da Silva,
M.G.A. Vieira, Chromium adsorption using Sargassum
filipendula algae waste from alginate extraction: batch and
fixed-bed column studies, Chem. Eng. J. Adv., 11 (2022) 100341,
doi: 10.1016/j.ceja.2022.100341.
- J.S. da Costa, A.R. Fajardo, Polypyrrole/stearic acid-coated Luffa
cylindrica for enhanced removal of sodium diclofenac from
water: batch and continuous adsorption studies, J. Cleaner
Prod., 389 (2023) 136084, doi: 10.1016/j.jclepro.2023.136084.
- L. Hu, Y. Wu, M. Li, X. Zhang, X. Xian, Y. Mai, X. Lin, Highly
selective adsorption of 5-hydroxymethylfurfural from
multicomponent mixture by simple pH controlled in batch
and fixed-bed column studies: competitive isotherms, kinetic
and breakthrough curves simulation, Sep. Purif. Technol.,
299 (2022) 121756, doi: 10.1016/j.seppur.2022.121756.
- S. Mohan, D.K. Singh, V. Kumar, S.H. Hasan, Effective removal
of fluoride ions by rGO/ZrO2 nanocomposite from aqueous
solution: fixed bed column adsorption modelling and its
adsorption mechanism, J. Fluorine Chem., 194 (2017) 40–50.
- Y. Ye, Y. Wei, Y. Gu, D. Kang, W. Jiang, J. Kang, Simultaneous
removal of fluoride and phosphate in a continuous fixed-bed
column filled with magnesia-pullulan composite, J. Alloys
Compd., 838 (2020) 155528, doi: 10.1016/j.jallcom.2020.155528.
- Y. Cardona, S.A. Korili, A. Gil, Use of response surface
methodology to optimize triclosan adsorption on alumina
pillared clays in a fixed-bed column for applications in
solid-phase extraction, Appl. Clay Sci., 235 (2023) 106879,
doi: 10.1016/j.clay.2023.106879.
- M.B. de Farias, M.P. Spaolonzi, M.G.C. Silva, M.G.A. Vieira,
Fixed-bed adsorption of bisphenol A onto organoclay:
characterisation, mathematical modelling and theoretical
calculation of DFT-based chemical descriptors, J. Environ.
Chem. Eng., 9 (2021) 106103, doi: 10.1016/j.jece.2021.106103.
- K.H. Chu, Breakthrough curve analysis by simplistic
models of fixed bed adsorption: in defense of the centuryold
Bohart–Adams model, Chem. Eng. J., 380 (2020) 122513,
doi: 10.1016/j.cej.2019.122513.
- Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics.
I. A theoretical model for respirator cartridge service life,
Am. Ind. Hyg. Assoc. J., 45 (1984) 509–516.
- A. Gizaw, F. Zewge, Y. Chebude, A. Mekonnen, M. Tesfaye,
Simultaneous nitrate and phosphate abatement using calcium
silicate hydrate adsorbent: fixed bed column adsorption
study, Surf. Interfaces, 30 (2022) 101961, doi: 10.1016/j.surfin.2022.101961.
- Y. Fang, M. Wu, Q. Zhang, F. Zhou, C. Deng, Y. Yan, H. Shen,
Y. Tang, Y. Wang, Hierarchical covalent organic frameworksmodified
diatomite for efficient separation of bisphenol A
from water in a convenient column mode, Sep. Purif. Technol.,
298 (2022) 121611, doi: 10.1016/j.seppur.2022.121611.
- J. Wang, G. Zhang, S. Qiao, J. Zhou, Comparative assessment
of formation pathways and adsorption behavior reveals the
role of NaOH of MgO-modified diatomite on phosphate
recovery, Sci. Total Environ., 876 (2023) 162785, doi: 10.1016/j.scitotenv.2023.162785.
- D. Ulloa-Ovares, C.E. Rodriguez-Rodriguez, M. Masís-Mora,
J.E. Duran, Simultaneous degradation of pharmaceuticals in
fixed and fluidized bed reactors using iron-modified diatomite
as heterogeneous Fenton catalyst, Process Saf. Environ. Prot.,
152 (2021) 97–107.
- Y. Wu, X. Li, Q. Yang, D. Wang, Q. Xu, F. Yao, F. Chen, Z. Tao,
X. Huang, Hydrated lanthanum oxide-modified diatomite as
highly efficient adsorbent for low-concentration phosphate
removal from secondary effluents, J. Environ. Manage.,
231 (2019) 370–379.
- R.P. Chicinaş, E. Gál, H. Bedelean, M. Darabantu, A. Măicăneanu,
Novel metal modified diatomite, zeolite and carbon xerogel
catalysts for mild conditions wet air oxidation of phenol:
characterization, efficiency and reaction pathway, Sep. Purif.
Technol., 197 (2018) 36–46.
- X. Liu, C. Yang, Y. Wang, Y. Guo, Y. Guo, G. Lu, Effect of the
diatomite pretreatment on the catalytic performance of TS-1/diatomite for toluene hydroxylation by H2O2 in fixed-bed
reactor, Chem. Eng. J., 243 (2014) 192–196.
- M. Yi, K. Wang, H. Wei, D. Wei, X. Wei, B. Wei, L. Shao, T. Fujita,
X. Cui, Efficient preparation of red mud-based geopolymer
microspheres (RM@GMs) and adsorption of fluoride ions in
wastewater, J. Hazard. Mater., 442 (2023) 130027, doi: 10.1016/j.jhazmat.2022.130027.
- K. Yang, Y. Li, Z. Tian, K. Peng, Y. Lai, Removal of fluoride
ions from ZnSO4 electrolyte by amorphous porous Al2O3
microfiber clusters: adsorption performance and mechanism,
Hydrometallurgy, 197 (2020) 105455, doi: 10.1016/j.hydromet.2020.105455.
- E. Kusrini, N. Sofyan, N. Suwartha, G. Yesya, C.R. Priadi,
Chitosan-praseodymium complex for adsorption of fluoride
ions from water, J. Rare Earths, 33 (2015) 1104–1113.
- Y.X. Zhang, Y. Jia, Fluoride adsorption on manganese
carbonate: ion-exchange based on the surface carbonatelike
groups and hydroxyl groups, J. Colloid Interface Sci.,
510 (2018) 407–417.
- D. Guo, H. Li, J. Wang, Z. Xu, Facile synthesis of NH2-UiO-66 modified low-cost loofah sponge for the adsorption
of fluoride from water, J. Alloys Compd., 929 (2022) 167270,
doi: 10.1016/j.jallcom.2022.167270.
- R. Zhu, X. Wang, J.G. Panther, Q. Wang, S. Chakir, Y. Ding,
Y. Huang, H. Wang, Micro/nanostructured MgO hollow
spheres with selective adsorption performance and their
application for fluoride monitoring in water, Sep. Purif.
Technol., 299 (2022) 121703, doi: 10.1016/j.seppur.2022.121703.
- M.L.G. Vieira, V.M. Esquerdo, L.R. Nobre, G.L. Dotto,
L.A.A. Pinto, Glass beads coated with chitosan for the food
azo dyes adsorption in a fixed bed column, J. Ind. Eng. Chem.,
20 (2014) 3387–3393.