References

  1. I. Tarasenko, A. Kholodov, A. Zin’kov, I. Chekryzhov, Chemical composition of groundwater in abandoned coal mines: evidence of hydrogeochemical evolution, Appl. Geochem., 137 (2022) 105210, doi: 10.1016/j.apgeochem.2022.105210.
  2. Z. Yang, W. Li, X. Li, J. He, Quantitative analysis of the relationship between vegetation and groundwater buried depth: a case study of a coal mine district in Western China, Ecol. Indic., 102 (2019) 770–782.
  3. Z. Yan, G. Liu, R. Sun, Q. Tang, D. Wu, B. Wu, C. Zhou, Geochemistry of rare earth elements in groundwater from the Taiyuan Formation limestone aquifer in the Wolonghu Coal Mine, Anhui province, China, J. Geochem. Explor., 135 (2013) 54–62.
  4. T. Rinder, M. Dietzel, J.A. Stammeier, A. Leis, D. Bedoya- González, S. Hilberg, Geochemistry of coal mine drainage, groundwater, and brines from the Ibbenbüren mine, Germany: a coupled elemental-isotopic approach, Appl. Geochem., 121 (2020) 104693, doi: 10.1016/j.apgeochem.2020.104693.
  5. M. Gomo, D. Vermeulen, Hydrogeochemical characteristics of a flooded underground coal mine groundwater system, J. Afr. Earth Sci., 92 (2014) 68–75.
  6. L. Li, W. Li, Q. Wang, Prediction and zoning of the impact of underground coal mining on groundwater resources, Process Saf. Environ. Prot., 168 (2022) 454–462.
  7. C. Jiang, L. Cheng, C. Li, L. Zheng, A hydrochemical and multiisotopic study of groundwater sulfate origin and contribution in the coal mining area, Ecotoxicol. Environ. Saf., 248 (2022) 114286, doi: 10.1016/j.ecoenv.2022.114286.
  8. M. Zhu, B. Li, G. Liu, Groundwater risk assessment of abandoned mines based on pressure-state-response— the example of an abandoned mine in southwest China, Energy Rep., 8 (2022) 10728–10740.
  9. D. Guo, H. Li, J. Wang, Z. Xu, Facile synthesis of NH2-UiO-66 modified low-cost loofah sponge for the adsorption of fluoride from water, J. Alloys Compd., 929 (2022) 167270, doi: 10.1016/j.jallcom.2022.167270.
  10. K. Li, Z. Hu, R. Zhao, J. Zhou, C. Jing, Q. Sun, J. Rao, K. Yao, B. Dong, X. Liu, H. Li, Y. Zang, J. Ji, A multidimensional rational design of nickel–iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors, J. Colloid Interface Sci., 603 (2021) 799–809.
  11. X. Chen, J. Lin, H. Wang, Y. Yang, C. Wang, Q. Sun, X. Shen, Y. Li, Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel as adsorbents for carbon dioxide capture, Carbohydr. Polym., 302 (2023) 120389, doi: 10.1016/j.carbpol.2022.120389.
  12. B. Gao, P. Jiang, F. An, S. Zhao, Z. Ge, Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol, Appl. Surf. Sci., 250 (2005) 273–279.
  13. M.A. Usman, A.Y. Khan, Selective adsorption of anionic dye from wastewater using polyethyleneimine based macroporous sponge: batch and continuous studies, J. Hazard. Mater., 428 (2022) 128238, doi: 10.1016/j.jhazmat.2022.128238.
  14. B. Gao, F. An, K. Liu, Studies on chelating adsorption properties of novel composite material polyethyleneimine/silica gel for heavy-metal ions, Appl. Surf. Sci., 253 (2006) 1946–1952.
  15. T.B. da Costa, T.L. da Silva, C.S. Dias Costa, M.G.C. da Silva, M.G.A. Vieira, Chromium adsorption using Sargassum filipendula algae waste from alginate extraction: batch and fixed-bed column studies, Chem. Eng. J. Adv., 11 (2022) 100341, doi: 10.1016/j.ceja.2022.100341.
  16. J.S. da Costa, A.R. Fajardo, Polypyrrole/stearic acid-coated Luffa cylindrica for enhanced removal of sodium diclofenac from water: batch and continuous adsorption studies, J. Cleaner Prod., 389 (2023) 136084, doi: 10.1016/j.jclepro.2023.136084.
  17. L. Hu, Y. Wu, M. Li, X. Zhang, X. Xian, Y. Mai, X. Lin, Highly selective adsorption of 5-hydroxymethylfurfural from multicomponent mixture by simple pH controlled in batch and fixed-bed column studies: competitive isotherms, kinetic and breakthrough curves simulation, Sep. Purif. Technol., 299 (2022) 121756, doi: 10.1016/j.seppur.2022.121756.
  18. S. Mohan, D.K. Singh, V. Kumar, S.H. Hasan, Effective removal of fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: fixed bed column adsorption modelling and its adsorption mechanism, J. Fluorine Chem., 194 (2017) 40–50.
  19. Y. Ye, Y. Wei, Y. Gu, D. Kang, W. Jiang, J. Kang, Simultaneous removal of fluoride and phosphate in a continuous fixed-bed column filled with magnesia-pullulan composite, J. Alloys Compd., 838 (2020) 155528, doi: 10.1016/j.jallcom.2020.155528.
  20. Y. Cardona, S.A. Korili, A. Gil, Use of response surface methodology to optimize triclosan adsorption on alumina pillared clays in a fixed-bed column for applications in solid-phase extraction, Appl. Clay Sci., 235 (2023) 106879, doi: 10.1016/j.clay.2023.106879.
  21. M.B. de Farias, M.P. Spaolonzi, M.G.C. Silva, M.G.A. Vieira, Fixed-bed adsorption of bisphenol A onto organoclay: characterisation, mathematical modelling and theoretical calculation of DFT-based chemical descriptors, J. Environ. Chem. Eng., 9 (2021) 106103, doi: 10.1016/j.jece.2021.106103.
  22. K.H. Chu, Breakthrough curve analysis by simplistic models of fixed bed adsorption: in defense of the centuryold Bohart–Adams model, Chem. Eng. J., 380 (2020) 122513, doi: 10.1016/j.cej.2019.122513.
  23. Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life, Am. Ind. Hyg. Assoc. J., 45 (1984) 509–516.
  24. A. Gizaw, F. Zewge, Y. Chebude, A. Mekonnen, M. Tesfaye, Simultaneous nitrate and phosphate abatement using calcium silicate hydrate adsorbent: fixed bed column adsorption study, Surf. Interfaces, 30 (2022) 101961, doi: 10.1016/j.surfin.2022.101961.
  25. Y. Fang, M. Wu, Q. Zhang, F. Zhou, C. Deng, Y. Yan, H. Shen, Y. Tang, Y. Wang, Hierarchical covalent organic frameworksmodified diatomite for efficient separation of bisphenol A from water in a convenient column mode, Sep. Purif. Technol., 298 (2022) 121611, doi: 10.1016/j.seppur.2022.121611.
  26. J. Wang, G. Zhang, S. Qiao, J. Zhou, Comparative assessment of formation pathways and adsorption behavior reveals the role of NaOH of MgO-modified diatomite on phosphate recovery, Sci. Total Environ., 876 (2023) 162785, doi: 10.1016/j.scitotenv.2023.162785.
  27. D. Ulloa-Ovares, C.E. Rodriguez-Rodriguez, M. Masís-Mora, J.E. Duran, Simultaneous degradation of pharmaceuticals in fixed and fluidized bed reactors using iron-modified diatomite as heterogeneous Fenton catalyst, Process Saf. Environ. Prot., 152 (2021) 97–107.
  28. Y. Wu, X. Li, Q. Yang, D. Wang, Q. Xu, F. Yao, F. Chen, Z. Tao, X. Huang, Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents, J. Environ. Manage., 231 (2019) 370–379.
  29. R.P. Chicinaş, E. Gál, H. Bedelean, M. Darabantu, A. Măicăneanu, Novel metal modified diatomite, zeolite and carbon xerogel catalysts for mild conditions wet air oxidation of phenol: characterization, efficiency and reaction pathway, Sep. Purif. Technol., 197 (2018) 36–46.
  30. X. Liu, C. Yang, Y. Wang, Y. Guo, Y. Guo, G. Lu, Effect of the diatomite pretreatment on the catalytic performance of TS-1/diatomite for toluene hydroxylation by H2O2 in fixed-bed reactor, Chem. Eng. J., 243 (2014) 192–196.
  31. M. Yi, K. Wang, H. Wei, D. Wei, X. Wei, B. Wei, L. Shao, T. Fujita, X. Cui, Efficient preparation of red mud-based geopolymer microspheres (RM@GMs) and adsorption of fluoride ions in wastewater, J. Hazard. Mater., 442 (2023) 130027, doi: 10.1016/j.jhazmat.2022.130027.
  32. K. Yang, Y. Li, Z. Tian, K. Peng, Y. Lai, Removal of fluoride ions from ZnSO4 electrolyte by amorphous porous Al2O3 microfiber clusters: adsorption performance and mechanism, Hydrometallurgy, 197 (2020) 105455, doi: 10.1016/j.hydromet.2020.105455.
  33. E. Kusrini, N. Sofyan, N. Suwartha, G. Yesya, C.R. Priadi, Chitosan-praseodymium complex for adsorption of fluoride ions from water, J. Rare Earths, 33 (2015) 1104–1113.
  34. Y.X. Zhang, Y. Jia, Fluoride adsorption on manganese carbonate: ion-exchange based on the surface carbonatelike groups and hydroxyl groups, J. Colloid Interface Sci., 510 (2018) 407–417.
  35. D. Guo, H. Li, J. Wang, Z. Xu, Facile synthesis of NH2-UiO-66 modified low-cost loofah sponge for the adsorption of fluoride from water, J. Alloys Compd., 929 (2022) 167270, doi: 10.1016/j.jallcom.2022.167270.
  36. R. Zhu, X. Wang, J.G. Panther, Q. Wang, S. Chakir, Y. Ding, Y. Huang, H. Wang, Micro/nanostructured MgO hollow spheres with selective adsorption performance and their application for fluoride monitoring in water, Sep. Purif. Technol., 299 (2022) 121703, doi: 10.1016/j.seppur.2022.121703.
  37. M.L.G. Vieira, V.M. Esquerdo, L.R. Nobre, G.L. Dotto, L.A.A. Pinto, Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column, J. Ind. Eng. Chem., 20 (2014) 3387–3393.